1
|
Xiong S, Lin S, Hu Y, Xia W, Wang Q, Wang L, Cao T, Liao Y, Scholze A, Tepel M, Zhu Z, Liu D. Dietary Cinnamaldehyde Activation of TRPA1 Antagonizes High-Salt-Induced Hypertension Through Restoring Renal Tubular Mitochondrial Dysfunction. Am J Hypertens 2024; 37:708-716. [PMID: 38820173 DOI: 10.1093/ajh/hpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The renal proximal tubule (RPT) plays a pivotal role in regulating sodium reabsorption and thus blood pressure (BP). Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigate high-salt intake-induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function. METHODS Trpa1-deficient (Trpa1-/-) mice and wild-type (WT) mice were fed standard laboratory chow [normal diet (ND) group, 0.4% salt], standard laboratory chow with 8% salt [high-salt diet (HS) group], or standard laboratory chow with 8% salt plus 0.015% cinnamaldehyde [high-salt plus cinnamaldehyde diet (HSC) group] for 6 months. Urinary sodium excretion, reactive oxygen species (ROS) production, mitochondrial function, and the expression of sodium hydrogen exchanger isoform 3 (NHE3) and Na+/K+-ATPase of RPTs were determined. RESULTS Chronic dietary cinnamaldehyde supplementation reduced tail systolic BP and 24-hour ambulatory arterial pressure in HS-fed WT mice. Compared with the mice fed HS, cinnamaldehyde supplementation significantly increased urinary sodium excretion, inhibited excess ROS production, and alleviated mitochondrial dysfunction of RPTs in WT mice. However, these effects of cinnamaldehyde were absent in Trpa1-/- mice. Furthermore, chronic dietary cinnamaldehyde supplementation blunted HS-induced upregulation of NHE3 and Na+/K+-ATPase in WT mice but not Trpa1-/- mice. CONCLUSIONS The present study demonstrated that chronic activation of Trpa1 attenuates HS-induced hypertension by inhibiting urinary sodium reabsorption through restoring renal tubular epithelial mitochondrial function. Renal TRPA1 may be a potential target for the management of excessive dietary salt intake-associated hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Alexandra Scholze
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark, and Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Research, University of Southern
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
2
|
Sampath C, Chukkapalli SS, Raju AV, Alluri LSC, Srisai D, Gangula PR. Cinnamaldehyde Protects against P. gingivalis Induced Intestinal Epithelial Barrier Dysfunction in IEC-6 Cells via the PI3K/Akt-Mediated NO/Nrf2 Signaling Pathway. Int J Mol Sci 2024; 25:4734. [PMID: 38731952 PMCID: PMC11083591 DOI: 10.3390/ijms25094734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of Diabetes, Metabolism and Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| | - Sasanka S. Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Abhinav V. Raju
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Dollada Srisai
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| | - Pandu R. Gangula
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
3
|
Feng L, Gao L. The role of neurovascular coupling dysfunction in cognitive decline of diabetes patients. Front Neurosci 2024; 18:1375908. [PMID: 38576869 PMCID: PMC10991808 DOI: 10.3389/fnins.2024.1375908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Neurovascular coupling (NVC) is an important mechanism to ensure adequate blood supply to active neurons in the brain. NVC damage can lead to chronic impairment of neuronal function. Diabetes is characterized by high blood sugar and is considered an important risk factor for cognitive impairment. In this review, we provide fMRI evidence of NVC damage in diabetic patients with cognitive decline. Combined with the exploration of the major mechanisms and signaling pathways of NVC, we discuss the effects of chronic hyperglycemia on the cellular structure of NVC signaling, including key receptors, ion channels, and intercellular connections. Studying these diabetes-related changes in cell structure will help us understand the underlying causes behind diabetes-induced NVC damage and early cognitive decline, ultimately helping to identify the most effective drug targets for treatment.
