1
|
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J 2025; 292:28-46. [PMID: 38440918 PMCID: PMC11705224 DOI: 10.1111/febs.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
2
|
Zhang X, Du Y, Guo Q, Ma X, Shi D, Zhou Y. Prognostic value of serum glycated albumin in acute coronary syndrome patients without standard modifiable cardiovascular risk factors. Diabetol Metab Syndr 2024; 16:278. [PMID: 39578846 PMCID: PMC11583742 DOI: 10.1186/s13098-024-01524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Glycated albumin (GA) has been demonstrated to be associated with adverse outcomes in patients with acute coronary syndrome (ACS). However, as a specific subgroup of ACS, a significant proportion of patients with ACS without standard modifiable cardiovascular risk factors (SMuRFs) are currently being identified. The prognostic value of serum GA for adverse events in such patients remains unexplored. This study aims to evaluate the prognostic value of GA in predicting adverse outcomes in patients with ACS without SMuRFs. METHODS This retrospective study involved 1,140 consecutive patients who were diagnosed with ACS without SMuRFs at the Beijing Anzhen Hospital between May 2018 and December 2020 and underwent coronary angiography. Each patient was followed up for a period of 35-66 months after discharge. The primary endpoint of this study was major adverse cardiovascular and cerebrovascular events (MACCEs) that included all-cause mortality, non-fatal myocardial infarction, non-fatal ischemic stroke, and ischemia-driven revascularization. RESULTS The average age of the study participants was 59.55 ± 10.98 years, and men accounted for 61.8%. The average GA level was 14.37 ± 2.42. The median follow-up duration was 48.3 months, during which 220 cases (19.3%) experienced MACCEs. In the fully adjusted model, with GA as a continuous variable, the hazard ratio (HR) for MACCEs in the high GA group was 1.069 (95% confidence interval (CI): 1.008, 1.133), the HR for ischemia-driven revascularization was 1.095 (95% CI: 1.021, 1.175), and the HR for all-cause mortality was 1.155 (95% CI: 1.021, 1.306), all with P values less than 0.05. Similarly, when GA was considered as a categorical variable, in the fully adjusted model, GA was associated with MACCEs, ischemia-driven revascularization, and all-cause mortality, with P values all less than 0.05. The restricted cubic spline curve showed that the relationship between GA and MACCEs was linear (p for non-linear = 0.079; p for overall association = 0.026). Furthermore, GA levels were correlated with poor prognosis in the subgroups of patients. CONCLUSION Serum GA might be an independent predictor of all-cause death and ischemia-driven revascularization in patients with ACS without SMuRFs.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, 100029, China
| | - Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, 100029, China
| | - Qianyun Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, 100029, China
| | - Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, 100029, China
| | - Dongmei Shi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
3
|
Chen S, Chen G, Jin Y, Zhu S, Jia L, Zhao C, Jin C, Xiang M. Association between glycated albumin and adverse outcomes in patients with heart failure. J Diabetes Investig 2024; 15:1457-1463. [PMID: 38967260 PMCID: PMC11442849 DOI: 10.1111/jdi.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
AIMS/INTRODUCTION Diabetes mellitus is a traditional risk factor for heart failure (HF), and glycated albumin (GA) is a marker to assess short-term glycemic control. Whether GA has prognostic significance in patients with HF remains unclear. MATERIALS AND METHODS A total of 717 patients with HF were enrolled in the prospective cohort study. Patients were grouped by the normal upper limit of GA (17%). Kaplan-Meier analysis and Cox proportional hazards regression were used to evaluate the association between GA and prognosis. RESULTS During a mean follow-up of 387 days, 232 composite endpoint events of hospitalization for HF or all-cause death occurred. Kaplan-Meier analysis showed a higher rate of adverse events in the higher GA group (GA >17%; log-rank test P < 0.001). GA was an independent predictor of adverse events, both as a continuous variable (per 1% change: hazard ratio [HR] 1.03, 95% confidence interval [CI] 1.00-1.06, P = 0.030) and as a categorical variable (GA >17%: HR 1.36, 95% CI 1.03-1.80, P = 0.032). Restricted cubic splines showed a linear association between GA and adverse events (P for non-linearity = 0.231). There was no significant difference in adverse outcome risk between those with diabetes and GA ≤17% and those without diabetes, whereas the prognosis was worse in those with diabetes and GA >17% (HR 1.56, 95% CI 1.16-2.11, P = 0.004). Compared to the group with normal levels of GA and glycated hemoglobin, the group with GA >17% and glycated hemoglobin >6.5% had a higher risk of adverse events (HR 1.49, 95% CI 1.06-2.10, P = 0.022). CONCLUSIONS GA was an independent predictor of HF prognosis. Combining GA and glycated hemoglobin might improve the predictive power of adverse outcomes in patients with HF.
