1
|
Han L, Zhai W. Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review). Mol Med Rep 2025; 31:105. [PMID: 40017132 DOI: 10.3892/mmr.2025.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Ischemia‑reperfusion injury (IRI) refers to tissue or organ damage that occurs following a period of inadequate blood supply (ischemia) followed by restoration of blood flow (reperfusion) within a short time frame. This phenomenon is prevalent in clinical conditions such as cardiovascular and cerebrovascular disease, organ transplantation and stroke. Despite its frequency, effective therapeutic strategies to mitigate IRI remain elusive in clinical practice, underscoring the need for a deeper understanding of its molecular mechanisms. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol metabolism, serves a role in alleviating oxidative stress and cell damage during IRI by modulating oxidative stress, decreasing apoptosis and inhibiting inflammatory responses. ALDH2 exerts protective effects by detoxifying reactive aldehydes, thereby preventing lipid peroxidation and maintaining cellular homeostasis. Furthermore, ferroptosis, a regulated form of cell death driven by iron accumulation and subsequent lipid peroxidation, is a key process in IRI. However, the precise role of ALDH2 in modulating ferroptosis during IRI remains incompletely understood. Although there is an interaction between ALDH2 activity and ferroptosis, the underlying mechanisms have yet to be clarified. The present review examines the role of ALDH2 and ferroptosis in IRI and the potential regulatory influence of ALDH2 on ferroptosis mechanisms, as well as potential targeting of ALDH2 and ferroptosis for IRI treatment and prevention. By elucidating the complex interplay between ALDH2 and ferroptosis, the present review aims to provide new insights for the development of innovative therapeutic strategies to mitigate ischemic tissue damage and improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
2
|
Johnson E, Albakri JS, Allemailem KS, Sultan A, Alwanian WM, Alrumaihi F, Almansour NM, Aldakheel FM, Khalil FMA, Abduallah AM, Smith O. Mitochondrial dysfunction and calcium homeostasis in heart failure: Exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations. Curr Probl Cardiol 2025; 50:102968. [PMID: 39653095 DOI: 10.1016/j.cpcardiol.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Heart failure (HF) is a multifaceted clinical syndrome characterized by the heart's inability to pump sufficient blood to meet the body's metabolic demands. It arises from various etiologies, including myocardial injury, hypertension, and valvular heart disease. A critical aspect of HF pathophysiology involves mitochondrial dysfunction, particularly concerning calcium (Ca2+) homeostasis and oxidative stress. This review highlights the pivotal role of excess mitochondrial Ca2+ in exacerbating oxidative stress, contributing significantly to HF progression. Novel insights are provided regarding the mechanisms by which mitochondrial Ca2+ overload leads to increased production of reactive oxygen species (ROS) and impaired cellular function. Despite this understanding, key gaps in research remain, particularly in elucidating the complex interplay between mitochondrial dynamics and oxidative stress across different HF phenotypes. Furthermore, therapeutic strategies targeting mitochondrial dysfunction are still in their infancy, with limited applications in clinical practice. By summarizing recent findings and identifying these critical research gaps, this review aims to pave the way for innovative therapeutic approaches that improve the management of heart failure, ultimately enhancing patient outcomes through targeted interventions.
Collapse
Affiliation(s)
- Emily Johnson
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulaziz Sultan
- Family Medicine Senior Registrar, Ministry of Health, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Applied College, Unit of health specialties, basic sciences and their applications, Mohayil Asir Abha, 61421, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Oliver Smith
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Liu Y, Liu X, Pan C. Advances in Factors Affecting ALDH2 Activity and its Mechanisms. Cardiovasc Toxicol 2024; 24:1428-1438. [PMID: 39365551 DOI: 10.1007/s12012-024-09923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme primarily involved in the detoxification of alcohol-derived aldehyde and endogenous toxic aldehydes. It exhibits widespread expression across various organs and exerts a broad and significant impact on diverse acute cardiovascular diseases, including acute coronary syndrome, acute aortic dissection, hypoxic pulmonary hypertension, and heart failure. The ALDH2 rs671 variant represents the most prevalent genetic variant in East Asian populations, with carriage rates ranging from 30 to 50% among the Chinese population. Given its widespread presence in the body, the wide range of diseases it affects, and its high rate of variation, it can serve as a crucial tool for the precise prevention and treatment of acute cardiovascular diseases, while offering individualized medication guidance. This review aims to provide a comprehensive overview of the latest advancements in factors affecting ALDH2 activity, encompassing post-transcriptional modifications, modulators of ALDH2, and relevant clinical drugs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xuemei Liu
- Department of Nephrology, The Fifth People's Hospital of Jinan, Jinan, 250022, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Niu L, Yang P, Zhu B, Jin X, Yang C, Zhang X, Liu Y, Zhang R, Liu F. Inhibition of the RIP3/MLKL/TRPM7 necroptotic pathway ameliorates diabetes mellitus-induced erectile dysfunction by reducing cell death, fibrosis, and inflammation. Front Pharmacol 2024; 15:1436013. [PMID: 39329120 PMCID: PMC11424535 DOI: 10.3389/fphar.2024.1436013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetes mellitus-induced erectile dysfunction (DMED) is a common complication in patients with diabetes mellitus. Necroptosis is regarded as a form of cell death that is intimately associated with the inflammatory response, which is not only initiated by inflammatory factors such as TNF-α, but also triggers the inflammatory cascade through the rupture of the dying cell. There is no definitive study on the role of necroptosis in the pathological process of DMED. In light of the pathological features of high inflammation levels in DMED patients, we assessed whether the necroptosis plays an important role in the course of DMED. Our study revealed that penile tissues of DMED rats showed high levels of key necroptosis factors such as receptor-interacting protein kinase 3 (RIP3), mixed-lineage kinase domain-like protein (MLKL), and transient receptor potential melatonin 7 (TRPM7). Furthermore, the inhibition of necroptosis with a receptor-interacting protein kinase 3 (RIP3) inhibitor or Yimusake (a common herbal remedy for ED) effectively rescued damage to corpus cavernosum smooth muscle cells (CCSMC) under high glucose conditions. Our findings suggest that inhibition of the RIP3/MLKL/TRPM7 necroptotic pathway could effectively ameliorate CCSMCs fibrosis and death induced by high glucose and inhibited the inflammatory response.
