1
|
Liang C, Padavannil A, Zhang S, Beh S, Robinson DRL, Meisterknecht J, Cabrera-Orefice A, Koves TR, Watanabe C, Watanabe M, Illescas M, Lim R, Johnson JM, Ren S, Wu YJ, Kappei D, Ghelli AM, Funai K, Osaka H, Muoio D, Ugalde C, Wittig I, Stroud DA, Letts JA, Ho L. Formation of I 2+III 2 supercomplex rescues respiratory chain defects. Cell Metab 2025; 37:441-459.e11. [PMID: 39788125 PMCID: PMC11892702 DOI: 10.1016/j.cmet.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I2+III2, resolved at 3.7 Å by cryoelectron microscopy (cryo-EM). SC-XL formation increases mitochondrial cristae density, reduces CIII reactive oxygen species (ROS), and sustains normal respiration despite a 70% reduction in CIII activity, effectively rescuing CIII deficiency. Consequently, inhibiting SC-XL formation in CIII mutants using the Uqcrc1DEL:E258-D260 contact site mutation leads to respiratory decompensation. Lastly, SC-XL formation promotes fatty acid oxidation (FAO) and protects against ischemic heart failure in mice. Our study uncovers an unexpected plasticity in the mammalian ETC, where structural adaptations mitigate intrinsic perturbations, and suggests that manipulating SC-XL formation is a potential therapeutic strategy for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Liang
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Shan Zhang
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sheryl Beh
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - David R L Robinson
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jana Meisterknecht
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Chika Watanabe
- Department of Pediatrics, Jichi Medical School, Shimotsuke-shi, Tochigi, Japan
| | - Miyuki Watanabe
- Department of Pediatrics, Jichi Medical School, Shimotsuke-shi, Tochigi, Japan
| | - María Illescas
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Radiance Lim
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, The University of Utah, Salt Lake City, UT, USA
| | - Shuxun Ren
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ya-Jun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anna Maria Ghelli
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, 40126 Bologna, Italy
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, The University of Utah, Salt Lake City, UT, USA
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Shimotsuke-shi, Tochigi, Japan
| | - Deborah Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain; Center for Biological Research Margarita Salas (CIB-CSIC), Madrid, Spain; CIBER de Enfermedades Raras, U723, Madrid, Spain
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - David A Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Lena Ho
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Zotta A, Toller-Kawahisa J, Palsson-McDermott EM, O’Carroll SM, Henry ÓC, Day EA, McGettrick AF, Ward RW, Ryan DG, Watson MA, Brand MD, Runtsch MC, Maitz K, Lueger A, Kargl J, Miljkovic JL, Lavelle EC, O’Neill LAJ. Mitochondrial respiratory complex III sustains IL-10 production in activated macrophages and promotes tumor-mediated immune evasion. SCIENCE ADVANCES 2025; 11:eadq7307. [PMID: 39841829 PMCID: PMC11789823 DOI: 10.1126/sciadv.adq7307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals. We have found that Suppressor of site IIIQo Electron Leak 1.2 (S3QEL 1.2), a specific inhibitor of reactive oxygen species (ROS) production from mitochondrial complex III, and myxothiazol, a complex III inhibitor, decrease IL-10 in lipopolysaccharide (LPS)-activated macrophages. IL-10 down-regulation is likely to be mediated by suppression of c-Fos, which is a subunit of activator protein 1 (AP1), a transcription factor required for IL-10 gene expression. S3QEL 1.2 impairs IL-10 production in vivo after LPS challenge and promotes the survival of mice bearing B16F10 melanoma by lowering tumor growth. Our data identify a link between complex III-dependent ROS generation and IL-10 production in macrophages, the targeting of which could have potential in boosting antitumor immunity.
Collapse
Affiliation(s)
- Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Juliana Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Eva M. Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Shane M. O’Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Órlaith C. Henry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Emily A. Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Anne F. McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ross W. Ward
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Dylan G. Ryan
- Mitochondria Biology Unit, University of Cambridge, Cambridge, UK
| | | | | | - Marah C. Runtsch
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Lueger
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Jan L. Miljkovic
- Mitochondria Biology Unit, University of Cambridge, Cambridge, UK
| | - Ed C. Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A. J. O’Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Mena D, Arusei RJ, Rahhali K, Di Lisa F, Kaludercic N. Measurement of Mitochondrial ROS Formation. Methods Mol Biol 2025; 2878:99-116. [PMID: 39546259 DOI: 10.1007/978-1-0716-4264-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Reactive oxygen species (ROS) play important roles in physiological and pathological processes. Mitochondria, particularly in skeletal and cardiac myocytes, are recognized as the primary site of ROS generation. Detecting oxidative modifications of intracellular or circulating molecules, such as lipids, proteins, and nucleic acids, is commonly employed to indicate ROS formation. However, this approach is indirect and provides limited insights into the spatiotemporal aspects of ROS generation. Understanding these aspects is crucial for comprehending the role of ROS in various pathophysiological conditions. To address this, fluorescent probes can be employed to measure ROS formation, offering a means to investigate ROS generation in both isolated mitochondria and intact cells. This chapter outlines three prominent examples for the use of fluorescent sensors to evaluate mitochondrial ROS formation in either isolated organelles or intact cells. The methods are explained in detail, and an analysis of the limitations of each technique is provided, underscoring potential sources of errors during the assay and the subsequent interpretation of results.