Collapse
Affiliation(s)
- Senmiao Chen
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| | - Guanzhong Chen
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| | - Yu Jin
- Department of Cardiology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuZhejiangChina
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| | - Liangliang Jia
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| | - Chengchen Zhao
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| | - Chunna Jin
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouZhejiangChina
| |
Collapse
|
4
|
Ji Y, Wang W. Prognostic Value of the Gustave Roussy Immune Score in Lung Cancer: A Meta-Analysis. Nutr Cancer 2024; 76:707-716. [PMID: 38841900 DOI: 10.1080/01635581.2024.2361508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE To clarify the prognostic role of the Gustave Roussy immune (GRIm) score in lung cancer. METHODS The PubMed, Embase, Web of Science, and China National Knowledge Infrastructure databases were searched up to March 30, 2024. The primary outcomes included overall survival (OS) and progression-free survival (PFS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the associations between the GRIm score and survival, and subgroup analyses were performed based on pathological type (non-small cell lung cancer vs. small cell lung cancer), tumor stage (advanced vs. limited stage) and treatment approach (immune checkpoint inhibitor vs. surgery vs. chemotherapy). RESULTS Eight studies with 1,333 participants were included. The pooled results showed that a higher GRIm score predicted worse OS (HR = 1.96, 95% CI: 1.54-2.49, P < 0.001) and PFS (HR = 1.64, 95% CI: 1.22-2.21, P = 0.001). Subgroup analyses for OS and PFS showed similar results. However, subgroup analyses for PFS indicated that the association between the GRIm score and PFS was nonsignificant among patients with small cell lung cancer (P = 0.114) and among patients treated with chemotherapy (P = 0.276). CONCLUSION The GRIm score might serve as a novel prognostic factor for lung cancer. Additional studies are still needed to verify these findings.
Collapse
Affiliation(s)
- Yanli Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wenping Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Thakur MR, Tupe RS. Protective effect of colchicine on albumin glycation and cellular oxidative stress: Insights into diabetic cardiomyopathy. J Biochem Mol Toxicol 2024; 38:e23664. [PMID: 38372178 DOI: 10.1002/jbt.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
The present work elucidates the role of colchicine (COL) on albumin glycation and cellular oxidative stress in diabetic cardiomyopathy (DCM). Human serum albumin (HSA) was glycated with methylglyoxal in the presence of COL (2.5, 3.75, and 5 µM), whereas positive and negative control samples were maintained separately. The effects of COL on HSA glycation, structural and functional modifications in glycated HSA were analyzed using different spectroscopical and fluorescence techniques. Increased fructosamine, carbonyl, and pentosidine formation in glycated HSA samples were inhibited in the presence of COL. Structural conformation of HSA and glycated HSA samples was examined by field emission scanning electron microscopy, circular dichroism, Fourier transform infrared, and proton nuclear magnetic resonance analyses, where COL maintained both secondary and tertiary structures of HSA against glycation. Functional marker assays included ABTS•+ radical scavenging and total antioxidant activities, advanced oxidative protein product formation, and turbidimetry, which showed preserved functional properties of glycated HSA in COL-containing samples. Afterward, rat cardiomyoblast (H9c2 cell line) was treated with glycated HSA-COL complex (400 μg/mL) for examining various cellular antioxidants (nitric oxide, catalase, superoxide dismutase, and glutathione) and detoxification enzymes (aldose reductase, glyoxalase I, and II) levels. All three concentrations of COL exhibited effective anti-glycation properties, enhanced cellular antioxidant levels, and detoxification enzyme activities. The report comprehensively analyzes the potential anti-glycation and properties of COL during its initial assessment.
Collapse
Affiliation(s)
- Muskan Rajkumar Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
6
|
Savini C, Tenti E, Mikus E, Eligini S, Munno M, Gaspardo A, Gianazza E, Greco A, Ghilardi S, Aldini G, Tremoli E, Banfi C. Albumin Thiolation and Oxidative Stress Status in Patients with Aortic Valve Stenosis. Biomolecules 2023; 13:1713. [PMID: 38136584 PMCID: PMC10742097 DOI: 10.3390/biom13121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Recent evidence indicates that reactive oxygen species play an important causative role in the onset and progression of valvular diseases. Here, we analyzed the oxidative modifications of albumin (HSA) occurring on Cysteine 34 and the antioxidant capacity of the serum in 44 patients with severe aortic stenosis (36 patients underwent aortic valve replacement and 8 underwent a second aortic valve substitution due to a degenerated bioprosthetic valve), and in 10 healthy donors (controls). Before surgical intervention, patients showed an increase in the oxidized form of albumin (HSA-Cys), a decrease in the native reduced form (HSA-SH), and a significant reduction in serum free sulfhydryl groups and in the total serum antioxidant activity. Patients undergoing a second valve replacement showed levels of HSA-Cys, free sulfhydryl groups, and total antioxidant activity similar to those of controls. In vitro incubation of whole blood with aspirin (ASA) significantly increased the free sulfhydryl groups, suggesting that the in vivo treatment with ASA may contribute to reducing oxidative stress. We also found that N-acetylcysteine and its amide derivative were able to regenerate HSA-SH. In conclusion, the systemic oxidative stress reflected by high levels of HSA-Cys is increased in patients with aortic valve stenosis. Thiol-disulfide breaking agents regenerate HSA-SH, thus paving the way to the use these compounds to mitigate the oxidative stress occurring in the disease.