Collapse
Affiliation(s)
- Lipan Niu
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Pei Yang
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Bingbing Zhu
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Xiufang Jin
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Chengxia Yang
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Xijia Zhang
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Yulian Liu
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Rui Zhang
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Fengxia Liu
- Department of Human Anatomy, College of Basic Medicine Science, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| |
Collapse
|
6
|
Wei Y, Gao S, Li C, Huang X, Xie B, Geng J, Dai H, Wang C. Aldehyde Dehydrogenase 2 Deficiency Aggravates Lung Fibrosis through Mitochondrial Dysfunction and Aging in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1458-1477. [PMID: 38777148 DOI: 10.1016/j.ajpath.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis, a fatal interstitial lung disease, is characterized by fibroblast activation and aberrant extracellular matrix accumulation. Effective therapeutic development is limited because of incomplete understanding of the mechanisms by which fibroblasts become aberrantly activated. Here, we show aldehyde dehydrogenase 2 (ALDH2) in fibroblasts as a potential therapeutic target for pulmonary fibrosis. A decrease in ALDH2 expression was observed in patients with idiopathic pulmonary fibrosis and bleomycin-treated mice. ALDH2 deficiency spontaneously induces collagen accumulation in the lungs of aged mice. Furthermore, young ALDH2 knockout mice exhibited exacerbated bleomycin-induced pulmonary fibrosis and increased mortality compared with that in control mice. Mechanistic studies revealed that transforming growth factor (TGF)-β1 induction and ALDH2 depletion constituted a positive feedback loop that exacerbates fibroblast activation. TGF-β1 down-regulated ALDH2 through a TGF-β receptor 1/Smad3-dependent mechanism. The subsequent deficiency in ALDH2 resulted in fibroblast dysfunction that manifested as impaired mitochondrial autophagy and senescence, leading to fibroblast activation and extracellular matrix production. ALDH2 overexpression markedly suppressed fibroblast activation, and this effect was abrogated by PTEN-induced putative kinase 1 (PINK1) knockdown, indicating that the profibrotic effects of ALDH2 are PINK1- dependent. Furthermore, ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) reversed the established pulmonary fibrosis in both young and aged mice. In conclusion, ALDH2 expression inhibited the pathogenesis of pulmonary fibrosis. Strategies to up-regulate or activate ALDH2 expression could be potential therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanqiu Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuwei Gao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
7
|
Liu X, Yao Y, Zhu Y, Lu F, Chen X. Inhibition of Adipocyte Necroptosis Alleviates Fat Necrosis and Fibrosis After Grafting in a Murine Model. Aesthet Surg J 2024; 44:NP585-NP605. [PMID: 38796831 DOI: 10.1093/asj/sjae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Because of the delicate structure of the adipose tissue, fat necrosis accounts for 43.7% of all complications after autologous fat grafting; however, its regulation remains unclear. OBJECTIVES The purpose of this study was to examine the role of necroptosis in fat graft remodeling after grafting. METHODS Clinical fat graft necrosis samples were collected, and the expression levels of the necroptosis marker phosphorylated(p)-MLKL were analyzed. Transcriptome analysis was performed on fat grafts before and 1 week after transplantation in C57BL/6 mouse fat grafting models. Additionally, the in vivo effects of RIPK1 inhibitor Nec-1s or RIPK3 inhibitor GSK'872 on the fat grafting complications, including fat necrosis and fibrosis, were investigated. RESULTS Necroptosis markers were observed and associated with higher occurrence of fibrosis in clinical fat graft necrosis samples compared to normal fat tissue. Amplification and RNA-Seq were conducted on RNA isolated from fat grafts before and after grafting. MLKL, RIPK1, and RIPK3's expression levels were significantly upregulated in comparison to controls. Higher expression levels of necroptotic RNAs were associated with higher levels of DAMPs, including Cxcl2, HMGB1, S100a8, S100a9, Nlrp3, and IL33, and activated proinflammatory signaling pathways, including the TNF, NF-kappa B, and chemokine signaling pathways. Necroptotic inhibitor Nec-1s and GSK'872 robustly suppressed the p-MLKL expression level and significantly inhibited necroptotic cell death, especially in adipocytes. Moreover, administration of Nec-1s and GSK'872 significantly alleviated fat necrosis and subsequent fibrosis in fat grafts. CONCLUSIONS Collectively, our study findings highlight the potential therapeutic applications of necroptosis inhibitors in preventing fat necrosis and fibrosis after grafting. LEVEL OF EVIDENCE: 4
Collapse
|
8
|
Tudurachi BS, Anghel L, Tudurachi A, Sascău RA, Zanfirescu RL, Stătescu C. Unraveling the Cardiac Matrix: From Diabetes to Heart Failure, Exploring Pathways and Potential Medications. Biomedicines 2024; 12:1314. [PMID: 38927520 PMCID: PMC11201699 DOI: 10.3390/biomedicines12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Andreea Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Radu Andy Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Răzvan-Liviu Zanfirescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| |
Collapse
|
9
|
Kong WZ, Zhang HY, Sun YF, Song J, Jiang J, Cui HY, Zhang Y, Han S, Cheng Y. Plasmodium vivax tryptophan-rich antigen reduces type I collagen secretion via the NF-κBp65 pathway in splenic fibroblasts. Parasit Vectors 2024; 17:239. [PMID: 38802961 PMCID: PMC11131192 DOI: 10.1186/s13071-024-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
Collapse
Affiliation(s)
- Wei-Zhong Kong
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Hang-Ye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Case Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi, 214000, China
| | - Heng-Yuan Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yu Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
10
|
Chen YF, Qiu Q, Wang L, Li XR, Zhou S, Wang H, Jiang WD, Geng JY, Qin-Gao, Tang B, Wang HJ, Kang PF. Quercetin Ameliorates Myocardial Injury in Diabetic Rats by Regulating Autophagy and Apoptosis through AMPK/mTOR Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:841-864. [PMID: 38716618 DOI: 10.1142/s0192415x24500344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo. Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo. Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Qi Qiu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Lei Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Xiao-Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Shun Zhou
- Department of Clinical Medicine, Grade 2019, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Heng Wang
- Department of Psychiatry, Grade 2019, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Wen-Di Jiang