Collapse
Affiliation(s)
- Débora Mena
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | | | - Karim Rahhali
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy.
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy.
| |
Collapse
|
4
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Oropeza-Almazán Y, Blatter LA. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules 2024; 14:144. [PMID: 38397381 PMCID: PMC10887423 DOI: 10.3390/biom14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS production is enhanced during CaT alternans, measured by fluorescence microscopy. Exogenous ROS (tert-butyl hydroperoxide) enhanced CaT alternans, whereas ROS scavengers (dithiothreitol, MnTBAP, quercetin, tempol) alleviated CaT alternans. While the inhibition of cellular NADPH oxidases had no effect on CaT alternans, interference with mitochondrial ROS (ROSm) production had profound effects: (1) the superoxide dismutase mimetic MitoTempo diminished CaT alternans and shifted the pacing threshold to higher frequencies; (2) the inhibition of cyt c peroxidase by SS-31, and inhibitors of ROSm production by complexes of the electron transport chain S1QEL1.1 and S3QEL2, decreased the severity of CaT alternans; however (3) the impairment of mitochondrial antioxidant defense by the inhibition of nicotinamide nucleotide transhydrogenase with NBD-Cl and thioredoxin reductase-2 with auranofin enhanced CaT alternans. Our results suggest that intact mitochondrial antioxidant defense provides crucial protection against pro-arrhythmic CaT alternans. Thus, modulating the mitochondrial redox state represents a potential therapeutic approach for alternans-associated arrhythmias, including AF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Chen TH, Wang HC, Chang CJ, Lee SY. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int J Mol Sci 2024; 25:1314. [PMID: 38279310 PMCID: PMC10816320 DOI: 10.3390/ijms25021314] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Mitochondria are critical for providing energy to maintain cell viability. Oxidative phosphorylation involves the transfer of electrons from energy substrates to oxygen to produce adenosine triphosphate. Mitochondria also regulate cell proliferation, metastasis, and deterioration. The flow of electrons in the mitochondrial respiratory chain generates reactive oxygen species (ROS), which are harmful to cells at high levels. Oxidative stress caused by ROS accumulation has been associated with an increased risk of cancer, and cardiovascular and liver diseases. Glutathione (GSH) is an abundant cellular antioxidant that is primarily synthesized in the cytoplasm and delivered to the mitochondria. Mitochondrial glutathione (mGSH) metabolizes hydrogen peroxide within the mitochondria. A long-term imbalance in the ratio of mitochondrial ROS to mGSH can cause cell dysfunction, apoptosis, necroptosis, and ferroptosis, which may lead to disease. This study aimed to review the physiological functions, anabolism, variations in organ tissue accumulation, and delivery of GSH to the mitochondria and the relationships between mGSH levels, the GSH/GSH disulfide (GSSG) ratio, programmed cell death, and ferroptosis. We also discuss diseases caused by mGSH deficiency and related therapeutics.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Shih-Yu Lee
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
7
|
Grayson C, Mailloux RJ. Coenzyme Q 10 and nicotinamide nucleotide transhydrogenase: Sentinels for mitochondrial hydrogen peroxide signaling. Free Radic Biol Med 2023; 208:260-271. [PMID: 37573896 DOI: 10.1016/j.freeradbiomed.2023.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mitochondria use hydrogen peroxide (H2O2) as a mitokine for cell communication. H2O2 output for signaling depends on its rate of production and degradation, both of which are strongly affected by the redox state of the coenzyme Q10 (CoQ) pool and NADPH availability. Here, we propose the CoQ pool and nicotinamide nucleotide transhydrogenase (NNT) have evolved to be central modalities for mitochondrial H2O2 signaling. Both factors play opposing yet equally important roles in dictating H2O2 availability because they are connected to one another by two central parameters in bioenergetics: electron supply and Δp. The CoQ pool is the central point of convergence for electrons from various dehydrogenases and the electron transport chain (ETC). The increase in Δp creates a significant amount of protonic backpressure on mitochondria to promote H2O2 genesis through CoQ pool reduction. These same factors also drive the activity of NNT, which uses electrons and the Δp to eliminate H2O2. In this way, electron supply and the magnitude of the Δp manifests as a redox connection between the two sentinels, CoQ and NNT, which serve as opposing yet equally important forces required for budgeting H2O2. Taken together, CoQ and NNT are sentinels linked through mitochondrial bioenergetics to manage H2O2 availability for interorganelle and intercellular redox signaling.