Collapse
Affiliation(s)
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Xu S, Liang S, Pei Y, Wang R, Zhang Y, Xu Y, Huang B, Li H, Li J, Tan B, Cao H, Guo S. TRPV1 Dysfunction Impairs Gastric Nitrergic Neuromuscular Relaxation in High-Fat Diet-Induced Diabetic Gastroparesis Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:548-557. [PMID: 36740184 DOI: 10.1016/j.ajpath.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Diabetic gastroparesis (DGP) is characterized by delayed gastric emptying of solid food. Nitrergic neuron-mediated fundus relaxation and intragastric peristalsis are pivotal for gastric emptying and are impaired in DGP. Transient receptor potential vanilloid 1 (TRPV1) ion channels are expressed in gastrointestinal vagal afferent nerves and have a potential role in relevant gastrointestinal disorders. In this study, mice with high-fat diet (HFD)-induced type 2 diabetes mellitus (T2DM), associated with gastroparesis, were used to determine the role of TRPV1 in DGP. After feeding with HFD, mice exhibited obesity, hyperglycemia, insulin resistance, and delayed gastric emptying. Cholinergic- and nitrergic neuron-mediated neuromuscular contractions and relaxation were impaired. The antral tone of the DGP mice was attenuated. Interestingly, activating or suppressing TRPV1 facilitated or inhibited gastric fundus relaxation in normal mice. These effects were neutralized by using a nitric oxide synthase (NOS) inhibitor. Activation or suppression of TRPV1 also increased or reduced NO release. TRPV1 was specifically localized with neuronal NOS in the gastric fundus. These data suggest that TRPV1 activation facilitates gastric fundus relaxation by regulating neuronal NOS and promoting NO release. However, these effects and mechanisms disappeared in mice with DGP induced by HFD diet. TRPV1 expression was only marginally decreased in the fundus of DGP mice. TRPV1 dysfunction may be a potential mechanism underlying the dysfunction of DGP gastric nitrergic neuromuscular relaxation.
Collapse
Affiliation(s)
- Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Pei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haiwen Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanjuan Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Sprouse J, Sampath C, Gangula P. 17β-Estradiol Suppresses Gastric Inflammatory and Apoptotic Stress Responses and Restores nNOS-Mediated Gastric Emptying in Streptozotocin (STZ)-Induced Diabetic Female Mice. Antioxidants (Basel) 2023; 12:758. [PMID: 36979006 PMCID: PMC10045314 DOI: 10.3390/antiox12030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Gastroparesis (Gp) is a severe complication of diabetes mellitus (DM) observed predominantly in women. It is characterized by abnormal gastric emptying (GE) without mechanical obstruction in the stomach. Nitric oxide (NO) is an inhibitory neurotransmitter produced by neuronal nitric oxide synthase (nNOS). It plays a critical role in gastrointestinal (GI) motility and stomach emptying. Here, we wanted to demonstrate the protective effects of supplemental 17β-estradiol (E2) on NO-mediated gastric function. We showed E2 supplementation to alleviate oxidative and inflammatory stress in streptozotocin (STZ)-induced diabetic female mice. Our findings suggest that daily administration of E2 at therapeutic doses is beneficial for metabolic homeostasis. This restoration occurs via regulating and modulating the expression/function of glycogen synthase kinase-3β (GSK-3β), nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), Phase II enzymes, MAPK- and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)-mediated inflammatory cytokines (IL-1β, IL-6, TNFα, IGF-1), and gastric apoptotic regulators. We also showed E2 supplementation to elevate GCH-1 protein levels in female diabetic mice. Since GCH-1 facilitates the production of tetrahydrobiopterin (BH4, cofactor for nNOS), an increase in GCH-1 protein levels in diabetic mice may improve their GE and nitrergic function. Our findings provide new insights into the impact of estrogen on gastric oxidative stress and intracellular inflammatory cascades in the context of Gp.