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu, Anhui 233004, P. R. China
| | - Jia-Yi Geng
- Department of Psychiatry, Grade 2019, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Qin-Gao
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| |
Collapse
|
11
|
Noonin C, Thongboonkerd V. Curcumin prevents high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation via mitigating intracellular free radicals and TGF-β secretion. Biomed Pharmacother 2024; 174:116536. [PMID: 38569274 DOI: 10.1016/j.biopha.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-β (TGF-β) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1β (IL-1β), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-β levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-β secretion.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
12
|
Bao Y, Yang S, Zhao H, Wang Y, Li K, Liu X, Zhang W, Zhu X. A prognostic model of idiopathic pulmonary fibrosis constructed based on macrophage and mitochondria-related genes. BMC Pulm Med 2024; 24:176. [PMID: 38609879 PMCID: PMC11015635 DOI: 10.1186/s12890-024-02976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Studies have shown that mitochondrial function and macrophages may play a role in the development of idiopathic pulmonary fibrosis (IPF). However, the understanding of the interactions and specific mechanisms between mitochondrial function and macrophages in pulmonary fibrosis is still very limited. METHODS To construct a prognostic model for IPF based on Macrophage- related genes (MaRGs) and Mitochondria-related genes (MitoRGs), differential analysis was performed to achieve differentially expressed genes (DEGs) between IPF and Control groups in the GSE28042 dataset. Then, MitoRGs, MaRGs and DEGs were overlapped to screen out the signature genes. The univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) algorithm were implemented to achieve key genes. Furthermore, the independent prognostic analysis was employed. The ingenuity pathway analysis (IPA) was employed to further understand the molecular mechanisms of key genes.Next, the immune infiltration analysis was implemented to identify differential immune cells between two risk subgroups. RESULTS There were 4791 DEGs between IPF and Control groups. Furthermore, 26 signature genes were achieved by the intersection processing. Three key genes including ALDH2, MCL1, and BCL2A1 were achieved, and the risk model based on the key genes was created. In addition, a nomogram for survival forecasting of IPF patients was created based on riskScore, Age, and Gender, and we found that key genes were associated with classical pathways including 'Apoptosis Signaling', 'PI3K/AKT Signaling', and so on. Next, two differential immune cells including Monocytes and CD8 T cells were identified between two risk subgroups. Moreover, we found that MIR29B2CHG and hsa-mir-1-3p could regulate the expression of ALDH2. CONCLUSION We achieved 3 key genes including ALDH2, MCL1,, and BCL2A1 associated with IPF, providing a new theoretical basis for clinical treatment of IPF.
Collapse
Affiliation(s)
- Yu Bao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Shiyuan Yang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Hailan Zhao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Yezhen Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Ke Li
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Xue Liu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Wei Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Xue Zhu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China.
| |
Collapse
|
13
|
Lu N, Qin H, Meng Z, Yu Y, Gao Q, Cheng Z, Liu C, Hu J. Inhibiting apoptosis and GSDME-mediated pyroptosis attenuates hepatic injury in septic mice. Arch Biochem Biophys 2024; 754:109923. [PMID: 38408533 DOI: 10.1016/j.abb.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Sepsis is characterized by severe inflammation and organ dysfunction resulting from a dysregulated organismal response to infection. Although pyroptosis has been presumably shown to be a major cause of multiple organ failure and septic death, whether gasdermin E (GSDME)-mediated pyroptosis occurs in septic liver injury and whether inhibiting apoptosis and GSDME-mediated pyroptosis can attenuate septic liver injury remain unclear. This study investigated the role of apoptosis and GSDME-mediated pyroptosis in septic liver injury. METHODS Adult male C57BL/6 mice were randomly divided into four groups: sham, cecal ligation puncture (CLP), CLP + Z-DEVD-FMK (a caspase-3 inhibitor, 5 mg/kg), and CLP + Ac-DMLD-CMK (a GSDME inhibitor, 5 mg/kg). Sepsis severity was assessed using the murine sepsis score (MSS). Hepatic tissue damage was observed by the hematoxylin-eosin staining method, the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the levels of malondialdehyde (MDA), the concentrations of interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were measured according to the related kits, and the changes in the hepatic tissue reactive oxygen species (ROS) levels were detected by immunofluorescence (IF). The protein expression levels of cleaved caspase-3, GSDME-N, IL-1β, B-cell lymphoma-2 (Bcl-2), cytochrome C (Cyt-c), and acetaldehyde dehydrogenase 2 (ALDH2) were detected using western blotting. GSDME expression was detected by immunohistochemistry. RESULTS Compared with the Sham group, CLP mice showed high sepsis scores and obvious liver damage. However, in the CLP + Z-DEVD-FMK and CLP + Ac-DMLD-CMK groups, the sepsis scores were reduced and liver injury was alleviated. Compared with the Sham group, the serum ALT and AST activities, MDA and ROS levels, and IL-1β and TNF-α concentrations were increased in the CLP group, as well as the protein expression of cleaved caspase-3, GSDME-N, IL-1β, Cyt-c, and GSDME positive cells (P < 0.05). However, the expression levels of Bcl-2 and ALDH2 protein were decreased (P < 0.05). Compared with the CLP group, the CLP + Z-DEVD-FMK and CLP + Ac-DMLD-CMK groups showed low sepsis scores, ALT and AST activities, MDA and ROS levels, decreased IL-1β and TNF-α concentrations, and decreased expression of cleaved caspase-3, GSDME-N, IL-1β protein expression, and GSDME positive cells (P < 0.05). The expression levels of Bcl-2 and ALDH2 protein were increased (P < 0.05). CONCLUSION Apoptosis and GSDME-mediated pyroptosis are involved in the development of sepsis-induced hepatic injury. Inhibition of apoptosis and GSDME-mediated pyroptosis attenuates injury. ALDH2 plays a protective role by inhibiting apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Na Lu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| | - Hongqian Qin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| | - Zhaofei Meng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| | - Ying Yu
- Department of Physiology, Bengbu Medical University, Bengbu, 233000, Anhui, PR China.
| | - Qin Gao
- Department of Physiology, Bengbu Medical University, Bengbu, 233000, Anhui, PR China.
| | - Zhipeng Cheng
- School of Clinical Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, PR China
| | - Chuanmiao Liu
- National Clinical Research Center for Infectious Diseases, 287 Changhuai Road, Bengbu, 233004, Anhui, PR China.