Collapse
Affiliation(s)
- Carlo Savini
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy
| | - Elena Tenti
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Elisa Mikus
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Marco Munno
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Anna Gaspardo
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Erica Gianazza
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy;
| | - Elena Tremoli
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| |
Collapse
|
7
|
Vaishnav MS, Kumari N, Srikanta S, Krishnaswamy PR, Balaram P, Bhat N. Differential Spectrum of Albumin Glycation, Oxidation, and Truncation in Type 2 and Type 1 Diabetes: Clinical and Biological Implications. Metab Syndr Relat Disord 2023; 21:397-409. [PMID: 37471231 DOI: 10.1089/met.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Background: Albumin, the most abundant and physiologically vital serum protein, accumulates a range of chemical modifications, as consequence of encounters with large number of reactive molecules whose concentrations increase in serum under pathological conditions. Methods: In a "proof of concept" study, mass spectrometric analysis was utilized to quantitate albumin post-translational modifications (glycation, oxidation, and truncation; individual isoforms and total) in four informative subject groups [type 1 diabetes (T1DM), type 2 diabetes (T2DM), prediabetes-obesity and healthy; all with estimated glomerular filtration rate ≥60 mL/(min·m2)]. Besides glycated albumin (GA/mass spectrometry), glycated serum protein (GSP/nitro blue tetrazolium colorimetry), and glycated hemoglobin (HbA1c/high-performance liquid chromatography) were also measured. Results: A wide spectrum of albumin molecular modifications was identified in diabetes, with significant differences between T2DM and T1DM. Albumin glycation: GA correlated more strongly with HbA1c in T1DM, compared to T2DM. Higher albumin glycation isoforms (human serum albumin +3G/2G) were more stable and discriminative markers of mean glycemia. Albumin oxidation: T2DM, in comparison with T1DM, showed enhanced oxidative and dual (glycation plus oxidation) modifications, representing extreme molecular pathology. Albumin truncation: There was dramatic reduction ("deficiency") of truncated albumin isoforms in T2DM, and significant reduction in T1DM. Albumin truncation negatively correlated with severity of albumin glycation (mean glycemia) and albumin oxidation (cysteinylation). Possible mechanisms of insulin resistance, with associated increased free fatty acids binding to albumin, in stimulating albumin oxidation and inhibiting albumin glycation ("metabolic cross talks") are reviewed. Conclusions: Albumin molecular modifications in diabetes, together with significant differences between T2DM and T1DM, suggest possible role for insulin resistance in their genesis and consequent cell, tissue, and vascular dysfunction/damage. Albumin molecular fingerprinting can provide valuable insights into pathogenesis, diagnosis, monitoring, and future therapies for diabetes. Identification of biomarker battery ("albuminomics," "diabetomics") driven diverse "healthy," prediabetes, obesity, and T2DM phenotypes represents additional novel step toward precision medicine in diabetes and related disorders.
Collapse
Affiliation(s)
- Madhumati S Vaishnav
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Sathyanarayana Srikanta
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Patnam R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
- National Centre for Biological Sciences, Bengaluru, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
8
|
Zoanni B, Brioschi M, Mallia A, Gianazza E, Eligini S, Carini M, Aldini G, Banfi C. Novel insights about albumin in cardiovascular diseases: Focus on heart failure. MASS SPECTROMETRY REVIEWS 2023; 42:1113-1128. [PMID: 34747521 DOI: 10.1002/mas.21743] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/07/2023]
Abstract
The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | - Marina Carini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | | |
Collapse
|
9
|
Toyomura T, Watanabe M, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Glycolaldehyde-derived advanced glycation end products promote macrophage proliferation via the JAK-STAT signaling pathway. Mol Biol Rep 2023:10.1007/s11033-023-08509-y. [PMID: 37227674 DOI: 10.1007/s11033-023-08509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are heterogeneous proinflammatory molecules produced by a non-enzymatic glycation reaction between reducing sugars (and their metabolites) and biomolecules with amino groups, such as proteins. Although increases in and the accumulation of AGEs have been implicated in the onset and exacerbation of lifestyle- or age-related diseases, including diabetes, their physiological functions have not yet been elucidated in detail. METHODS AND RESULTS The present study investigated the cellular responses of the macrophage cell line RAW264.7 stimulated by glycolaldehyde-derived AGEs (Glycol-AGEs) known as representative toxic AGEs. The results obtained showed that Glycol-AGEs significantly promoted the proliferation of RAW264.7 cells at a low concentration range (1-10 µg/mL) in a concentration-dependent manner. On the other hand, neither TNF-α production nor cytotoxicity were induced by the same concentrations of Glycol-AGEs. The increases observed in cell proliferation by low concentrations of Glycol-AGEs were also detected in receptor triple knockout (RAGE-TLR4-TLR2 KO) cells as well as in wild-type cells. Increases in cell proliferation were not affected by various kinase inhibitors, including MAP kinase inhibitors, but were significantly suppressed by JAK2 and STAT5 inhibitors. In addition, the expression of some cell cycle-related genes was up-regulated by the stimulation with Glycol-AGEs. CONCLUSIONS These results suggest a novel physiological role for AGEs in the promotion of cell proliferation via the JAK-STAT pathway.