Collapse
Affiliation(s)
- Jeremy Sprouse
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
- Department of Endodontics, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Pandu Gangula
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
6
|
Sampath C, Raju AV, Freeman ML, Srinivasan S, Gangula PR. Nrf2 attenuates hyperglycemia-induced nNOS impairment in adult mouse primary enteric neuronal crest cells and normalizes stomach function. Am J Physiol Gastrointest Liver Physiol 2022; 322:G368-G382. [PMID: 35084215 PMCID: PMC8897013 DOI: 10.1152/ajpgi.00323.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteric neuronal cells play a vital role in gut motility in humans and experimental rodent models. Patients with diabetes are more vulnerable to gastrointestinal dysfunction due to enteric neuronal degeneration. In this study, we examined the mechanistic role and regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in hyperglycemia-induced enteric neuronal cell apoptosis in vitro by using adult mouse primary enteric neuronal crest cells (pENCs). Our data show that hyperglycemia (HG) or inhibition of Nrf2 induces apoptosis by elevating proinflammatory cytokines, reactive oxygen species (ROS) and suppresses neuronal nitric oxide synthase (nNOS-α) via PI3K/Nrf2-mediated signaling. Conversely, treating pENCs with cinnamaldehyde (CNM), a naturally occurring Nrf2 activator, prevented HG-induced apoptosis. These novel data reveal a negative feedback mechanism for GSK-3 activation. To further demonstrate that loss of Nrf2 leads to inflammation, oxidative stress, and reduces nNOS-mediated gastric function, we have used streptozotocin (STZ)-induced diabetic and Nrf2 null female mice. In vivo activation of Nrf2 with CNM (50 mg/kg, 3 days a week, ip) attenuated impaired nitrergic relaxation and delayed gastric emptying (GE) in conventional type 1 diabetic but not in Nrf2 null female mice. Supplementation of CNM normalized diabetes-induced altered gastric antrum protein expression of 1) p-AKT/p-p38MAPK/p-GSK-3β, 2) BH4 (cofactor of nNOS) biosynthesis enzyme GCH-1, 3) nNOSα, 4) TLR4, NF-κB, and 5) inflammatory cytokines (TNF-α, IL-1β, IL-6). We conclude that activation of Nrf2 prevents hyperglycemia-induced apoptosis in pENCs and restores nitrergic-mediated gastric motility and GE in STZ-induced diabetes female mice.NEW & NOTEWORTHY Primary neuronal cell crust (pENCs) in the intestine habitats nNOS and Nrf2, which was suppressed in diabetic gastroparesis. Activation of Nrf2 restored nNOS by suppressing inflammatory markers in pENCs cells. Inhibition of Nrf2 reveals a negative feedback mechanism for the activation of GSK-3. Activation of Nrf2 alleviates STZ-induced delayed gastric emptying and nitrergic relaxation in female mice. Activation of Nrf2 restored impaired gastric BH4 biosynthesis enzyme GCH-1, nNOSα expression thus regulating nitric oxide levels.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of ODS and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Abhinav V. Raju
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Michael L. Freeman
- 4Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia,3Atlanta Veterans Affairs Health Care System, Atlanta, Georgia
| | - Pandu R. Gangula
- 1Department of ODS and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
7
|
Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, Xiang M, Shen Z, Xin L, Lu Y, Gao J, Cui X. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct 2021; 12:12194-12220. [PMID: 34752593 DOI: 10.1039/d1fo01935j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) and diabetes are the leading causes of death worldwide, which underlines the urgent necessity to develop new pharmacotherapies. Cinnamon has been an eminent component of spice and traditional Chinese medicine for thousands of years. Numerous lines of findings have elucidated that cinnamon has beneficial effects against CVDs in various ways, including endothelium protection, regulation of immune response, lowering blood lipids, antioxidative properties, anti-inflammatory properties, suppression of vascular smooth muscle cell (VSMC) growth and mobilization, repression of platelet activity and thrombosis and inhibition of angiogenesis. Furthermore, emerging evidence has established that cinnamon improves diabetes, a crucial risk factor for CVDs, by enhancing insulin sensitivity and insulin secretion; regulating the enzyme activity involved in glucose; regulating glucose metabolism in the liver, adipose tissue and muscle; ameliorating oxidative stress and inflammation to protect islet cells; and improving diabetes complications. In this review, we summarized the mechanisms by which cinnamon regulates CVDs and diabetes in order to provide a theoretical basis for the further clinical application of cinnamon.
Collapse
Affiliation(s)
- Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongchen Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuqin Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhilin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yi Qu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
8
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
9
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Ning DS, Ma J, Peng YM, Li Y, Chen YT, Li SX, Liu Z, Li YQ, Zhang YX, Jian YP, Ou ZJ, Ou JS. Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing tetrahydrobiopterin via regulation of GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity. Atherosclerosis 2021; 328:83-91. [PMID: 34118596 DOI: 10.1016/j.atherosclerosis.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The apolipoprotein A-I mimetic peptide D-4F, among its anti-atherosclerotic effects, improves vasodilation through mechanisms not fully elucidated yet. METHODS Low-density lipoprotein (LDL) receptor null (LDLr-/-) mice were fed Western diet with or without D-4F. We then measured atherosclerotic lesion formation, endothelial nitric oxide synthase (eNOS) phosphorylation and its association with heat shock protein 90 (HSP90), nitric oxide (NO) and superoxide anion (O2•-) production, and tetrahydrobiopterin (BH4) and GTP-cyclohydrolase 1 (GCH-1) concentration in the aorta. Human umbilical vein endothelial cells (HUVECs) and aortas were treated with oxidized LDL (oxLDL) with or without D-4F; subsequently, BH4 and GCH-1 concentration, NO and O2•- production, eNOS association with HSP90, and endothelium-dependent vasodilation were measured. RESULTS Unexpectedly, eNOS phosphorylation, eNOS-HSP90 association, and O2•- production were increased, whereas BH4 and GCH-1 concentration and NO production were reduced in atherosclerosis. D-4F significantly inhibited atherosclerosis, eNOS phosphorylation, eNOS-HSP90 association, and O2•- generation but increased NO production and BH4 and GCH-1 concentration. OxLDL reduced NO production and BH4 and GCH-1 concentration but enhanced O2•- generation and eNOS association with HSP90, and impaired endothelium-dependent vasodilation. D-4F inhibited the overall effects of oxLDL. CONCLUSIONS Hypercholesterolemia enhanced uncoupled eNOS activity by decreasing GCH-1 concentration, thereby reducing BH4 levels. D-4F reduced uncoupled eNOS activity by increasing BH4 levels through GCH-1 expression and decreasing eNOS phosphorylation and eNOS-HSP90 association. Our findings elucidate a novel mechanism by which hypercholesterolemia induces atherosclerosis and D-4F inhibits it, providing a potential therapeutic approach.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yi-Xin Zhang
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease,Guangzhou, 510080, PR China.