| | - Junfeng Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| |
Collapse
|
14
|
Usta A, Yüksek V, Çetin S, Dede S. Lycopene prevents cell death in NRK-52E cells by inhibition of high glucose-activated DNA damage and apoptotic, autophagic, and necrotic pathways. J Biochem Mol Toxicol 2024; 38:e23678. [PMID: 38444079 DOI: 10.1002/jbt.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/13/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
This study aims to investigate the effects of lycopene on apoptotic, autophagic, and necrotic pathways, oxidative status, and DNA damage in diabetic nephropathy at the molecular level. The sample of the study includes seven groups: lycopene (L), high glucose (G), high glucose + lycopene (GL), and control (C) groups tested at 12 and 24 h. The expression levels of genes in oxidative, apoptotic, autophagic, and necrotic cell death pathways are determined by reverse transcription-quantitative polymerase chain reaction analysis. The comet assay method is used for the analysis of DNA damage. It is observed that adding lycopene to high glucose for protective purposes reduces the expression of genes related to apoptosis, autophagy, and necrosis, as well as the DNA damage index, compared to cells given high glucose alone. Lycopene can be a safe and effective alternative agent.
Collapse
Affiliation(s)
- Ayşe Usta
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Veysel Yüksek
- Department of Medical Laboratory Technician, Ozalp Regional High School, Van Yuzuncu Yil University, Van, Turkey
| | - Sedat Çetin
- Department of Veterinary Medicine, Vocational School of Health Services, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Semiha Dede
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
15
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
16
|
Qian L, Xu H, Yuan R, Yun W, Ma Y. Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed Pharmacother 2024; 170:116000. [PMID: 38070245 DOI: 10.1016/j.biopha.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Formononetin, an isoflavone compound, has been extensively researched due to its various biological activities, including a potent protective effect on the cardiovascular system. However, the impact of formononetin on cardiac fibrosis has not been investigated. In this study, C57BL/6 mice were used to establish cardiac fibrosis animal models by subcutaneous injecting of isoproterenol (ISO) and formononetin was orally administrated. The results showed that formononetin reversed ISO-induced heart stiffness revealed by early-to-atrial wave ratio (E/A ratio). Masson staining, western blot, immunohistochemistry and real-time PCR exhibited that the cardiac fibrosis and fibrosis-related proteins (collage III, fibronectin, TGF-β1, α-SMA, and vimentin) and genes (Col1a1, Col3a1, Acta2 and Tgfb1) induced by ISO were significantly suppressed by formononetin. Furthermore, by combining metabolomics and network pharmacology, we found three important targets (ALDH2, HADH, and MAOB), which are associated with mitochondrial function, were involved in the beneficial effect of formononetin. Further validation revealed that these three genes were more abundance in cardiomyocyte than in cardiac fibroblast. The mRNA expression of ALDH2 and HADH were decreased, while MOAB was increased in cardiomyocyte upon ISO treatment and these phenomena were reversed by formononetin. In addition, we investigated mitochondrial membrane potential and ROS production in cardiomyocytes, the results showed that formononetin effectively improved mitochondrial dysfunction induced by ISO. In summary, we demonstrated that formononetin via regulating the expressions of ALDH2, HADH, and MAOB in cardiomyocyte to improve mitochondrial dysfunction and alleviate β-adrenergic activation cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Qian
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai 200241, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
Liu H, Hu Q, Ren K, Wu P, Wang Y, Lv C. ALDH2 mitigates LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING pathway. Mol Med 2023; 29:171. [PMID: 38124089 PMCID: PMC10731778 DOI: 10.1186/s10020-023-00769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Sepsis is a severe syndrome of organ dysfunction that often leads to cardiac dysfunction and endangers life. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in LPS-induced myocardial injury is unclear. The purpose of this study was to assess the role of ALDH2 in lipopolysaccharide (LPS)-induced myocardial injury and the regulatory mechanism and to identify potential therapeutic strategies for treating this condition. METHODS An in vivo model was established by 12 h of LPS (10 mg/kg, intraperitoneal injection) stimulation, and an in vitro model was generated by stimulating H9C2 cells with LPS (10 μg/ml) for 12 h. We then used the ALDH2 activator Alda-1 and the ALDH2 inhibitor daidzin to assess their effects on LPS-induced cardiac injury. Cardiac function in mice was evaluated by using cardiac ultrasound. We used various methods to evaluate inflammation, apoptosis, and oxidative stress, including ELISA, flow cytometry, JC-1 staining, Western blotting, and DCFH-DA staining. Additionally, we used a small interfering RNA (siRNA) to knock down cyclic GMP-AMP synthase (cGAS) to further investigate the relationship between ALDH2 and cGAS in LPS-induced cardiac injury. RESULTS LPS-induced cardiac dysfunction and increased the levels of the cardiac injury markers creatine kinase-MB (CKMB) and lactate dehydrogenase (LDH) in vivo. This change was accompanied by an increase in reactive oxygen species (ROS) levels, which exacerbated the oxidative stress response and regulated apoptosis through cleaved caspase-3, BAX, BCL-2. The expression of inflammatory cytokines such as IL-6/IL-1β/TNF-α was also upregulated. However, these effects were reversed by pretreatment with Alda-1 via the inhibition of cGAS/stimulator of interferon genes (STING) signaling pathway. Interestingly, LPS, Alda-1 and daidzin altered the activity of ALDH2 but did not regulate its protein expression. Knocking down cGAS in H9C2 cardiomyocytes alleviated LPS-induced cardiac inflammation, apoptosis, and ROS production and weakened the synergistic effect of daidzin. CONCLUSION We demonstrated that ALDH2 alleviated LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING signaling pathway, thereby protecting against LPS-induced cardiac injury. This study identifies a novel therapeutic approach for treating sepsis-induced cardiomyopathy (SIC).
Collapse
Affiliation(s)
- Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ke Ren
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengxin Wu
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China.
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China.
