1
|
Burmistrova DA, Galustyan A, Pomortseva NP, Pashaeva KD, Arsenyev MV, Demidov OP, Kiskin MA, Poddel’sky AI, Berberova NT, Smolyaninov IV. Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments. Beilstein J Org Chem 2024; 20:2378-2391. [PMID: 39319031 PMCID: PMC11420547 DOI: 10.3762/bjoc.20.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
A series of new RS-, RS-CH2- and R2N-CH2-functionalized сatechols with heterocyclic fragments such as 1,3,4-oxadiazole, 1,2,4-triazole, thiazole, or pyridine were synthesized by the reaction of 3,5-di-tert-butyl-o-benzoquinone or 3,5-di-tert-butyl-6-methoxymethylcatechol with different heterocyclic thiols. The S-functionalized catechols were prepared by the Michael reaction from 3,5-di-tert-butyl-o-benzoquinone and the corresponding thiols. The starting reagents such as substituted 1,3,4-oxadiazole-2-thiols and 4H-triazole-3-thiols are characterized by thiol-thione tautomerism, therefore their reactions with 3,5-di-tert-butyl-6-methoxymethylcatechol can proceed at the sulfur or nitrogen atom. In the case of mercapto-derivatives of thiazole or pyridine, this process leads to the formation of the corresponding thioethers with a methylene linker. At the same time, thiolated 1,3,4-oxadiazole or 1,2,4-triazole undergo alkylation at the nitrogen atom in the reaction with 3,5-di-tert-butyl-6-methoxymethylcatechol to form the corresponding thiones. The yield of reaction products ranges from 42 to 80%. The crystal structures of catechols with 3-nitropyridine or 1,3,4-oxadiazole-2(3H)-thione moieties were established by single-crystal X-ray analysis. The possibility of forming intra- and intermolecular hydrogen bonds has been established for these compounds. The electrochemical behavior of the studied compounds is influenced by several factors: the nature of the heterocycle and its substituents, the presence of a sulfur atom in the catechol ring, or a thione group in the heterocyclic core. The radical scavenging activity and antioxidant properties were determined using the reaction with synthetic radicals, the cupric reducing antioxidant capacity assay, the inhibition process of superoxide radical anion formation by xanthine oxidase, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro.
Collapse
Affiliation(s)
- Daria A Burmistrova
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Andrey Galustyan
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Nadezhda P Pomortseva
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Kristina D Pashaeva
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Maxim V Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str. 49, 603137, Nizhny Novgorod, Russia
| | - Oleg P Demidov
- North-Caucasus Federal University, Pushkin str. 1, 355017, Stavropol, Russia
| | - Mikhail A Kiskin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp., 31, 119991, Moscow, Russia
| | - Andrey I Poddel’sky
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Nadezhda T Berberova
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Ivan V Smolyaninov
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| |
Collapse
|
2
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Okuno M, Yamana K, Kawamura S, Nishimura K, Hino S, Kawasaki R, Ikeda A. Selective Photodynamic Activity of Tetrakis(4-aminophenyl)porphyrins with and without Acetyl Protecting Groups on Cancer and Normal Cells. Chemistry 2023; 29:e202301385. [PMID: 37334625 DOI: 10.1002/chem.202301385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Tetrakis(4-aminophenyl)porphyrin (1) and tetrakis(4-acetamidophenyl)porphyrin (2) were dissolved in water with the incorporation of a polysaccharide (λ-carrageenan (CGN)) as a water-solubilizing agent. Although the photodynamic activity of the CGN-2 complex was considerably lower than that of the CGN-1 complex, the selectivity index (SI; IC50 in a normal cell/IC50 in a cancer cell) of the CGN-2 complex was considerably higher than that of the CGN-1 complex. This is because the photodynamic activity of the CGN-2 complex was significantly affected by the intracellular uptakes by the normal and cancer cells. During in vivo experiments, the CGN-2 complex inhibited tumor growth under light irradiation with high blood retention compared with the CGN-1 complex and Photofrin, which exhibited lower blood retention. This study showed that the photodynamic activity and SI are influenced by substituent groups of arene in the meso-positions of porphyrin analogs.