| |
Collapse
|
11
|
Sampath C, Wilus D, Tabatabai M, Freeman ML, Gangula PR. Mechanistic role of antioxidants in rescuing delayed gastric emptying in high fat diet induced diabetic female mice. Biomed Pharmacother 2021; 137:111370. [PMID: 33761597 PMCID: PMC7994545 DOI: 10.1016/j.biopha.2021.111370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetic gastroparesis (DG) exhibits delayed gastric emptying (GE) due to impaired gastric non-adrenergic, non-cholinergic (NANC) relaxation. These defects are due to loss or reduction of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that causes reduced expression and/or dimerization of neuronal nitric oxide synthase alpha (nNOSα) gene expression and function. We investigated the effect of potent Nrf2 activators (cinnamaldehyde [CNM] & curcumin [CUR]) on GE in obesity-induced diabetic female mice. We fed adult female homozygous Nfe2l2-/- (Nrf2 KO) and wild-type (WT) female mice with either a high-fat diet (HFD) or a normal diet (ND) for a period of 16 weeks. Groups of HFD mice were fed with CUR or CNM either at 6th or 10th week respectively. Our results demonstrate that supplementation of CNM or CUR restored impaired nitrergic relaxation and attenuated delayed GE in HFD fed mice. Supplementation of CNM or CUR normalized altered gastric antrum protein expression of (1) p-ERK/p-JNK/MAPK/p-GSK-3β, (2) BH4 (Cofactor of nNOS) biosynthesis enzyme GCH-1 and the GSH/GSSG ratio, (3) nNOSα protein & dimerization and soluble guanylate cyclase (sGC), (4) AhR and ER expression, (5) inflammatory cytokines (TNF α, IL-1β, IL-6), (6)TLR-4, as well as (7) reduced oxidative stress markers in WT but not in Nrf2 KO obesity-induced chronic diabetic female mice. Immunoprecipitation experiments revealed an interaction between nNOS and Nrf2 proteins. Our results conclude that Nrf2 activation restores nitrergic-mediated gastric motility and GE by normalizing inflammation and oxidative stress induced by obesity-induced chronic diabetes.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Biostatistics, School of Graduate Studies & Research, Meharry Medical College, Nashville, TN, USA
| | - Mohammad Tabatabai
- Biostatistics, School of Graduate Studies & Research, Meharry Medical College, Nashville, TN, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pandu R Gangula
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
12
|
Coke CJ, Davison B, Fields N, Fletcher J, Rollings J, Roberson L, Challagundla KB, Sampath C, Cade J, Farmer-Dixon C, Gangula PR. SARS-CoV-2 Infection and Oral Health: Therapeutic Opportunities and Challenges. J Clin Med 2021; 10:E156. [PMID: 33466289 PMCID: PMC7795434 DOI: 10.3390/jcm10010156] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The novel corona virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and the disease it causes, COVID-19 (Coronavirus Disease-2019) have had multi-faceted effects on a number of lives on a global scale both directly and indirectly. A growing body of evidence suggest that COVID-19 patients experience several oral health problems such as dry mouth, mucosal blistering, mouth rash, lip necrosis, and loss of taste and smell. Periodontal disease (PD), a severe inflammatory gum disease, may worsen the symptoms associated with COVID-19. Routine dental and periodontal treatment may help decrease the symptoms of COVID-19. PD is more prevalent among patients experiencing metabolic diseases such as obesity, diabetes mellitus and cardiovascular risk. Studies have shown that these patients are highly susceptible for SARS-CoV-2 infection. Pro-inflammatory cytokines and oxidative stress known to contribute to the development of PD and other metabolic diseases are highly elevated among COVID-19 patients. Periodontal health may help to determine the severity of COVID-19 infection. Accumulating evidence shows that African-Americans (AAs) and vulnerable populations are disproportionately susceptible to PD, metabolic diseases and COVID-19 compared to other ethnicities in the United States. Dentistry and dental healthcare professionals are particularly susceptible to this virus due to the transferability via the oral cavity and the use of aerosol creating instruments that are ubiquitous in this field. In this review, we attempt to provide a comprehensive and updated source of information about SARS-CoV-2/COVID-19 and the various effects it has had on the dental profession and patients visits to dental clinics. Finally, this review is a valuable resource for the management of oral hygiene and reduction of the severity of infection.