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
18
|
Qu Y, Liu Y, Zhang H. ALDH2 activation attenuates oxygen-glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol 2023; 25:3203-3216. [PMID: 37103763 DOI: 10.1007/s12094-023-03190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE It is previously reported that aldehyde dehydrogenase 2 family member (ALDH2) shows neuroprotective effects in cerebral ischemia/reperfusion injury. However, whether the protective effects are through mediating the programmed cell death is yet to be fully elucidated. METHODS In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in HT22 cells and mouse cortical neurons. Subsequently, ALDH2 expression were assessed by qRT-PCR and western blot. The methylation status was examined by methylation-specific PCR (MS-PCR). Then, ALDH2 expression was promoted and suppressed to explore the role of ALDH2 in OGD/R-treated cells. CCK-8 assay was applied to detect cell viability, and flow cytometry was applied to evaluate cell apoptosis. Western blot was applied to detect the apoptosis-related proteins (Caspase 3, Bcl-2 and Bax), necroptosis-related proteins (RIP3 and MLKL), pyroptosis-related proteins (NLRP3 and GSDMD), ferroptosis-related protein (ACSL4 and GPX4), and autophagy-related proteins (LC3B, and p62). IL-1β and IL-18 production was evaluated by ELISA assay. Reactive oxygen species production and Fe2+ content were evaluated by the corresponding detection kit. RESULTS In OGD/R-treated cells, ALDH2 expression was decreased, which was due to the hypermethylation of ALDH2 in the promoter region. ALDH2 overexpression improved cell viability and ALDH2 knockdown suppressed cell viability in OGD/R-treated cells. We also found that ALDH2 overexpression attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy, while ALDH2 knockdown facilitated the OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. CONCLUSIONS Collectively, our results implied that ALDH2 attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy to promote cell viability in HT22 cells and mouse cortical neurons.
Collapse
Affiliation(s)
- Yun Qu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yuanyuan Liu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Huilong Zhang
- Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 Yudong Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
19
|
Kundu B, Iyer MR. A patent review on aldehyde dehydrogenase inhibitors: an overview of small molecule inhibitors from the last decade. Expert Opin Ther Pat 2023; 33:651-668. [PMID: 38037334 DOI: 10.1080/13543776.2023.2287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Physiological and pathophysiological effects arising from detoxification of aldehydes in humans implicate the enzyme aldehyde dehydrogenase (ALDH) gene family comprising of 19 isoforms. The main function of this enzyme family is to metabolize reactive aldehydes to carboxylic acids. Dysregulation of ALDH activity has been associated with various diseases. Extensive research has since gone into studying ALHD isozymes, their structural biology and developing small-molecule inhibitors. Novel chemical strategies to enhance the selectivity of ALDH inhibitors have now appeared. AREAS COVERED A comprehensive review of patent literature related to aldehyde dehydrogenase inhibitors in the last decade and half (2007-2022) is provided. EXPERT OPINION Aldehyde dehydrogenase (ALDH) is an important enzyme that metabolizes reactive exogenous and endogenous aldehydes in the body through NAD(P)±dependent oxidation. Hence this family of enzymes possess important physiological as well as toxicological roles in human body. Significant efforts in the field have led to potent inhibitors with approved clinical agents for alcohol use disorder therapy. Further clinical translation of novel compounds targeting ALDH inhibition will validate the promised therapeutic potential in treating many human diseases.The scientific/patent literature has been searched on SciFinder-n, Reaxys, PubMed, Espacenet and Google Patents. The search terms used were 'ALDH inhibitors', 'Aldehyde Dehydrogenase Inhibitors'.
Collapse
Affiliation(s)
- Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
20
|
Zhang Y, Zhang Y, Zang J, Li Y, Wu X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:303. [PMID: 37504559 PMCID: PMC10380972 DOI: 10.3390/jcdd10070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease morbidity/mortality are increasing due to an aging population and the rising prevalence of diabetes and obesity. Therefore, innovative cardioprotective measures are required to reduce cardiovascular disease morbidity/mortality. The role of necroptosis in myocardial ischemia-reperfusion injury (MI-RI) is beyond doubt, but the molecular mechanisms of necroptosis remain incompletely elucidated. Growing evidence suggests that MI-RI frequently results from the superposition of multiple pathways, with autophagy, ferroptosis, and CypD-mediated mitochondrial damage, and necroptosis all contributing to MI-RI. Receptor-interacting protein kinases (RIPK1 and RIPK3) as well as mixed lineage kinase domain-like pseudokinase (MLKL) activation is accompanied by the activation of other signaling pathways, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII), NF-κB, and JNK-Bnip3. These pathways participate in the pathological process of MI-RI. Recent studies have shown that inhibitors of necroptosis can reduce myocardial inflammation, infarct size, and restore cardiac function. In this review, we will summarize the molecular mechanisms of necroptosis, the links between necroptosis and other pathways, and current breakthroughs in pharmaceutical therapies for necroptosis.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yantao Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Jinlong Zang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
21
|
Li D, Liu Y, Zhan Q, Zeng Y, Peng Z, He Q, Tan Q, Cao W, Wang S, Wang J. Astragaloside IV Blunts Epithelial-Mesenchymal Transition and G2/M Arrest to Alleviate Renal Fibrosis via Regulating ALDH2-Mediated Autophagy. Cells 2023; 12:1777. [PMID: 37443810 PMCID: PMC10340704 DOI: 10.3390/cells12131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Previous studies show that astragaloside IV (ASIV) has anti-renal fibrosis effects. However, its mechanism remains elusive. In this study, we investigated the anti-fibrosis mechanisms of ASIV on chronic kidney disease (CKD) in vivo and in vitro. A CKD model was induced in rats with adenine (200 mg/kg/d, i.g.), and an in vitro renal fibrosis model was induced in human kidney-2 (HK-2) cells treated with TGF-β1. We revealed that ASIV significantly alleviated renal fibrosis by suppressing the expressions of epithelial-mesenchymal transition (EMT)-related proteins, including fibronectin, vimentin, and alpha-smooth muscle actin (α-SMA), and G2/M arrest-related proteins, including phosphorylated p53 (p-p53), p21, phosphorylated histone H3 (p-H3), and Ki67 in both of the in vivo and in vitro models. Transcriptomic analysis and subsequent validation showed that ASIV rescued ALDH2 expression and inhibited AKT/mTOR-mediated autophagy. Furthermore, in ALDH2-knockdown HK-2 cells, ASIV failed to inhibit AKT/mTOR-mediated autophagy and could not blunt EMT and G2/M arrest. In addition, we further demonstrated that rapamycin, an autophagy inducer, reversed the treatment of ASIV by promoting autophagy in TGF-β1-treated HK-2 cells. A dual-luciferase report assay indicated that ASIV enhanced the transcriptional activity of the ALDH2 promoter. In addition, a further molecular docking analysis showed the potential interaction of ALDH2 and ASIV. Collectively, our data indicate that ALDH2-mediated autophagy may be a novel target in treating renal fibrosis in CKD models, and ASIV may be an effective targeted drug for ALDH2, which illuminate a new insight into the treatment of renal fibrosis and provide new evidence of pharmacology to elucidate the anti-fibrosis mechanism of ASIV in treating renal fibrosis.