Collapse
Affiliation(s)
- Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Nishigawara, Naka-ku, Okayama, 703-8516, Japan.
| |
Collapse
|
10
|
The Burden of Impaired Serum Albumin Antioxidant Properties and Glyco-Oxidation in Coronary Heart Disease Patients with and without Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081501. [PMID: 36009220 PMCID: PMC9404962 DOI: 10.3390/antiox11081501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Human serum albumin (HSA) has an important antioxidant activity due to the presence of the reduced cysteine at position 34, which represents the most abundant free thiol in the plasma. In oxidative-based diseases, HSA undergoes S-thiolation (THIO-HSA) with changes in the antioxidant function of albumin that could contribute to the progression of the disease. The aim of this study was to verify, for the first time, the different burdens of THIO-HSA, glycated HSA (GLY-HSA), and advanced glycation end products (AGE) accumulation both in type 2 diabetes mellitus (T2DM) patients and in non-diabetic patients, with or without coronary heart disease (CHD). In this study, we assessed the presence of modified forms of HSA, THIO-HSA, and GLY-HSA by means of mass spectrometry in 33 patients with both T2DM and CHD, in 31 patients with T2DM and without CHD, in 30 patients without diabetes with a history of CHD, and 27 subjects without diabetes and CHD. All the patients’ anthropometric and clinical data were recorded including age, sex, duration of diabetes, body mass index (BMI), blood pressure, and history of CHD defined with anamnestic data. Metabolic parameters, such as fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), lipids, pentosidine, AGE, receptor for advanced glycation end-products (RAGE) and its soluble form (sRAGE), were measured. AGE and pentosidine are significantly higher in T2DM patients with and without CHD with respect to non-diabetic patients with CHD and control subjects. RAGE levels are significantly higher in T2DM patients with respect to non-diabetic patients, and among T2DM patients, the group with CHD showed significantly higher RAGE levels than those without CHD (217 ± 171 pg/mL and 140 ± 61 pg/mL, respectively). Albumin isoforms discriminate between non-diabetic patients with CHD and T2DM patients with and without CHD and control subjects, with GLY-HSA levels higher in T2DM with and without CHD, and THIO-HSA higher in CHD patients without T2DM. Finally, we demonstrated that the oxidized forms of HSA can increase the expression of the inflammatory cytokine Tumor Necrosis Factor-alpha (TNFα) in monocytic cells. In patients with CHD, GLY-HSA and THIO-HSA have a different prevalent distribution, the first one prevailing in patients with T2DM and the second one in patients without T2DM. These findings suggest that albumin quality and homeostasis balance between glyco-oxidation and thiolation might have an impact on the antioxidant defense system in cardiovascular diseases.
Collapse
|
11
|
Ward ES, Gelinas D, Dreesen E, Van Santbergen J, Andersen JT, Silvestri NJ, Kiss JE, Sleep D, Rader DJ, Kastelein JJP, Louagie E, Vidarsson G, Spriet I. Clinical Significance of Serum Albumin and Implications of FcRn Inhibitor Treatment in IgG-Mediated Autoimmune Disorders. Front Immunol 2022; 13:892534. [PMID: 35757719 PMCID: PMC9231186 DOI: 10.3389/fimmu.2022.892534] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Serum albumin (SA), the most abundant soluble protein in the body, maintains plasma oncotic pressure and regulates the distribution of vascular fluid and has a range of other important functions. The goals of this review are to expand clinical knowledge regarding the functions of SA, elucidate effects of dysregulated SA concentration, and discuss the clinical relevance of hypoalbuminemia resulting from various diseases. We discuss potential repercussions of SA dysregulation on cholesterol levels, liver function, and other processes that rely on its homeostasis, as decreased SA concentration has been shown to be associated with increased risk for cardiovascular disease, hyperlipidemia, and mortality. We describe the anti-inflammatory and antioxidant properties of SA, as well as its ability to bind and transport a plethora of endogenous and exogenous molecules. SA is the primary serum protein involved in binding and transport of drugs and as such has the potential to affect, or be affected by, certain medications. Of current relevance are antibody-based inhibitors of the neonatal Fc receptor (FcRn), several of which are under clinical development to treat immunoglobulin G (IgG)-mediated autoimmune disorders; some have been shown to decrease SA concentration. FcRn acts as a homeostatic regulator of SA by rescuing it, as well as IgG, from intracellular degradation via a common cellular recycling mechanism. Greater clinical understanding of the multifunctional nature of SA and the potential clinical impact of decreased SA are needed; in particular, the potential for certain treatments to reduce SA concentration, which may affect efficacy and toxicity of medications and disease progression.
Collapse
Affiliation(s)
- E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Joseph E Kiss
- Vitalant Northeast Division and Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Daniel J Rader
- Departments of Genetics and Medicine, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John J P Kastelein
- Department of Vascular Medicine, Genetics of Cardiovascular Disease, Academic Medical Center (AMC) of the University of Amsterdam, Amsterdam, Netherlands
| | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Isabel Spriet
- Department of Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium.,Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Farrugia A, Mori F. Therapeutic solutions of human albumin - The possible effect of process-induced molecular alterations on clinical efficacy and safety. J Pharm Sci 2022; 111:1292-1308. [PMID: 35276228 DOI: 10.1016/j.xphs.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
Human albumin solutions were developed as therapeutic during the Second World War to address blood loss due to battlefield injury. This indication was based on the recognition that albumin provided most of the oncotic capacity of human plasma. For the succeeding sixty years, this formed the basis for the use of albumin in traumatology and emergency medicine. In more recent times, the pharmacological properties arising from albumin's complex structure have become a focus of attention by clinical researchers. In particular, albumin, through anti-inflammatory and anti-oxidant properties, has been proposed as an agent for the treatment of sepsis, cirrhosis and other inflammatory states. Some evidence for these indications has accrued from a number of small clinical trials and observational studies. These studies have not been confirmed in other large trials. Together with other investigators, we have shown that the process of plasma fractionation results in alterations in the structure of albumin, including those parts of the molecule involved in anti-oxidant and anti-inflammatory effects. Albumin products from diverse manufacturers show heterogeneity in their ability to address these effects. In this article, we review the historical development of albumin solutions, pointing out the variations in fractionation chemistries which different manufacturers have adopted. We suggest ways by which the manufacturing processes have contributed to variations in the physico-chemical properties of molecule. We review the outcomes of clinical studies assessing the role of albumin in ameliorating conditions such as sepsis and cirrhosis, and we speculate as to the extent which heterogeneity in the products may have contributed to variable clinical outcomes. Finally, we argue for a change in the perception of the plasma product industry and its regulatory overseers. Historically, albumin has been viewed as a generic commodity, with different preparations being interchangeable in their clinical application. We suggest that this implied biosimilarity is not necessarily applicable for different albumin solutions. The use of albumin, in indications other than its historical role as a plasma expander, can only be validated by clinical investigation of each separate albumin product.