Collapse
Affiliation(s)
- Cathryn Grayson
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
8
|
Sánchez-Pérez P, Mata A, Torp MK, López-Bernardo E, Heiestad CM, Aronsen JM, Molina-Iracheta A, Jiménez-Borreguero LJ, García-Roves P, Costa ASH, Frezza C, Murphy MP, Stenslokken KO, Cadenas S. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3. Free Radic Biol Med 2023; 205:244-261. [PMID: 37295539 DOI: 10.1016/j.freeradbiomed.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.
Collapse
Affiliation(s)
- Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - May-Kristin Torp
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Elia López-Bernardo
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Christina M Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway; Bjørknes College, 0456, Oslo, Norway
| | | | - Luis J Jiménez-Borreguero
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Servicio de Cardiología, Hospital Universitario de La Princesa, 28006, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo García-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Kåre-Olav Stenslokken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| |
Collapse
|
9
|
Ikunishi R, Otani R, Masuya T, Shinzawa-Itoh K, Shiba T, Murai M, Miyoshi H. Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones. J Biol Chem 2023; 299:105001. [PMID: 37394006 PMCID: PMC10416054 DOI: 10.1016/j.jbc.2023.105001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.
Collapse
Affiliation(s)
- Ryo Ikunishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryohei Otani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Pharaoh G, Ostrom EL, Stuppard R, Campbell M, Borghardt JM, Franti M, Filareto A, Marcinek DJ. A novel mitochondrial complex I ROS inhibitor partially improves muscle regeneration in adult but not old mice. Redox Biol 2023; 64:102770. [PMID: 37295159 PMCID: PMC10267642 DOI: 10.1016/j.redox.2023.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
It is unclear whether mitochondrial dysfunction and redox stress contribute to impaired age-related muscle regenerative capacity. Here we characterized a novel compound, BI4500, that inhibits the release of reactive oxygen species (ROS) from the quinone site in mitochondrial complex I (site IQ). We tested the hypothesis that ROS release from site IQ contributes to impaired regenerative capacity in aging muscle. Electron transfer system site-specific ROS production was measured in adult and aged mouse isolated muscle mitochondria and permeabilized gastrocnemius fibers. BI4500 inhibited ROS production from site IQ in a concentration-dependent manner (IC50 = ∼985 nM) by inhibiting ROS release without impairing complex I-linked respiration. In vivo BI4500 treatment decreased ROS production from site IQ. Muscle injury and sham injury were induced using barium chloride or vehicle injection to the tibialis anterior (TA) muscle in adult and aged male mice. On the same day as injury, mice began a daily gavage of 30 mg/kg BI4500 (BI) or placebo (PLA). Muscle regeneration (H&E, Sirius Red, Pax7) was measured at 5 and 35 days after injury. Muscle injury increased centrally nucleated fibers (CNFs) and fibrosis with no treatment or age effect. There was a significant age by treatment interaction for CNFs at 5- and 35-days post injury with significantly more CNFs in BI adults compared to PLA adults. Muscle fiber cross-sectional area (CSA) recovered significantly more in adult BI mice (-89 ± 365 μm2) compared to old PLA (-599 ± 153 μm2) and old BI (-535 ± 222 μm2, mean ± SD). In situ TA force recovery was measured 35 days after injury and was not significantly different by age or treatment. Inhibition of site IQ ROS partially improves muscle regeneration in adult but not old muscle demonstrating a role for CI ROS in the response to muscle injury. Site IQ ROS does not contribute to impaired regenerative capacity in aging.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington School of Medicine, USA
| | - Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, USA
| | - Matthew Campbell
- Department of Radiology, University of Washington School of Medicine, USA
| | - Jens Markus Borghardt
- Research DMPK, Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Franti
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Antonio Filareto
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, USA.