Collapse
Affiliation(s)
- Christopher J. Coke
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Brandon Davison
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Niariah Fields
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Jared Fletcher
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Joseph Rollings
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Leilani Roberson
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Kishore B. Challagundla
- Department of Biochemistry & Molecular Biology, The Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- The Children’s Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - James Cade
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Cherae Farmer-Dixon
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| | - Pandu R. Gangula
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (C.J.C.); (B.D.); (N.F.); (J.F.); (J.R.); (L.R.); (C.S.); (J.C.); (C.F.-D.)
| |
Collapse
|
13
|
Sampath C, Srinivasan S, Freeman ML, Gangula PR. Inhibition of GSK-3β restores delayed gastric emptying in obesity-induced diabetic female mice. Am J Physiol Gastrointest Liver Physiol 2020; 319:G481-G493. [PMID: 32812777 PMCID: PMC7654647 DOI: 10.1152/ajpgi.00227.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetic gastroparesis (DG) is a clinical syndrome characterized by delayed gastric emptying (DGE). Loss of nuclear factor erythroid 2-related factor 2 (Nrf2) is associated with reduced neuronal nitric oxide synthase-α (nNOSα)-mediated gastric motility and DGE. Previous studies have shown that nuclear exclusion and inactivation of Nrf2 is partly regulated by glycogen synthase kinase 3β (GSK-3β). In the current study, the molecular signaling of GSK-3β-mediated Nrf2 activation and its mechanistic role on DG were investigated in high-fat diet (HFD)-induced obese/Type 2 diabetes (T2D) female mice. Adult female C57BL/6J mice were fed with HFD or normal diet (ND) with or without GSK-3β inhibitor (SB 216763, 10 mg/kg body wt ip) start from the 14th wk and continued feeding mice for an additional 3-wk time period. Our results show that treatment with GSK-3β inhibitor SB attenuated DGE in obese/T2D mice. Treatment with SB restored impaired gastric 1) Nrf2 and phase II antioxidant enzymes through PI3K/ERK/AKT-mediated pathway, 2) tetrahydrobiopterin (BH4, cofactor of nNOS) biosynthesis enzyme dihydrofolate reductase, and 3) nNOSα dimerization in obese/T2 diabetic female mice. SB treatment normalized caspase 3 activity and downstream GSK-3β signaling in the gastric tissues of the obese/T2 diabetic female mice. In addition, GSK-3β inhibitor restored impaired nitrergic relaxation in hyperglycemic conditions. Finally, SB treatment reduced GSK3 marker, pTau in adult primary enteric neuronal cells. These findings emphasize the importance of GSK-3β on regulating gastric Nrf2 and nitrergic mediated gastric emptying in obese/diabetic rodents.NEW & NOTEWORTHY Inhibition of glycogen synthase kinase 3β (GSK-3β) with SB 216763 attenuates delayed gastric emptying through gastric nuclear factor erythroid 2-related factor 2 (Nrf2)-phase II enzymes in high-fat diet-fed female mice. SB 216763 restored impaired gastric PI3K/AKT/ β-catenin/caspase 3 expression. Inhibition of GSK-3β normalized gastric dihydrofolate reductase, neuronal nitric oxide synthase-α expression, dimerization and nitrergic relaxation. SB 216763 normalized both serum estrogen and nitrate levels in female obese/Type 2 diabetes mice. SB 216763 reduced downstream signaling of GSK-3β in enteric neuronal cells in vitro.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia and Atlanta Veterans Affairs Health Care System, Decatur, Atlanta, Georgia
| | - Michael L. Freeman
- 3Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pandu R. Gangula
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
14
|
Sprouse J, Sampath C, Gangula PR. Role of sex hormones and their receptors on gastric Nrf2 and neuronal nitric oxide synthase function in an experimental hyperglycemia model. BMC Gastroenterol 2020; 20:313. [PMID: 32967621 PMCID: PMC7513483 DOI: 10.1186/s12876-020-01453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastroparesis, a condition of abnormal gastric emptying, is most commonly observed in diabetic women. To date, the role of ovarian hormones and/or gastric hormone receptors on regulating nitrergic-mediated gastric motility remains inconclusive. AIM The purpose of this study is to investigate whether sex hormones/their receptors can attenuate altered Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), neuronal