Collapse
Affiliation(s)
- Albert Farrugia
- Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Perth, Australia.
| | - Filippo Mori
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy
| |
Collapse
|
13
|
Prenylcysteine Oxidase 1 (PCYOX1), a New Player in Thrombosis. Int J Mol Sci 2022; 23:ijms23052831. [PMID: 35269975 PMCID: PMC8911005 DOI: 10.3390/ijms23052831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Prenylcysteine Oxidase 1 (PCYOX1) is an enzyme involved in the degradation of prenylated proteins. It is expressed in different tissues including vascular and blood cells. We recently showed that the secretome from Pcyox1-silenced cells reduced platelet adhesion both to fibrinogen and endothelial cells, suggesting a potential contribution of PCYOX1 into thrombus formation. Here, we show that in vivo thrombus formation after FeCl3 injury of the carotid artery was delayed in Pcyox1−/− mice, which were also protected from collagen/epinephrine induced thromboembolism. The Pcyox1−/− mice displayed normal blood cells count, vascular procoagulant activity and plasma fibrinogen levels. Deletion of Pcyox1 reduced the platelet/leukocyte aggregates in whole blood, as well as the platelet aggregation, the alpha granules release, and the αIIbβ3 integrin activation in platelet-rich plasma, in response to adenosine diphosphate (ADP) or thrombin receptor agonist peptide (TRAP). Washed platelets from the Pcyox1−/− and WT animals showed similar phosphorylation pathway activation, adhesion ability and aggregation. The presence of Pcyox1−/− plasma impaired agonist-induced WT platelet aggregation. Our findings show that the absence of PCYOX1 results in platelet hypo-reactivity and impaired arterial thrombosis, and indicates that PCYOX1 could be a novel target for antithrombotic drugs.
Collapse
|
14
|
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J EVOL BIOCHEM PHYS+ 2021; 57:1419-1448. [PMID: 34955553 PMCID: PMC8685822 DOI: 10.1134/s002209302106020x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Being one of the main proteins in the human body and many
animal species, albumin plays a crucial role in the transport of
various ions, electrically neutral molecules and in maintaining
the colloidal osmotic pressure of the blood. Albumin is able to
bind almost all known drugs, many nutraceuticals and toxic substances,
determining their pharmaco- and toxicokinetics. However, albumin
is not only the passive but also the active participant of the pharmacokinetic
and toxicokinetic processes possessing a number of enzymatic activities.
Due to the thiol group of Cys34, albumin can serve as a trap for
reactive oxygen and nitrogen species, thus participating in redox
processes. The interaction of the protein with blood cells, blood
vessels, and also with tissue cells outside the vascular bed is
of great importance. The interaction of albumin with endothelial glycocalyx
and vascular endothelial cells largely determines its integrative
role. This review provides information of a historical nature, information
on evolutionary changes, inflammatory and antioxidant properties
of albumin, on its structural and functional modifications and their significance
in the pathogenesis of some diseases.
Collapse
Affiliation(s)
- D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P. A. Voronina
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| |
Collapse
|
15
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|
16
|
Kohzuma T, Tao X, Koga M. Glycated albumin as biomarker: Evidence and its outcomes. J Diabetes Complications 2021; 35:108040. [PMID: 34507877 DOI: 10.1016/j.jdiacomp.2021.108040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/01/2023]
Abstract
Glycemic control markers are important for the diagnosis and treatment of diabetes. Hemoglobin A1c (A1C) is an important marker that is mandatory in routine medical examinations; however, it is well known that it has some limitations. In this review, we focus on the limitation of A1C and introduce a relatively new marker, glycated albumin (GA), which can be used to complement A1C. First, for a better understanding of the characteristics of each marker, we sort the similarities and differences of glycemic control markers as well as the characteristics of each marker. Second, we point out the limitation of A1C, introduce GA as an alternative indicator, and discuss the limitations of GA. Finally, we summarize important evidence regarding the utility of GA. We hope that this review provides useful information that permits more effective usage of GA as well as other glycemic control markers.