Collapse
Affiliation(s)
- Masafumi Okuno
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Shogo Kawamura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Kotaro Nishimura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Shodai Hino
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
6
|
Zhang R, Hao L, Chen P, Zhang G, Liu N. Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorg Chem 2023; 137:106576. [PMID: 37182421 DOI: 10.1016/j.bioorg.2023.106576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Pengwei Chen
- Hainan Key Laboratory for ReseCarch and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Gang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Liu X, Cui H, Li M, Chai Z, Wang H, Jin X, Dai F, Liu Y, Zhou B. Tumor killing by a dietary curcumin mono-carbonyl analog that works as a selective ROS generator via TrxR inhibition. Eur J Med Chem 2023; 250:115191. [PMID: 36758308 DOI: 10.1016/j.ejmech.2023.115191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
In comparison with normal cells, cancer cells feature intrinsic oxidative stress, thereby being more vulnerable to further production of reactive oxygen species (ROS) by pro-oxidative anticancer agents (PAAs). However, PAAs also inevitably generate ROS in normal cells, resulting in their narrow therapeutic window and toxic side effects that greatly limit their clinical application. To develop PAAs that generate ROS selectively in cancer cells over in normal cells, we rationally designed three series of 21 dietary curcumin 5-carbon mono-carbonyl analogs differentiated by either placement of the cyclohexanone, piperidone, and methylpiperidone linkers, or introduction of electron-withdrawing trifluoromethyl and electron-donating methoxyl groups on its two aromatic rings in the ortho, meta, or para position to the linkers. From the designed molecules, 2c, characterized of the presence of the meta-CF3-substituted mode and the piperidone linker, was identified as a potent selective ROS-generating agent, allowing its ability to kill selectively human non-small cell lung cancer NCI-H460 (IC50 = 0.44 μM) over human normal lung MRC-5 cells with a selectivity index of 32.0. Additionally, it was more potent and selective than the conventional chemotherapeutic agents (5-fluorouracil and camptothecin) did. Mechanistical investigation reveals that by means of its Michael acceptor unit and structure characteristics as described above, 2c could covalently modify the Sec-498 residue of intracellular thioredoxin reductase (TrxR) to generate ROS selectively, resulting in ROS-dependent apoptosis and ferroptosis of NCI-H460 cells. Noticeably, 2c inhibited significantly the growth of NCI-H460 cell xenograft tumor in nude mice without obvious toxicity to liver and kidney. Together, this work highlights a practical strategy of targeting TrxR overexpressed in cancer cells to develop PAAs capable of generating ROS selectively, as evidenced by the example of 2c.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Hongmei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Zuohu Chai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Haibo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
8
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Dual Diomarkers Triggered Prodrugs for Precise Treatment of Melanoma: Design, Synthesis and Activities. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Polovinkina MA, Pomortseva NP, Fukin GK, Poddel’sky AI, Berberova NT. Synthesis and Antioxidant Activity of New Catechol Thioethers with the Methylene Linker. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103169. [PMID: 35630646 PMCID: PMC9144179 DOI: 10.3390/molecules27103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022]
Abstract
Novel catechol thio-ethers with different heterocyclic substituents at sulfur atom were prepared by reacting 3,5-di-tert-butyl-6-methoxymethylcatechol with functionalized thiols under acidic conditions. A common feature of compounds is a methylene bridge between the catechol ring and thioether group. Two catechols with the thio-ether group, bound directly to the catechol ring, were also considered to assess the effect of the methylene linker on the antioxidant properties. The crystal structures of thio-ethers with benzo-thiazole moieties were established by single-crystal X-ray analysis. The radical scavenging and antioxidant activities were determined using 2,2′-diphenyl-1-picrylhydrazyl radical test, ABTS∙+, CUPRAC (TEAC) assays, the reaction with superoxide radical anion generated by xanthine oxidase (NBT assay), the oxidative damage of the DNA, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro. Most catechol-thioethers exhibit the antioxidant effect, which varies from mild to moderate depending on the model system. The dual anti/prooxidant activity characterizes compounds with adamantyl or thio-phenol substituent at the sulfur atom. Catechol thio-ethers containing heterocyclic groups (thiazole, thiazoline, benzo-thiazole, benzo-xazole) can be considered effective antioxidants with cytoprotective properties. These compounds can protect molecules of DNA and lipids from the different radical species.
Collapse
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Daria A. Burmistrova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Maria A. Polovinkina
- Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova Str., 344006 Rostov-on-Don, Russia;
| | - Nadezhda P. Pomortseva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Andrey I. Poddel’sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Nadezhda T. Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| |
Collapse
|
11
|
Zheng YL, Tu ZS, Cui HM, Yan S, Duan DC, Tang W, Dai F, Zhou B. Redox-Based Strategy for Selectively Inducing Energy Crisis Inside Cancer Cells: An Example of Modifying Dietary Curcumin to Target Mitochondria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2898-2910. [PMID: 35213152 DOI: 10.1021/acs.jafc.1c07690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reprograming of energy metabolism is a major hallmark of cancer, but its effective intervention is still a challenging task due to metabolic heterogeneity and plasticity of cancer cells. Herein, we report a general redox-based strategy for meeting the challenge. The strategy was exemplified by a dietary curcumin analogue (MitoCur-1) that was designed to target mitochondria (MitoCur-1). By virtue of its electrophilic and mitochondrial-targeting properties, MitoCur-1 generated reactive oxygen species (ROS) more effectively and selectively in HepG2 cells than in L02 cells via the inhibition of mitochondrial antioxidative thioredoxin reductase 2 (TrxR2). The ROS generation preferentially mediated the energy crisis of HepG2 cells in a dual-inhibition fashion against both mitochondrial and glycolytic metabolisms, which could hit the metabolic plasticity of HepG2 cells. The ROS-dependent energy crisis also allowed its preferential killing of HepG2 cells (IC50 = 1.4 μM) over L02 cells (IC50 = 9.1 μM), via induction of cell-cycle arrest, apoptosis and autophagic death, and its high antitumor efficacy in vivo, in nude mice bearing HepG2 tumors (15 mg/kg). These results highlight that inhibiting mitochondrial TrxR2 to produce ROS by electrophiles is a promising redox-based strategy for the effective intervention of cancer cell energy metabolic reprograming.