Nitric Oxide Synthase (nNOS) expression and nitrergic relaxation in gastric neuromuscular tissues exposed to in-vitro hyperglycemia (HG). METHODS Gastric neuromuscular sections from adult female C57BL/6 J mice were incubated in normoglycemic (NG, 5 mM) or hyperglycemic (30 mM or 50 mM) conditions in the presence or absence of selective estrogen receptor (ER) agonists (ERα /PPT or ERβ: DPN); or non-selective sex hormone receptor antagonists (ER/ICI 182,780, or progesterone receptor (PR)/ RU486) for 48 h. mRNA, protein expression and nitrergic relaxation of circular gastric neuromuscular strips were assessed. RESULTS Our findings in HG, compared to NG, demonstrate a significant reduction in ER, Nrf2, and nNOS expression in gastric specimens. In addition, in-vitro treatment with sex hormones and/or their agonists significantly (*p < 0.05) restored Nrf2/nNOSα expression and total nitrite production. Conversely, ER, but not PR, antagonist significantly reduced Nrf2/nNOSα expression and nitrergic relaxation. CONCLUSIONS Our data suggest that ER's can regulate nitrergic function by improving Nrf2/nNOS expression in experimental hyperglycemia.
Collapse
Affiliation(s)
- Jeremy Sprouse
- School of Graduate Studies, Meharry Medical College, Nashville, TN, 37208, USA.,Department of ODS & Research, School of Dentistry, Nashville, TN, 37208, USA
| | - Chethan Sampath
- Department of ODS & Research, School of Dentistry, Nashville, TN, 37208, USA
| | - Pandu R Gangula
- Department of ODS & Research, School of Dentistry, Nashville, TN, 37208, USA.
| |
Collapse
|
15
|
Jiang M, Li D, Piao J, Li J, Sun H, Chen L, Chen S, Pi J, Zhang R, Chen R, Leng S, Chen W, Zheng Y. Real-ambient exposure to air pollution exaggerates excessive growth of adipose tissue modulated by Nrf2 signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138652. [PMID: 32416500 DOI: 10.1016/j.scitotenv.2020.138652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 05/24/2023]
Abstract
Air pollution was becoming a global threat to the public health, which was primarily mediated by PM2.5 induced cardiovascular diseases and pulmonary diseases. Recently, observational epidemiologic studies proposed the link between PM2.5 and obesity. Consistently, the link was also supported by limited animal researches. However, the potential mechanism mediating the harmful effects of PM2.5 was still elusive. In this study, we applied the "real-ambient exposure" system to conduct the experiments, which was closer to the status of ambient air pollution compared with the method of intratracheal instillation and concentrated air particles (CAPs) exposure system. Nuclear factor E2-related factor 2 (Nrf2) was previously reported to protect against inflammation and oxidative stress when exposed to PM2.5. Here, we reported that Nrf2-/- mice developed overgrowth of adipose tissue after "real-ambient exposure" to PM2.5, compared to filtered air (FA) group. Consistently, compared to FA group, adipocytes from subcutaneous (sWAT) and gonadal (gWAT) white adipose tissue of Nrf2-/- mice exhibited enlarged cell size in PM2.5 exposure group. Furthermore, the levels of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in serum and liver of Nrf2-/- mice were also altered statistically in PM2.5 exposure group. Importantly, when the expression of lipogenic enzymes was analyzed, the levels of the related specific genes in adipose tissue and liver of Nrf2-/- mice were altered in PM2.5 exposure group. Interestingly, the key transcription factors modulating expression of lipogenic enzymes in liver of Nrf2-/- mice were also found altered in PM2.5 exposure group, such as peroxisome proliferator-activated receptor (PPARα, PPARγ). Taken together, our study mimicked the status of ambient air pollution, revealed new insights into the adverse effect of PM2.5 exposure, provided new link between air pollution and overgrowth of adipose tissue, and supported the vital role of Nrf2 in mediating the side effects of PM2.5.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Shuguang Leng