Collapse
Affiliation(s)
- Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Quancao Zhan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Zeng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenfu Cao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
22
|
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023; 11:biomedicines11030662. [PMID: 36979641 PMCID: PMC10045486 DOI: 10.3390/biomedicines11030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by abnormal myocardial structure or performance in the absence of coronary artery disease or significant valvular heart disease in patients with diabetes mellitus. The spectrum of diabetic cardiomyopathy ranges from subtle myocardial changes to myocardial fibrosis and diastolic function and finally to symptomatic heart failure. Except for sodium–glucose transport protein 2 inhibitors and possibly bariatric and metabolic surgery, there is currently no specific treatment for this distinct disease entity in patients with diabetes. The molecular mechanism of diabetic cardiomyopathy includes impaired nutrient-sensing signaling, dysregulated autophagy, impaired mitochondrial energetics, altered fuel utilization, oxidative stress and lipid peroxidation, advanced glycation end-products, inflammation, impaired calcium homeostasis, abnormal endothelial function and nitric oxide production, aberrant epidermal growth factor receptor signaling, the activation of the renin–angiotensin–aldosterone system and sympathetic hyperactivity, and extracellular matrix accumulation and fibrosis. Here, we summarize several important emerging treatments for diabetic cardiomyopathy targeting specific molecular mechanisms, with evidence from preclinical studies and clinical trials.
Collapse
|
23
|
Tan X, Chen YF, Zou SY, Wang WJ, Zhang NN, Sun ZY, Xian W, Li XR, Tang B, Wang HJ, Gao Q, Kang PF. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic Biol Med 2023; 195:219-230. [PMID: 36587924 DOI: 10.1016/j.freeradbiomed.2022.12.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The function of mitochondrial fusion and fission is one of the important factors causing ischemia-reperfusion (I/R) injury in diabetic myocardium. Aldehyde dehydrogenase 2 (ALDH2) is abundantly expressed in heart, which involved in the regulation of cellular energy metabolism and stress response. However, the mechanism of ALDH2 regulating mitochondrial fusion and fission in diabetic myocardial I/R injury has not been elucidated. In the present study, we found that the expression of ALDH2 was downregulated in rat diabetic myocardial I/R model. Functionally, the activation of ALDH2 resulted in the improvement of cardiac hemodynamic parameters and myocardial injury, which were abolished by the treatment of Daidzin, a specific inhibitor of ALDH2. In H9C2 cardiomyocyte hypoxia-reoxygenation model, ALDH2 regulated the dynamic balance of mitochondrial fusion and fission and maintained mitochondrial morphology stability. Meanwhile, ALDH2 reduced mitochondrial ROS levels, and apoptotic protein expression in cardiomyocytes, which was associated with the upregulation of phosphorylation (p-PI3KTyr458, p-AKTSer473, p-mTOR). Moreover, ALDH2 suppressed the mitoPTP opening through reducing 4-HNE. Therefore, our results demonstrated that ALDH2 alleviated the ischemia and reperfusion injury in diabetic cardiomyopathy through inhibition of mitoPTP opening and activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong-Feng Chen
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Ying Zou
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei-Jie Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ning-Ning Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng-Yu Sun
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Xian
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao-Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
24
|
High Glucose-Induced Kidney Injury via Activation of Necroptosis in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2713864. [PMID: 36756299 PMCID: PMC9902134 DOI: 10.1155/2023/2713864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) and is closely associated to programmed cell death. However, the complex mechanisms of necroptosis, an alternative cell death pathway, in DKD pathogenesis are yet to be elucidated. This study indicates that necroptosis is involved in DKD induced by high glucose (HG) both in vivo and in vitro. HG intervention led to the activation of RIPK1/RIPK3/MLKL signaling, resulting in renal tissue necroptosis and proinflammatory activation in streptozotocin/high-fat diet- (STZ/HFD-) induced diabetic mice and HG-induced normal rat kidney tubular cells (NRK-52E). We further found that in HG-induced NRK-52E cell, necroptosis might, at least partly, depend on the levels of reactive oxygen species (ROS). Meanwhile, ROS participated in necroptosis via a positive feedback loop involving the RIPK1/RIPK3 pathway. In addition, blocking RIPK1/RIPK3/MLKL signaling by necrostatin-1 (Nec-1), a key inhibitor of RIPK1 in the necroptosis pathway, or antioxidant N-acetylcysteine (NAC), an inhibitor of ROS generation, could effectively protect the kidney against HG-induced damage, decrease the release of proinflammatory cytokines, and rescue renal function in STZ/HFD-induced diabetic mice. Inhibition of RIPK1 effectively decreased the activation of RIPK1-kinase-/NF-κB-dependent inflammation. Collectively, we demonstrated that high glucose induced DKD via renal tubular epithelium necroptosis, and Nec-1 or NAC treatment downregulated the RIPK1/RIPK3/MLKL pathway and finally reduced necroptosis, oxidative stress, and inflammation. Thus, RIPK1 may be a therapeutic target for DKD.