Collapse
Affiliation(s)
- Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Zhi-Shan Tu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Hong-Mei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shuai Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
12
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Almyasheva NR, Ivanova ES, Smolyaninova SA, Pashchenko KP, Poddel'sky AI, Berberova NT. Catechol‐ and Phenol‐Containing Thio‐Schiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Daria A. Burmistrova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nailya R. Almyasheva
- Gause Institute of New Antibiotics 11/1 Bolshaya Pirogovskaya str. Moscow 119021 Russian Federation
| | - Ekaterina S. Ivanova
- Blokhin National Medical Research Center of Oncology 24 Kashirskoye Shosse Moscow 115478 Russian Federation
| | - Susanna A. Smolyaninova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Konstantin P. Pashchenko
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Andrey I. Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nadezhda T. Berberova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| |
Collapse
|
13
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
14
|
Yang J, Mu WW, Cao YX, Liu GY. Synthesis and biological evaluation of β-ionone oriented proapoptosis agents by enhancing the ROS generation. Bioorg Chem 2020; 104:104273. [DOI: 10.1016/j.bioorg.2020.104273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022]
|
15
|
Bao XZ, Wang Q, Ren XR, Dai F, Zhou B. A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02 cells. Free Radic Biol Med 2020; 152:597-608. [PMID: 31805398 DOI: 10.1016/j.freeradbiomed.2019.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/04/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
Targeting redox vulnerability of cancer cells by pro-oxidants capable of generating reactive oxygen species (ROS) has surfaced as an important anticancer strategy. Due to the intrinsic narrow therapeutic window and other dangerous side effects of ROS generation, it is highly needed and challenging to develop pro-oxidative anticancer agents (PAAs) with high selectivity for generating ROS in cancer cells. Herein we report a hydrogen peroxide (H2O2)-activated Cu(II) pro-ionophore strategy to develop naphthazarin (Nap) as such type of PAAs based on the H2O2-mediated conversion of boronate to free phenol. The boronate-protected Nap (PNap) can exploit increased levels of H2O2 in HepG2 cells to in situ release Nap followed by its efflux via conjugation with reduced glutathione (GSH), allowing that the Nap-GSH adduct works as a Cu(II) ionophore to induce continuously GSH depletion via a reduction-dependent releasing of Cu(I) by GSH. This strategy endows PNap with the unprecedented ability to hit multi-redox characteristics (increased levels of H2O2, GSH and copper) of HepG2 cells, leading to ROS generation preferentially in HepG2 cells along with their selective death.
Collapse
Affiliation(s)
- Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xiao-Rong Ren
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
16
|
Liu ZQ. Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently. Eur J Med Chem 2019; 189:112020. [PMID: 32006794 DOI: 10.1016/j.ejmech.2019.112020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Many diseases have been regarded to correlate with the in vivo oxidative damages, which are caused by overproduced free radicals from metabolic process or reactive oxygen species (ROS). This background motivates chemists to explore free radical reactions and to design a number of antioxidants, but whether free radical chemistry can be applied to accelerate the efficacy of the drug discovery is still underrepresented. Herein, in light of recent findings as well as kinetics on free radical reaction, the discipline of free radical chemistry is introduced to be a novel tool for finding potential drugs from antioxidant libraries accumulated during the study on free radical chemistry. These antioxidants provide with such abundant types of structural skeleton that might be employed to inhibit oxidations in different biological microenvironments. Although the in vitro characterization on the antioxidative property exerts a potential role of an antioxidant as a prodrug, the in vivo investigation on the property for quenching free radicals will make a final decision for the antioxidant whether it is worthy to be further explored pharmacologically. Therefore, it is reasonable to expect that bridging free radical chemistry with the pharmacological research will provide with a succinct way for finding novel drugs efficiently.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|