| |
Collapse
|
11
|
Gooz M, Maldonado EN. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Front Oncol 2023; 13:1152553. [PMID: 37427141 PMCID: PMC10326048 DOI: 10.3389/fonc.2023.1152553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Fujii J, Yamada KI. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radic Res 2023; 57:353-372. [PMID: 37551716 DOI: 10.1080/10715762.2023.2244155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The presence of hydrogen peroxide along with ferrous iron produces hydroxyl radicals that preferably oxidize polyunsaturated fatty acids (PUFA) to alkyl radicals (L•). The reaction of L• with an oxygen molecule produces lipid peroxyl radical (LOO•) that collectively trigger chain reactions, which results in the accumulation of lipid peroxidation products (LOOH). Oxygenase enzymes, such as lipoxygenase, also stimulate the peroxidation of PUFA. The production of phospholipid hydroperoxides (P-LOOH) can result in the destruction of the architecture of cell membranes and ultimate cell death. This iron-dependent regulated cell death is generally referred to as ferroptosis. Radical scavengers, which include tocopherol and nitric oxide (•NO), react with lipid radicals and terminate the chain reaction. When tocopherol reductively detoxifies lipid radicals, the resultant tocopherol radicals are recycled via reduction by coenzyme Q or ascorbate. CoQ radicals are reduced back by the anti-ferroptotic enzyme FSP1. •NO reacts with lipid radicals and produces less reactive nitroso compounds. The resulting P-LOOH is reductively detoxified by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxin 6 (PRDX6). The hydrolytic removal of LOOH from P-LOOH by calcium-independent phospholipase A2 leads the preservation of membrane structure. While the expression of such protective genes or the presence of these anti-oxidant compounds serve to maintain a healthy condition, tumor cells employ them to make themselves resistant to anti-tumor treatments. Thus, these defense mechanisms against ferroptosis are protective in ordinary cells but are also potential targets for cancer treatment.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Physical Chemistry for Life Science Laboratory, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Gibbs ET, Lerner CA, Watson MA, Wong HS, Gerencser AA, Brand MD. Site IQ in mitochondrial complex I generates S1QEL-sensitive superoxide/hydrogen peroxide in both the reverse and forward reactions. Biochem J 2023; 480:363-384. [PMID: 36862427 DOI: 10.1042/bcj20220611] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/03/2023]
Abstract
Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.
Collapse
Affiliation(s)
- Edwin T Gibbs
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Chad A Lerner
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, U.S.A
| |
Collapse
|
14
|
Shi FL, Yuan LS, Wong TS, Li Q, Li YP, Xu R, You YP, Yuan T, Zhang HR, Shi ZJ, Zha QB, Hu B, He XH, Ouyang DY. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis. Pharmacol Res 2023; 189:106697. [PMID: 36796462 DOI: 10.1016/j.phrs.2023.106697] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Necroptosis has been implicated in various inflammatory diseases including tumor-necrosis factor-α (TNF-α)-induced systemic inflammatory response syndrome (SIRS). Dimethyl fumarate (DMF), a first-line drug for treating relapsing-remitting multiple sclerosis (RRMS), has been shown to be effective against various inflammatory diseases. However, it is still unclear whether DMF can inhibit necroptosis and confer protection against SIRS. In this study, we found that DMF significantly inhibited necroptotic cell death in macrophages induced by different necroptotic stimulations. Both the autophosphorylation of receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3 and the downstream phosphorylation and oligomerization of MLKL were robustly suppressed by DMF. Accompanying the suppression of necroptotic signaling, DMF blocked the mitochondrial reverse electron transport (RET) induced by necroptotic stimulation, which was associated with its electrophilic property. Several well-known anti-RET reagents also markedly inhibited the activation of the RIPK1-RIPK3-MLKL axis accompanied by decreased necrotic cell death, indicating a critical role of RET in necroptotic signaling. DMF and other anti-RET reagents suppressed the ubiquitination of RIPK1 and RIPK3, and they attenuated the formation of necrosome. Moreover, oral administration of DMF significantly alleviated the severity of TNF-α-induced SIRS in mice. Consistent with this, DMF mitigated TNF-α-induced cecal, uterine, and lung damage accompanied by diminished RIPK3-MLKL signaling. Collectively, DMF represents a new necroptosis inhibitor that suppresses the RIPK1-RIPK3-MLKL axis through blocking mitochondrial RET. Our study highlights DMF's potential therapeutic applications for treating SIRS-associated diseases.