Collapse
|
25
|
Shi XY, Yue XL, Xu YS, Jiang M, Li RJ. Aldehyde dehydrogenase 2 and NOD-like receptor thermal protein domain associated protein 3 inflammasome in atherosclerotic cardiovascular diseases: A systematic review of the current evidence. Front Cardiovasc Med 2023; 10:1062502. [PMID: 36910525 PMCID: PMC9996072 DOI: 10.3389/fcvm.2023.1062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammation and dyslipidemia underlie the pathological basis of atherosclerosis (AS). Clinical studies have confirmed that there is still residual risk of atherosclerotic cardiovascular diseases (ASCVD) even after intense reduction of LDL. Some of this residual risk can be explained by inflammation as anti-inflammatory therapy is effective in improving outcomes in subjects treated with LDL-lowering agents. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation is closely related to early-stage inflammation in AS. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme of toxic aldehyde metabolism located in mitochondria and works in the metabolism of toxic aldehydes such as 4-HNE and MDA. Despite studies confirming that ALDH2 can negatively regulate NLRP3 inflammasome and delay the development of atherosclerosis, the mechanisms involved are still poorly understood. Reactive Oxygen Species (ROS) is a common downstream pathway activated for NLRP3 inflammasome. ALDH2 can reduce the multiple sources of ROS, such as oxidative stress, inflammation, and mitochondrial damage, thereby reducing the activation of NLRP3 inflammasome. Further, according to the downstream of ALDH2 and the upstream of NLRP3, the molecules and related mechanisms of ALDH2 on NLRP3 inflammasome are comprehensively expounded as possible. The potential mechanism may provide potential inroads for treating ASCVD.
Collapse
Affiliation(s)
- Xue-Yun Shi
- Qilu Medical College, Shandong University, Jinan, China
| | - Xiao-Lin Yue
- Qilu Medical College, Shandong University, Jinan, China
| | - You-Shun Xu
- Qilu Medical College, Shandong University, Jinan, China
| | - Mei Jiang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| | - Rui-Jian Li
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
26
|
Ding WJ, Chen GH, Deng SH, Zeng KF, Lin KL, Deng B, Zhang SW, Tan ZB, Xu YC, Chen S, Chen JB, Chen TF, Tan YZ, Zhou YC, Zhang JZ, Liu B. Calycosin protects against oxidative stress-induced cardiomyocyte apoptosis by activating aldehyde dehydrogenase 2. Phytother Res 2023; 37:35-49. [PMID: 36059198 DOI: 10.1002/ptr.7591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 01/19/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide, and oxidative stress is part of the process that causes MI. Calycosin, a naturally occurring substance with cardioprotective properties, is one of the major active constituents in Radix Astragali. In this study, effect of Calycosin was investigated in vivo and in vitro to determine whether it could alleviate oxidative stress and oxidative stress-induced cardiac apoptosis in neonatal cardiomyocytes (NCMs) via activation of aldehyde dehydrogenase 2 (ALDH2). Calycosin protected against oxidative stress and oxidative stress-induced apoptosis in NCMs. Molecular docking revealed that the ALDH2-Calycosin complex had a binding energy of -9.885 kcal/mol. In addition, molecular docking simulations demonstrated that the ALDH2-Calycosin complex was stable. Using BLI assays, we confirmed that Calycosin could interact with ALDH2 (KD = 1.9 × 10-4 M). Furthermore, an ALDH2 kinase activity test revealed that Calycosin increased ALDH2 activity, exhibiting an EC50 of 91.79 μM. Pre-incubation with ALDH2 inhibitor (CVT-10216 or disulfiram) reduced the cardio-protective properties Calycosin. In mice with MI, Calycosin therapy substantially reduced myocardial apoptosis, oxidative stress, and activated ALDH2. Collectively, our findings clearly suggest that Calycosin reduces oxidative stress and oxidative stress-induced apoptosis via the regulation of ALDH2 signaling, which supports potential therapeutic use in MI.
Collapse
Affiliation(s)
- Wen-Jun Ding
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Sui-Hui Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai-Li Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You-Cai Xu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Zhen Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, China
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
ZHANG YU, ZHOU XI, ZHANG CHUNYAN, LAI DENGNI, LIU DONGBO, WU YANYANG. Vitamin B3 inhibits apoptosis and promotes autophagy of islet β cells under high glucose stress. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
28
|
Jin J, Chang RS, Xu S, Xia G, Wong JMJ, Fang Y, Jia P, Ding X. Aldehyde Dehydrogenase 2 Ameliorates LPS-Induced Acute Kidney Injury through Detoxification of 4-HNE and Suppression of the MAPK Pathway. J Immunol Res 2023; 2023:5513507. [PMID: 37064008 PMCID: PMC10101750 DOI: 10.1155/2023/5513507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) is determined as a devastating organ dysfunction elicited by an inappropriate response to infection with high morbidity and mortality rates. Previous evidence has illustrated an indispensable role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the pathogenesis of sepsis-induced multiorgan abnormalities. Specifically, this study investigated the potential role of ALDH2 in sepsis-induced AKI. After LPS administration, we observed a significant decline in renal function, increased inflammatory cytokines, oxidative stress, 4-hydroxy-2-nonenal (4-HNE) accumulation, and apoptosis via MAPK activation in ALDH2-/- mice; in contrast, pretreatment with Alda-1 (an ALDH2 activator) alleviated the LPS-induced dysfunctions in mice. Moreover, in vitro analysis revealed that ALDH2 overexpression in mouse tubular epithelial cells (mTECs) improved the inflammatory response, oxidative stress, 4-HNE accumulation, and apoptosis via MAPK inhibition, whereas ALDH2 knockdown in mTECs aggravated these parameters via MAPK activation. Therefore, ALDH2 may protect against LPS-induced septic AKI by suppressing 4-HNE/MAPK pathway.
Collapse
Affiliation(s)
- Jifu Jin
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rebecca Suchi Chang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Sujuan Xu
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang Xia
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jennifer Ming Jen Wong
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness, endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol 2022; 59:102577. [PMID: 36528936 PMCID: PMC9792909 DOI: 10.1016/j.redox.2022.102577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme responsible for metabolizing toxic acetaldehyde to acetate and acts as a protective or defensive protein against various disease states associated with alcohol use disorder (AUD), including alcohol-related liver disease (ARLD). We hypothesized that Aldh2-knockout (KO) mice are more susceptible to binge alcohol-mediated liver injury than wild-type (WT) mice through increased oxidative stress, gut leakiness and endotoxemia. Therefore, this study aimed to investigate the protective role of ALDH2 in binge alcohol-induced gut permeability, endotoxemia, and acute inflammatory liver injury by exposing Aldh2-KO or WT mice to a single oral dose of binge alcohol 3.5, 4.0, or 5.0 g/kg. Our findings showed for the first time that ALDH2 deficiency in Aldh2-KO mice increases their sensitivity to binge alcohol-induced oxidative and nitrative stress, enterocyte apoptosis, and nitration of gut tight junction (TJ) and adherent junction (AJ) proteins, leading to their degradation. These resulted in gut leakiness and endotoxemia in Aldh2-KO mice after exposure to a single dose of ethanol even at 3.5 g/kg, while no changes were observed in the corresponding WT mice. The elevated serum endotoxin (lipopolysaccharide, LPS) and bacterial translocation contributed to systemic inflammation, hepatocyte apoptosis, and subsequently acute liver injury through the gut-liver axis. Treatment with Daidzin, an ALDH2 inhibitor, exacerbated ethanol-induced cell permeability and reduced TJ/AJ proteins in T84 human colon cells. These changes were reversed by Alda-1, an ALDH2 activator. Furthermore, CRISPR/Cas9-mediated knockout of ALDH2 in T84 cells increased alcohol-mediated cell damage and paracellular permeability. All these findings demonstrate the critical role of ALDH2 in alcohol-induced epithelial barrier dysfunction and suggest that ALDH2 deficiency or gene mutation in humans is a risk factor for alcohol-mediated gut and liver injury, and that ALDH2 could be an important therapeutic target against alcohol-associated tissue or organ damage.