Collapse
Affiliation(s)
| | - Xinran Tao
- Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Masafumi Koga
- Department of Internal Medicine, Hakuhokai Central Hospital, Hyogo, Japan
| |
Collapse
|
17
|
Zhu S, Xu J, Chen H, Lv W. Ultrasonic-Assisted Enzymolysis Extraction and Protective Effect on Injured Cardiomyocytes in Mice of Flavonoids from Prunus mume Blossom. Molecules 2021; 26:molecules26195818. [PMID: 34641361 PMCID: PMC8510299 DOI: 10.3390/molecules26195818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Prunus mume blossom is an edible flower that has been used in traditional Chinese medicine for thousands of years. Flavonoids are one of the most active substances in Prunus mume blossoms. The optimal ultrasonic-assisted enzymatic extraction of flavonoids from Prunus mume blossom (FPMB), the components of FPMB, and its protective effect on injured cardiomyocytes were investigated in this study. According to our results, the optimal extraction process for FPMB is as follows: cellulase at 2.0%, ultrasonic power at 300 W, ultrasonic enzymolysis for 30 min, and an enzymolysis temperature of 40 °C. FPMB significantly promoted the survival rate of cardiomyocytes and reduced the concentration of reactive oxygen species (ROS). FPMB also improved the activities of proteases caspase-3, caspase-8, and caspase-9 in cardiomyocytes. The cardiomyocyte apoptosis rate in mice was significantly reduced by exposure to FPMB. These results suggest that the extraction rate of FPMB may be improved by an ultrasonic-assisted enzymatic method. FPMB has a protective effect on the injured cardiomyocytes.
Collapse
Affiliation(s)
- Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Correspondence: ; Tel.: +86-1-385-530-3015
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
18
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
19
|
Banfi C, Baetta R, Barbieri SS, Brioschi M, Guarino A, Ghilardi S, Sandrini L, Eligini S, Polvani G, Bergman O, Eriksson P, Tremoli E. Prenylcysteine oxidase 1, an emerging player in atherosclerosis. Commun Biol 2021; 4:1109. [PMID: 34548610 PMCID: PMC8455616 DOI: 10.1038/s42003-021-02630-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The research into the pathophysiology of atherosclerosis has considerably increased our understanding of the disease complexity, but still many questions remain unanswered, both mechanistically and pharmacologically. Here, we provided evidence that the pro-oxidant enzyme Prenylcysteine Oxidase 1 (PCYOX1), in the human atherosclerotic lesions, is both synthesized locally and transported within the subintimal space by proatherogenic lipoproteins accumulating in the arterial wall during atherogenesis. Further, Pcyox1 deficiency in Apoe-/- mice retards atheroprogression, is associated with decreased features of lesion vulnerability and lower levels of lipid peroxidation, reduces plasma lipid levels and inflammation. PCYOX1 silencing in vitro affects the cellular proteome by influencing multiple functions related to inflammation, oxidative stress, and platelet adhesion. Collectively, these findings identify the pro-oxidant enzyme PCYOX1 as an emerging player in atherogenesis and, therefore, understanding the biology and mechanisms of all functions of this unique enzyme is likely to provide additional therapeutic opportunities in addressing atherosclerosis.
Collapse
Affiliation(s)
- C. Banfi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - R. Baetta
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. S. Barbieri
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - M. Brioschi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - A. Guarino
- grid.418230.c0000 0004 1760 1750Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. Ghilardi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - L. Sandrini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. Eligini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - G. Polvani
- grid.418230.c0000 0004 1760 1750Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, Milano, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milano, Italy ,grid.418230.c0000 0004 1760 1750Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - O. Bergman
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - P. Eriksson
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - E. Tremoli
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| |
Collapse
|
20
|
Jacobs MJ, Pinger CW, Castiaux AD, Maloney KJ, Spence DM. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc. Metallomics 2021; 12:1036-1043. [PMID: 32626857 DOI: 10.1039/d0mt00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasma proteins are covalently modified in vivo by the high-glucose conditions in the bloodstreams of people with diabetes, resulting in changes to both structure and function. Human Serum Albumin (HSA) functions as a carrier-protein in the bloodstream, binding various ligands and tightly regulating their bioavailability. HSA is known to react with glucose via the Maillard reaction, causing adverse effects on its ability to bind and deliver certain ligands, such as metals. Here, the binding between in vivo glycated HSA and zinc (Zn2+) was determined using a novel centrifugal ultrafiltration method that was developed using a 3D-printed device. This method is rapid (90 minutes), capable of high-throughput measurements (24 samples), low-cost (<$1.00 USD per device) and requires lower sample volumes (200 μL) compared to other binding techniques. This device was used to determine an equilibrium dissociation constant between Zn2+ and a commercially obtained normal HSA (nHSA) with a glycation level of 11.5% (Kd = 2.1 (±0.5) × 10-7 M). A glycated fraction of the nHSA sample was enriched (gHSA, 65.5%) and isolated using boronate-affinity chromatography, and found to have a 2.3-fold decrease in Zn2+ binding-affinity (Kd = 4.8 (±0.8) × 10-7 M) when compared to the nHSA sample. The level of glycation of HSA in control plasma (13.0% ± 0.8, n = 3 donors) and plasma from people with diabetes (26.9% ± 6.6, n = 5 donors) was assessed using mass spectrometry. Furthermore, HSA was isolated from plasma obtained in-house from a person with type 1 diabetes and found to have a glycation level of 24.1% and Kd = 3.3 (± 0.5) × 10-7 M for Zn2+, revealing a 1.5-fold decrease in binding affinity compared to nHSA. These findings suggest that increased levels of glycated HSA result in reduced binding to Zn2+, which may have implications in complications associated with diabetes.