Collapse
Affiliation(s)
- Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Sha Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tak-Sui Wong
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
The immunotoxicity of ten insecticides against insect hemocyte cells in vitro. In Vitro Cell Dev Biol Anim 2022; 58:912-921. [PMID: 36443536 DOI: 10.1007/s11626-022-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
Hemocytes in the hemolymph of insects perform innate immunity, but systematic studies to compare immunotoxicity of pesticides on hemocytes are still few. In this study, an insect hemocyte system was used to assess the impact of pesticides with different modes of action, which included loss of cell viability, inhibition of hemophagocytosis, and reduction of nitric oxide synthase (NOS) activity. Results showed that piericidin A was the most cytotoxic to hemocytes, chlorfluazuron and hexaflumuron were the next. Also, piericidin A, chlorfenapyr, and fipronil had strong inhibitory effects on hemophagocytosis, and the effects of piericidin A and chlorfenapyr were persistent, while that of fipronil was short-lived. Moreover, fenoxycarb and hexaflumuron selectively inhibited granulocyte phagocytosis, tebufenozide only showed inhibition on plasmatocyte phagocytosis, but both inhibitory effects were transient. Furthermore, fenoxycarb and hexaflumuron showed a short-term strong inhibitory effect on the activity of NOS, chlorfenapyr and piericidin A showed a weak induction of NOS activity, while other pesticides exhibited a strong induction. Taken together, piericidin A was the most toxic and imidacloprid was the least toxic to hemocytes, and the alterations in hemocyte functions compromised immunity.
Collapse
|
16
|
Milliken AS, Nadtochiy SM, Brookes PS. Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation. J Am Heart Assoc 2022; 11:e026135. [PMID: 35766275 PMCID: PMC9333399 DOI: 10.1161/jaha.122.026135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background The metabolite succinate accumulates during cardiac ischemia. Within 5 minutes of reperfusion, succinate returns to baseline levels via both its release from cells and oxidation by mitochondrial complex II. The latter drives reactive oxygen species (ROS) generation and subsequent opening of the mitochondrial permeability transition (PT) pore, leading to cell death. Targeting succinate dynamics (accumulation/oxidation/release) may be therapeutically beneficial in cardiac ischemia–reperfusion (IR) injury. It has been proposed that blocking MCT1 (monocarboxylate transporter 1) may be beneficial in IR injury, by preventing succinate release and subsequent engagement of downstream inflammatory signaling pathways. In contrast, herein we hypothesized that blocking MCT1 would retain succinate in cells, exacerbating ROS generation and IR injury. Methods and Results Using the mitochondrial ROS probe mitoSOX and a custom‐built murine heart perfusion rig built into a spectrofluorometer, we measured ROS generation in situ during the first moments of reperfusion. We found that acute MCT1 inhibition enhanced mitochondrial ROS generation at reperfusion and worsened IR injury (recovery of function and infarct size). Both of these effects were abrogated by tandem inhibition of mitochondrial complex II, suggesting that succinate retention worsens IR because it drives more mitochondrial ROS generation. Furthermore, using the PT pore inhibitor cyclosporin A, along with monitoring of PT pore opening via the mitochondrial membrane potential indicator tetramethylrhodamine ethyl ester, we herein provide evidence that ROS generation during early reperfusion is upstream of the PT pore, not downstream as proposed by others. In addition, pore opening was exacerbated by MCT1 inhibition. Conclusions Together, these findings highlight the importance of succinate dynamics and mitochondrial ROS generation as key determinants of PT pore opening and IR injury outcomes.
Collapse
Affiliation(s)
- Alexander S Milliken
- Department of Pharmacology and Physiology University of Rochester Medical Center Rochester NY
| | - Sergiy M Nadtochiy
- Department of Anesthesiology and Perioperative Medicine University of Rochester Medical Center Rochester NY
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine University of Rochester Medical Center Rochester NY
| |
Collapse
|
17
|
Superoxide Radicals in the Execution of Cell Death. Antioxidants (Basel) 2022; 11:antiox11030501. [PMID: 35326151 PMCID: PMC8944419 DOI: 10.3390/antiox11030501] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Superoxide is a primary oxygen radical that is produced when an oxygen molecule receives one electron. Superoxide dismutase (SOD) plays a primary role in the cellular defense against an oxidative insult by ROS. However, the resulting hydrogen peroxide is still reactive and, in the presence of free ferrous iron, may produce hydroxyl radicals and exacerbate diseases. Polyunsaturated fatty acids are the preferred target of hydroxyl radicals. Ferroptosis, a type of necrotic cell death induced by lipid peroxides in the presence of free iron, has attracted considerable interest because of its role in the pathogenesis of many diseases. Radical electrons, namely those released from mitochondrial electron transfer complexes, and those produced by enzymatic reactions, such as lipoxygenases, appear to cause lipid peroxidation. While GPX4 is the most potent anti-ferroptotic enzyme that is known to reduce lipid peroxides to alcohols, other antioxidative enzymes are also indirectly involved in protection against ferroptosis. Moreover, several low molecular weight compounds that include α-tocopherol, ascorbate, and nitric oxide also efficiently neutralize radical electrons, thereby suppressing ferroptosis. The removal of radical electrons in the early stages is of primary importance in protecting against ferroptosis and other diseases that are related to oxidative stress.