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Sprouse JC, Sampath C, Gangula PR. Supplementation of 17β-Estradiol Normalizes Rapid Gastric Emptying by Restoring Impaired Nrf2 and nNOS Function in Obesity-Induced Diabetic Ovariectomized Mice. Antioxidants (Basel) 2020; 9:E582. [PMID: 32635208 PMCID: PMC7402187 DOI: 10.3390/antiox9070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gastroparesis (Gp) is a multifactorial condition commonly observed in females and is characterized by delayed or rapid gastric emptying (GE). The role of ovarian hormones on GE in the pathogenesis of obesity induced type 2 diabetes mellitus (T2DM) is completely unknown. The aims of our study are to investigate whether supplementation of 17β-estradiol (E2) or progesterone (P4) restores impaired nuclear factor erythroid 2-related factor 2 (Nrf2, an oxidative stress-responsive transcription factor) and nitric oxide (NO)-mediated gastric motility in ovariectomized (OVX) mice consuming a high-fat diet (HFD, a model of T2DM). Groups of OVX+HFD mice were administered daily subcutaneous doses of either E2 or P4 for 12 weeks. The effects of E2 and P4 on body weight, metabolic homeostasis, solid GE, gastric antrum NO-mediated relaxation, total nitrite levels, neuronal nitric oxide synthase (nNOSα), and its cofactor expression levels were assessed in OVX+HFD mice. HFD exacerbated hyperglycemia and insulinemia while accelerating GE (p < 0.05) in OVX mice. Exogenous E2, but not P4, attenuated rapid gastric emptying and restored gastric nitrergic relaxation, total nitrite levels, nNOSα, and cofactor expression via normalizing Nrf2-Phase II enzymes, inflammatory response, and mitogen-activated protein kinase (MAPK) protein expression in OVX+HFD mice. We conclude that E2 is beneficial in normalizing metabolic homeostasis and gastric emptying in obese, diabetic OVX mice consuming a fat-rich diet.
Collapse
Affiliation(s)
- Jeremy C. Sprouse
- School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Chethan Sampath
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| | - Pandu R. Gangula
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| |
Collapse
|
17
|
Zhao Z, Kim J, Lei XG. High Dietary Fat and Selenium Concentrations Exert Tissue- and Glutathione Peroxidase 1-Dependent Impacts on Lipid Metabolism of Young-Adult Mice. J Nutr 2020; 150:1738-1748. [PMID: 32386229 PMCID: PMC7330460 DOI: 10.1093/jn/nxaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive dietary selenium (Se; 3 mg/kg) or fat (>25%) intakes and overproduction of glutathione peroxidase 1 (GPX1) adversely affect body lipid metabolism. OBJECTIVE The objective was to reveal impacts and mechanisms of a moderately high Se and a high fat intake on lipid metabolism in Gpx1 knockout (KO) and wild-type (WT) mice. METHODS The KO and WT mice (males, 12-wk-old, body weight = 24.8 ± 0.703 g) were allotted to 4 groups each (n = 5) and fed a sucrose-torula yeast basal diet (5% corn oil) supplemented with 0.3 or 1.0 mg (+Se) Se/kg (as sodium selenite) and 0% or 25% [high-fat (HF)] lard for 6 wk. Multiple physiological and molecular biomarkers (68) related to lipid metabolism and selenogenome expression in plasma, liver, and/or adipose tissue were analyzed by 2-way (+Se by HF) ANOVA. RESULTS Compared with the control diet, the +Se diet decreased (P < 0.05) body-weight gain and plasma and liver concentrations of lipids (22-66%) but elevated (≤1.5-fold, P < 0.05) adipose tissue concentrations of lipids in the WT mice. The +Se diet up- and downregulated (P < 0.05) mRNA and/or protein concentrations of factors related to lipogenesis, selenogenome, and transcription, stress, and cell cycle in the liver (26% to 176-fold) and adipose tissues (14% to 1-fold), respectively, compared with the control diet in the WT mice. Many of these +Se diet effects were different (P < 0.05) from those of the HF diet and were eliminated or altered (P < 0.05) by the KO. CONCLUSIONS The +Se and HF diets exerted tissue-specific and GPX1 expression-dependent impacts on lipid metabolism and related gene expression in the young-adult mice. Our findings will help reveal metabolic potential and underlying mechanisms of supplementing moderately high Se to subjects with HF intakes.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Jonggun Kim
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
18
|
Vasileva LV, Savova MS, Amirova KM, Dinkova-Kostova AT, Georgiev MI. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacol Res 2020; 156:104760. [DOI: 10.1016/j.phrs.2020.104760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
|
19
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
20
|