Collapse
Affiliation(s)
- Monica J Jacobs
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cody W Pinger
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, East Lansing, MI 48824, USA
| | - Konnor J Maloney
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Dana M Spence
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Qiu HY, Hou NN, Shi JF, Liu YP, Kan CX, Han F, Sun XD. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J Diabetes 2021; 12:1057-1069. [PMID: 34326954 PMCID: PMC8311477 DOI: 10.4239/wjd.v12.i7.1057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.
Collapse
Affiliation(s)
- Hong-Yan Qiu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Jun-Feng Shi
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
22
|
Immature Circulating SP-B, Bound to HDL, Represents an Early Sign of Smoke-Induced Pathophysiological Alterations. Biomolecules 2021; 11:biom11040551. [PMID: 33918772 PMCID: PMC8069080 DOI: 10.3390/biom11040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoking is a major independent risk factor for cardiovascular diseases (CVD). The underlying mechanisms, however, are not clearly understood. Lungs are the primary route of exposure to smoke, with pulmonary cells and surfactant being the first structures directly exposed, resulting in the leakage of the immature proteoform of surfactant protein B (proSP-B). Herein, we evaluated whether proSP-B joined the cargo of high-density lipoprotein (HDL) proteins in healthy young subjects (n = 106) without any CVD risk factor other than smoking, and if HDL-associated proSP-B (HDL-SPB) correlated with pulmonary function parameters, systemic inflammation, and oxidative stress. At univariable analysis, HDL-SPB resulted significantly higher in smokers (2.2-fold, p < 0.001) than in non-smokers. No significant differences have been detected between smokers and non-smokers for inflammation, oxidation variables, and alveolar-capillary diffusion markers. In a multivariable model, HDL-SPB was independently associated with smoking. In conclusion, HDL-SPB is not only a precocious and sensitive index of the acute effects of smoke, but it might be also a potential causal factor in the onset of the vascular damage induced by modified HDL. These findings contribute to the emerging concept that the quality of the HDL proteome, rather than the quantity of particles, plays a central role in CVD risk protection.
Collapse
|
23
|
Copur S, Siriopol D, Afsar B, Comert MC, Uzunkopru G, Sag AA, Ortiz A, Covic A, van Raalte DH, Cherney DZ, Rossing P, Kanbay M. Serum glycated albumin predicts all-cause mortality in dialysis patients with diabetes mellitus: meta-analysis and systematic review of a predictive biomarker. Acta Diabetol 2021; 58:81-91. [PMID: 32862262 DOI: 10.1007/s00592-020-01581-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM HbA1c, the traditional and current gold standard biomarker guiding diabetic management, has been scrutinized for low predictive value for patients with chronic kidney disease due to variables affecting erythrocyte number and turnover. Glycated albumin, the precursor to advanced glycation end products, reflects glycemic status over the preceding 2-3 week period and already outperforms HbA1c for glycemic monitoring. Our aim was to establish whether serum GA can be further used to predict mortality risk in dialysis patients with diabetes mellitus (DM) METHODS: We did systematic review of the literature in PubMed/Medline, Web of Science, Embase (Elsevier) and the Cochrane Central Register of Controlled Trials (Wiley) up to and including February 2020. RESULTS This meta-analysis included 25,932 dialysis patients across 12 studies with maximum follow-up of 11 years. Higher GA levels were associated with the risk of all-cause mortality in dialysis patients with DM (HR 1.02, 95% CI 1.01 to 1.03, P < 0.001) irrespective of the type of dialysis, whereas higher GA was not associated with cardiovascular mortality (HR 1.03, 95% CI 0.99 to 1.06, P = 0.15) and cardiovascular events (both fatal and non-fatal) (HR 1.03, 95% CI 0.97 to 1.09, P = 0.31) in dialysis patients with DM. CONCLUSION Serum glycated albumin predicts all-cause mortality risk in dialysis patients with DM. The endpoints of cardiovascular mortality and cardiovascular events trended similarly, but did not reach significance at the current sample size.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Melis C Comert
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Gizem Uzunkopru
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Avd. Reyes Católicos 2, 28040, Madrid, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Loaction VUMC, Amsterdam, The Netherlands
| | - David Z Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
- Departments of Physiology and Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Copenhagen Denmark and University of Copenhagen, Copenhagen, Denmark
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey.
| |
Collapse
|
24
|
Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J Clin Med 2020; 9:jcm9113634. [PMID: 33187372 PMCID: PMC7697299 DOI: 10.3390/jcm9113634] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a heterogeneous and dysmetabolic chronic disease in which the laboratory plays a fundamental role, from diagnosis to monitoring therapy and studying complications. Early diagnosis and good glycemic control should start as early as possible to delay and prevent metabolic and cardio-vascular complications secondary to this disease. Glycated hemoglobin is currently used as the reference parameter. The accuracy of the glycated hemoglobin dosage may be compromised in subjects suffering from chronic renal failure and terminal nephropathy, affected by the reduction in the survival of erythrocytes, with consequent decrease in the time available for glucose to attach to the hemoglobin. In the presence of these renal comorbidities as well as hemoglobinopathies and pregnancy, glycated hemoglobin is not reliable. In such conditions, dosage of glycated albumin can help. Glycated albumin is not only useful for short-term diagnosis and monitoring but predicts the risk of diabetes, even in the presence of euglycemia. This protein is modified in subjects who do not yet have a glycemic alteration but, as a predictive factor, heralds the risk of diabetic disease. This review summarizes the importance of glycated albumin as a biomarker for predicting and stratifying the cardiovascular risk linked to multiorgan metabolic alterations.