Collapse
|
18
|
Azad SM, Jin Y, Ser HL, Goh BH, Lee LH, Thawai C, He YW. Biological insights into the piericidin family of microbial metabolites. J Appl Microbiol 2021; 132:772-784. [PMID: 34260807 DOI: 10.1111/jam.15222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/20/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Extensively produced by members of the genus Streptomyces, piericidins are a large family of microbial metabolites, which consist of main skeleton of 4-pyridinol with methylated polyketide side chain. Nonetheless, these metabolites show differences in their bioactive potentials against micro-organisms, insects and tumour cells. Due to its close structural similarity with coenzyme Q, piericidins also possess an inhibitory activity against NADH dehydrogenase as well as Photosystem II. This review studied the latest research progress of piericidins, covering the chemical structure and physical properties of newly identified members, bioactivities, biosynthetic pathway with gene clusters and future prospect. With the increasing incidence of drug-resistant human pathogen strains and cancers, this review aimed to provide clues for the development of either new potential antibiotics or anti-tumour agents.
Collapse
Affiliation(s)
- Sepideh M Azad
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Jin
- School of Biotechnology, East China Science and Technology University, Shanghai, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX),, School of Pharmacy, Monash University Malaysia, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Malaysia
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Martins-Marques T, Rodriguez-Sinovas A, Girao H. Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role? Free Radic Biol Med 2021; 169:397-409. [PMID: 33892116 DOI: 10.1016/j.freeradbiomed.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Antonio Rodriguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Passeig Vall D'Hebron, 119-129, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
20
|
Sassetti E, Clausen MH, Laraia L. Small-Molecule Inhibitors of Reactive Oxygen Species Production. J Med Chem 2021; 64:5252-5275. [PMID: 33856791 DOI: 10.1021/acs.jmedchem.0c01914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are involved in physiological cellular processes including differentiation, proliferation, and apoptosis by acting as signaling molecules or regulators of transcription factors. The maintenance of appropriate cellular ROS levels is termed redox homeostasis, a balance between their production and neutralization. High concentrations of ROS may contribute to severe pathological events including cancer, neurodegenerative, and cardiovascular diseases. In recent years, approaches to target the sources of ROS production directly in order to develop tool compounds or potential therapeutics have been explored. Herein, we briefly outline the major sources of cellular ROS production and comprehensively review the targeting of these by small-molecule inhibitors. We critically assess the value of ROS inhibitors with different mechanisms-of-action, including their potency, mode-of-action, known off-target effects, and clinical or preclinical status, while suggesting future avenues of research in the field.
Collapse
Affiliation(s)
- Elisa Sassetti
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Luca Laraia
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Wong HS, Mezera V, Dighe P, Melov S, Gerencser AA, Sweis RF, Pliushchev M, Wang Z, Esbenshade T, McKibben B, Riedmaier S, Brand MD. Superoxide produced by mitochondrial site I Q inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radic Biol Med 2021; 164:223-232. [PMID: 33421588 DOI: 10.1016/j.freeradbiomed.2020.12.447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Superoxide produced by mitochondria has been implicated in numerous physiologies and pathologies. Eleven different mitochondrial sites that can produce superoxide and/or hydrogen peroxide (O2.-/H2O2) have been identified in vitro, but little is known about their contributions in vivo. We introduce novel variants of S1QELs and S3QELs (small molecules that suppress O2.-/H2O2 production specifically from mitochondrial sites IQ and IIIQo, respectively, without compromising bioenergetics), that are suitable for use in vivo. When administered by intraperitoneal injection, they achieve total tissue concentrations exceeding those that are effective in vitro. We use them to study the engagement of sites IQ and IIIQo in mice lacking functional manganese-superoxide dismutase (SOD2). Lack of SOD2 is expected to elevate superoxide levels in the mitochondrial matrix, and leads to severe pathologies and death about 8 days after birth. Compared to littermate wild-type mice, 6-day-old Sod2-/- mice had significantly lower body weight, lower heart succinate dehydrogenase activity, and greater hepatic lipid accumulation. These pathologies were ameliorated by treatment with a SOD/catalase mimetic, EUK189, confirming previous observations. A 3-day treatment with S1QEL352 decreased the inactivation of cardiac succinate dehydrogenase and hepatic steatosis in Sod2-/- mice. S1QEL712, which has a distinct chemical structure, also decreased hepatic steatosis, confirming that O2.- derived specifically from mitochondrial site IQ is a significant driver of hepatic steatosis in Sod2-/- mice. These findings also demonstrate the ability of these new S1QELs to suppress O2.- production in the mitochondrial matrix in vivo. In contrast, suppressing site IIIQo using S3QEL941 did not protect, suggesting that site IIIQo does not contribute significantly to mitochondrial O2.- production in the hearts or livers of Sod2-/- mice. We conclude that the novel S1QELs are effective in vivo, and that site IQ runs in vivo and is a significant driver of pathology in Sod2-/- mice.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Vojtech Mezera