Sampath C, Kalpana R, Ansah T, Charlton C, Hale A, Channon KM, Srinivasan S, Gangula PR. Impairment of Nrf2- and Nitrergic-Mediated Gastrointestinal Motility in an MPTP Mouse Model of Parkinson's Disease. Dig Dis Sci 2019; 64:3502-3517. [PMID: 31187328 PMCID: PMC6858486 DOI: 10.1007/s10620-019-05693-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Gastrointestinal (GI) motility dysfunction is the most common non-motor symptom of Parkinson's disease (PD). Studies have indicated that GI motility functions are impaired before the onset of PD. AIMS To investigate the underlying mechanism of PD-induced GI dysmotility in MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine)-induced animal model. METHODS C57BL/6 mice were administered with or without a selective dopamine neurotoxin, MPTP, to induce parkinsonian symptoms. In addition to in vivo studies, in vitro experiments were also conducted in colon specimens using l-methyl-4-phenylpyridinium (MPP+), a metabolic product of MPTP. Gastric emptying, colon motility, nitrergic relaxation, and western blot experiments were performed as reported. RESULTS MPTP-induced PD mice showed decreased expression of nuclear factor erythroid 2-related factor (Nrf2) and its target phase II genes in gastric and colon neuromuscular tissues. Decreased levels of tetrahydrobiopterin (BH4, a critical cofactor for nNOS dimerization) associated with uncoupling of nNOS in gastric and colon tissues exposed to MPTP. Impaired enteric nitrergic system led to delayed gastric emptying and slower colonic motility compared to the control mice. In vitro results in colon specimens confirm that activation of Nrf2 restored MPP+-induced suppression of alpha-synuclein, tyrosine hydroxylase (TH), Nrf2, and heme oxygenase-1. In vitro exposure to L-NAME [N(w)-nitro-L-arginine methyl ester], a NOS synthase inhibitor, reduced protein expression of TH in colon tissue homogenates. CONCLUSIONS Loss of Nrf2/BH4/nNOS expression in PD impairs antioxidant gene expression, which deregulates NO synthesis, thereby contributing to the development of GI dysmotility and constipation. Nitric oxide appears to be important to maintain dopamine synthesis in the colon.
Collapse
Affiliation(s)
- C Sampath
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA
| | - R Kalpana
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA
| | - T Ansah
- Department of Cancer Biology Physiology Pharmacology and Neuroscience, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - C Charlton
- Department of Cancer Biology Physiology Pharmacology and Neuroscience, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - A Hale
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - K M Channon
- Oxford Heart Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, Atlanta, GA, USA
| | - P R Gangula
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
21
|
Zhao H, Chen L, Yang T, Feng YL, Vaziri ND, Liu BL, Liu QQ, Guo Y, Zhao YY. Aryl hydrocarbon receptor activation mediates kidney disease and renal cell carcinoma. J Transl Med 2019; 17:302. [PMID: 31488157 PMCID: PMC6727512 DOI: 10.1186/s12967-019-2054-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a well-known ligand-activated cytoplasmic transcription factor that contributes to cellular responses against environmental toxins and carcinogens. AhR is activated by a range of structurally diverse compounds from the environment, microbiome, natural products, and host metabolism, suggesting that AhR possesses a rather promiscuous ligand binding site. Increasing studies have indicated that AhR can be activated by a variety of endogenous ligands and induce the expression of a battery of genes. AhR regulates a variety of physiopathological events, including cell proliferation, differentiation, apoptosis, adhesion and migration. These new roles have expanded our understanding of the AhR signalling pathways and endogenous metabolites interacting with AhR under homeostatic and pathological conditions. Recent studies have demonstrated that AhR is linked to cardiovascular disease (CVD), chronic kidney disease (CKD) and renal cell carcinoma (RCC). In this review, we summarize gut microbiota-derived ligands inducing AhR activity in patients with CKD, CVD, diabetic nephropathy and RCC that may provide a new diagnostic and prognostic approach for complex renal damage. We further highlight polyphenols from natural products as AhR agonists or antagonists that regulate AhR activity. A better understanding of structurally diverse polyphenols and AhR biological activities would allow us to illuminate their molecular mechanism and discover potential therapeutic strategies targeting AhR activation.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Tian Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Bao-Li Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, 87131, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|