Collapse
|
25
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|
26
|
Brioschi M, Gianazza E, Mallia A, Zoanni B, Altomare A, Martinez Fernandez A, Agostoni P, Aldini G, Banfi C. S-Thiolation Targets Albumin in Heart Failure. Antioxidants (Basel) 2020; 9:antiox9080763. [PMID: 32824562 PMCID: PMC7463808 DOI: 10.3390/antiox9080763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Human serum albumin (HSA) is associated with several physiological functions, such as maintaining oncotic pressure and microvascular integrity, among others. It also represents the major and predominant antioxidant in plasma due to the presence of the Cys34 sulfhydryl group. In this study, we assessed qualitative and quantitative changes in HSA in patients with heart failure (HF) and their relationship with the severity of the disease. We detected by means of mass spectrometry a global decrease of the HSA content in the plasma of HF patients in respect to control subjects, a significant increase of thio-HSA with a concomitant decrease in the reduced form of albumin. Cysteine and, at a lesser extent, homocysteine represent the most abundant thiol bound to HSA. A strong inverse correlation was also observed between cysteine-HSA and peak VO2/kg, an index of oxygen consumption associated with HF severity. Moreover, in HL-1 cardiomyocytes incubated with H2O2, we showed a significant decrease of cell viability in cells treated with thio-HSA in respect to restored native-HSA. In conclusion, we found for the first time that S-thiolation of albumin is increased in the plasma of HF patients and induced changes in the structure and antioxidant function of HSA, likely contributing to HF progression.
Collapse
Affiliation(s)
- Maura Brioschi
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
| | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
| | - Beatrice Zoanni
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
| | - Alessandra Altomare
- Dipartimento di Scienze Farmaceutiche, Università di Milano, 20133 Milano, Italy; (A.A.); (G.A.)
| | - Alma Martinez Fernandez
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
- Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Università di Milano, 20122 Milano, Italy
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, 20133 Milano, Italy; (A.A.); (G.A.)
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (M.B.); (E.G.); (A.M.); (B.Z.); (A.M.F.); (P.A.)
- Correspondence: ; Tel.: +39-0258002403; Fax: +39-0258002623
| |
Collapse
|
27
|
Tramarin A, Naldi M, Degani G, Lupu L, Wiegand P, Mazzolari A, Altomare A, Aldini G, Popolo L, Vistoli G, Przybylski M, Bartolini M. Unveiling the molecular mechanisms underpinning biorecognition of early-glycated human serum albumin and receptor for advanced glycation end products. Anal Bioanal Chem 2020; 412:4245-4259. [DOI: 10.1007/s00216-020-02674-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
|
28
|
Das NA, Carpenter AJ, Belenchia A, Aroor AR, Noda M, Siebenlist U, Chandrasekar B, DeMarco VG. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal 2019; 68:109506. [PMID: 31862399 DOI: 10.1016/j.cellsig.2019.109506] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Proximal tubular epithelial cells (PTEC) in the S1 segment of the kidney abundantly express sodium-glucose co-transporters (SGLT) that play a critical role in whole body glucose homeostasis. We recently reported suppression of RECK (Reversion Inducing Cysteine Rich Protein with Kazal Motifs), a membrane anchored endogenous MMP inhibitor and anti-fibrotic mediator, in the kidneys of db/db mice, a model of diabetic kidney disease (DKD), as well as in high glucose (HG) treated human kidney proximal tubule cells (HK-2). We further demonstrated that empagliflozin (EMPA), an SGLT2 inhibitor, reversed these effects. Little is known regarding the mechanisms underlying RECK suppression under hyperglycemic conditions, and its rescue by EMPA. Consistent with our previous studies, HG (25 mM) suppressed RECK expression in HK-2 cells. Further mechanistic investigations revealed that HG induced superoxide and hydrogen peroxide generation, oxidative stress-dependent TRAF3IP2 upregulation, NF-κB and p38 MAPK activation, inflammatory cytokine expression (IL-1β, IL-6, TNF-α, and MCP-1), miR-21 induction, MMP2 activation, and RECK suppression. Moreover, RECK gain-of-function inhibited HG-induced MMP2 activation and HK-2 cell migration. Similar to HG, advanced glycation end products (AGE) induced TRAF3IP2 and suppressed RECK, effects that were inhibited by EMPA. Importantly, EMPA treatment ameliorated all of these deleterious effects, and inhibited epithelial-to-mesenchymal transition (EMT) and HK-2 cell migration. Collectively, these findings indicate that hyperglycemia and associated AGE suppress RECK expression via oxidative stress/TRAF3IP2/NF-κB and p38 MAPK/miR-21 induction. Furthermore, these results suggest that interventions aimed at restoring RECK or inhibiting SGLT2 have the potential to treat kidney inflammatory response/fibrosis and nephropathy under chronic hyperglycemic conditions, such as DKD.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Anthony Belenchia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.
| | - Makoto Noda
- Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Division of Cardiology, Department of Medicine, University of Missouri Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
29
|
Cruciani G, Domingues P, Fedorova M, Galli F, Spickett CM. Redox lipidomics and adductomics - Advanced analytical strategies to study oxidized lipids and lipid-protein adducts. Free Radic Biol Med 2019; 144:1-5. [PMID: 31369839 DOI: 10.1016/j.freeradbiomed.2019.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, Italy.
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA/LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Germany.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, Italy.
| | - Corinne M Spickett
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|