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Pratiksha Dighe
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Ramzi F Sweis
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Zhi Wang
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Tim Esbenshade
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Bryan McKibben
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
22
|
Homma T, Kobayashi S, Sato H, Fujii J. Superoxide produced by mitochondrial complex III plays a pivotal role in the execution of ferroptosis induced by cysteine starvation. Arch Biochem Biophys 2021; 700:108775. [PMID: 33493440 DOI: 10.1016/j.abb.2021.108775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Ferroptosis is a type of iron-dependent, non-apoptotic cell death, which is typically induced by cysteine starvation or by the inhibition of glutathione peroxidase 4 (GPX4) activity with the accompanying elevation in lipid peroxidation product levels. Despite the central role of mitochondria in oxidative metabolism and hence, as main sources of superoxide, the issue of whether mitochondrial superoxide participates in the execution of ferroptosis remains unclear. To gain additional insights into this issue, we employed suppressors of the site IQ electron leak (S1QEL) and suppressors of the site IIIQo electron leak (S3QEL), small molecules that suppress mitochondrial superoxide production from complex I and III, respectively. The findings indicate that S3QEL, but not S1QEL, significantly protected mouse hepatoma Hepa 1-6 cells from lipid peroxidation and the subsequent ferroptosis induced by cysteine (Cys) starvation (cystine deprivation from culture media or xCT inhibition by erastin). The intracellular levels of Cys and GSH remained low irrespective of life or death. Moreover, S3QEL also suppressed ferroptosis in xCT-knockout mouse-derived embryonic fibroblasts, which usually die under conventional cultivating conditions due to the absence of intracellular Cys and GSH. Although it has been reported that erastin induces the hyperpolarization of the mitochondrial membrane potential, no correlation was observed between hyperpolarization and cell death in xCT-knockout cells. Collectively, these results indicate that superoxide production from complex III plays a pivotal role in the ferroptosis that is induced by Cys starvation, suggesting that protecting mitochondria is a promising therapeutic strategy for the treatment of multiple diseases featuring ferroptosis.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, 951-8518, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| |
Collapse
|
23
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
24
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
25
|
Cobley JN. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants (Basel) 2020; 9:E933. [PMID: 33003362 PMCID: PMC7599503 DOI: 10.3390/antiox9100933] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria-a major presumptive oxidative stressor-produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.
Collapse
Affiliation(s)
- James N Cobley
- Redox Biology Group, Institute for Health Sciences, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| |
Collapse
|
26
|
Milliken AS, Kulkarni CA, Brookes PS. Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury. Redox Biol 2020; 37:101733. [PMID: 33007502 PMCID: PMC7527751 DOI: 10.1016/j.redox.2020.101733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 02/02/2023] Open
Abstract
Generation of mitochondrial reactive oxygen species (ROS) is an important process in triggering cellular necrosis and tissue infarction during ischemia-reperfusion (IR) injury. Ischemia results in accumulation of the metabolite succinate. Rapid oxidation of this succinate by mitochondrial complex II (Cx-II) during reperfusion reduces the co-enzyme Q (Co-Q) pool, thereby driving electrons backward into complex-I (Cx-I), a process known as reverse electron transport (RET), which is thought to be a major source of ROS. During ischemia, enhanced glycolysis results in an acidic cellular pH at the onset of reperfusion. While the process of RsET within Cx-I is known to be enhanced by a high mitochondrial trans-membrane ΔpH, the impact of pH itself on the integrated process of Cx-II to Cx-I RET has not been fully studied. Using isolated mouse heart and liver mitochondria under conditions which mimic the onset of reperfusion (i.e., high [ADP]), we show that mitochondrial respiration (state 2 and state 3) as well as isolated Cx-II activity are impaired at acidic pH, whereas the overall generation of ROS by Cx-II to Cx-I RET was insensitive to pH. Together these data indicate that the acceleration of Cx-I RET ROS by ΔpH appears to be cancelled out by the impact of pH on the source of electrons, i.e. Cx-II. Implications for the role of Cx-II to Cx-I RET derived ROS in IR injury are discussed. ROS from complex I (Cx-I) reverse electron transport (RET) is enhanced at acidic pH. Mitochondrial complex II (Cx-II) activity is inhibited at acidic pH. These effects cancel out, yielding no net pH response of Cx-II to Cx-I RET ROS.
Collapse
Affiliation(s)
- Alexander S Milliken
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Chaitanya A Kulkarni
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA.
| |
Collapse
|
27
|
Tsuji A, Akao T, Masuya T, Murai M, Miyoshi H. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J Biol Chem 2020; 295:7481-7491. [PMID: 32295842 PMCID: PMC7247293 DOI: 10.1074/jbc.ra120.013366] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
The small molecule IACS-010759 has been reported to potently inhibit the proliferation of glycolysis-deficient hypoxic tumor cells by interfering with the functions of mitochondrial NADH-ubiquinone oxidoreductase (complex I) without exhibiting cytotoxicity at tolerated doses in normal cells. Considering the significant cytotoxicity of conventional quinone-site inhibitors of complex I, such as piericidin and acetogenin families, we hypothesized that the mechanism of action of IACS-010759 on complex I differs from that of other known quinone-site inhibitors. To test this possibility, here we investigated IACS-010759's mechanism in bovine heart submitochondrial particles. We found that IACS-010759, like known quinone-site inhibitors, suppresses chemical modification by the tosyl reagent AL1 of Asp160 in the 49-kDa subunit, located deep in the interior of a previously proposed quinone-access channel. However, contrary to the other inhibitors, IACS-010759 direction-dependently inhibited forward and reverse electron transfer and did not suppress binding of the quinazoline-type inhibitor [125I]AzQ to the N terminus of the 49-kDa subunit. Photoaffinity labeling experiments revealed that the photoreactive derivative [125I]IACS-010759-PD1 binds to the middle of the membrane subunit ND1 and that inhibitors that bind to the 49-kDa or PSST subunit cannot suppress the binding. We conclude that IACS-010759's binding location in complex I differs from that of any other known inhibitor of the enzyme. Our findings, along with those from previous study, reveal that the mechanisms of action of complex I inhibitors with widely different chemical properties are more diverse than can be accounted for by the quinone-access channel model proposed by structural biology studies.
Collapse
Affiliation(s)
- Atsuhito Tsuji
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takumi Akao
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
28
|
Goncalves RLS, Watson MA, Wong HS, Orr AL, Brand MD. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol 2019; 28:101341. [PMID: 31627168 PMCID: PMC6812158 DOI: 10.1016/j.redox.2019.101341] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species are important signaling molecules crucial for muscle differentiation and adaptation to exercise. However, their uncontrolled generation is associated with an array of pathological conditions. To identify and quantify the sources of superoxide and hydrogen peroxide in skeletal muscle we used site-specific suppressors (S1QELs, S3QELs and NADPH oxidase inhibitors). We measured the rates of hydrogen peroxide release from isolated rat muscle mitochondria incubated in media mimicking the cytosol of intact muscle. By measuring the extent of inhibition caused by the addition of different site-specific suppressors of mitochondrial superoxide/hydrogen peroxide production (S1QELs for site IQ and S3QELs for site IIIQo), we determined the contributions of these sites to the total signal. In media mimicking resting muscle, their contributions were each 12–18%, consistent with a previous method. In C2C12 myoblasts, site IQ contributed 12% of cellular hydrogen peroxide production and site IIIQo contributed about 30%. When C2C12 myoblasts were differentiated to myotubes, hydrogen peroxide release increased five-fold, and the proportional contribution of site IQ doubled. The use of S1QELs and S3QELs is a powerful new way to measure the relative contributions of different mitochondrial sites to muscle hydrogen peroxide production under different conditions. Our results show that mitochondrial sites IQ and IIIQo make a substantial contribution to superoxide/hydrogen peroxide production in muscle mitochondria and C2C12 myoblasts. The total hydrogen peroxide release rate and the relative contribution of site IQ both increase substantially upon differentiation to myotubes. S1QELs, S3QELs and NOX inhibitors report sites of superoxide/H2O2 generation. Mitochondria and NOXs are the major sources of H2O2 in C2C12 cells. H2O2 release increases 5-fold during differentiation of C2C12 myoblasts to myotubes. The relative contribution of site IQ doubles during differentiation. The relative contributions of site IIIQo and NOXs remain the same.
Collapse
Affiliation(s)
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Adam L Orr
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|