Collapse
|
30
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
31
|
Chen J, Fu CY, Shen G, Wang J, Xu L, Li H, Cao X, Zheng MZ, Shen YL, Zhong J, Chen YY, Wang LL. Macrophages induce cardiomyocyte ferroptosis via mitochondrial transfer. Free Radic Biol Med 2022; 190:1-14. [PMID: 35933052 DOI: 10.1016/j.freeradbiomed.2022.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Mitochondrial transfer is a new cell-to-cell communication manner. Whether the mitochondrial transfer is also involved in the macrophage infiltration-induced cardiac injury is unclear. OBJECTIVES This study aimed to determine whether macrophage mitochondria can be transferred to cardiomyocytes, and to investigate its possible role and mechanism. METHODS Mitochondrial transfer between macrophages and cardiomyocytes was detected using immunofluorescence staining and flow cytometry. Cellular metabolites were analyzed using LC-MS technique. Differentially expressed mRNAs were identified using RNA-seq technique. RESULTS (1) After cardiomyocytes were cultured with macrophage-conditioned medium (COND + group), macrophage-derived mitochondria have been found in cardiomyocytes, which could be blocked by dynasore (an inhibitor of clathrin-mediated endocytosis). (2) Compared with control (CM) group, there were 545 altered metabolites found in COND + group, most of which were lipids and lipid-like molecules. The altered metabolites were mainly enriched in the β-oxidation of fatty acids and glutathione metabolism. And there were 4824 differentially expressed mRNAs, which were highly enriched in processes like lipid metabolism-associated pathway. (3) Both RNA-seq and qRT-PCR results found that ferroptosis-related mRNAs such as Ptgs2 and Acsl4 increased, and Gpx4 mRNA decreased in COND + group (P < 0.05 vs CM group). (4) The levels of cellular free Fe2+ and mitochondrial lipid peroxidation were increased; while GSH/GSSG ratio, mitochondrial aspect ratio, mitochondrial membrane potential, and ATP production were decreased in cardiomyocytes of COND + group (P < 0.05 vs CM group). All the above phenomena could be blocked by a ferroptosis inhibitor ferrostatin-1 (P < 0.05). CONCLUSION Macrophages could transfer mitochondria to cardiomyocytes. Macrophage-derived mitochondria were internalized into cardiomyocytes through clathrin- and/or lipid raft-mediated endocytosis. Uptake of exogenous macrophage mitochondria induced cardiomyocyte injury via triggering ferroptosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Basic Medicine Sciences, And Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chun-Yan Fu
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Gerong Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lintao Xu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Heyangzi Li
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xi Cao
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ming-Zhi Zheng
- School of Basic Medical Sciences & Forensic Medicine of Hangzhou Medical College, Hangzhou, 310053, China
| | - Yue-Liang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, And Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, And Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, And Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
32
|
Cao T, Ni R, Ding W, Ji X, Li L, Liao G, Lu Y, Fan GC, Zhang Z, Peng T. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc Diabetol 2022; 21:165. [PMID: 36030201 PMCID: PMC9420252 DOI: 10.1186/s12933-022-01602-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cardiomyocyte death contributes to cardiac pathology of diabetes. Studies have shown that the RIPK3/MLKL necroptosis signaling is activated in diabetic hearts. Deletion of RIPK3 was reported to attenuate myocardial injury and heart dysfunction in streptozocin (STZ)-induced diabetic mice, suggesting a potential role of necroptosis in diabetic cardiomyopathy. This study characterized cardiomyocyte necroptosis in diabetic hearts and investigated whether MLKL-mediated necroptosis is a target for cardiac protection in diabetes. METHODS Type 1 diabetes was induced in RIPK3 knockout, MLKL knockout and wild-type mice. Akita Type-1 diabetic mice were injected with shRNA for MLKL. Myocardial function was assessed by echocardiography. Immuno-histological analyses determined cardiomyocyte death and fibrosis in the heart. Cultured adult mouse cardiomyocytes were incubated with high glucose in the presence of various drugs. Cell death and phosphorylation of RIPK3 and MLKL were analysed. RESULTS We showed that the levels of phosphorylated RIPK3 and MLKL were higher in high glucose-stimulated cardiomyocytes and hearts of STZ-induced type-1 diabetic mice, akita mice and type-1 diabetic monkeys when compared to non-diabetic controls. Inhibition of RIPK3 by its pharmacological inhibitor or gene deletion, or MLKL deletion prevented high glucose-induced MLKL phosphorylation and attenuated necroptosis in cardiomyocytes. In STZ-induced type-1 diabetic mice, cardiomyocyte necroptosis was present along with elevated cardiac troponin I in serum and MLKL oligomerization, and co-localized with phosphorylated MLKL. Deletion of RIPK3 or MLKL prevented MLKL phosphorylation and cardiac necroptosis, attenuated serum cardiac troponin I levels, reduced myocardial collagen deposition and improved myocardial function in STZ-injected mice. Additionally, shRNA-mediated down-regulation of MLKL reduced cardiomyocyte necroptosis in akita mice. Interestingly, incubation with anti-diabetic drugs (empagliflozin and metformin) prevented phosphorylation of RIPK3 and MLKL, and reduced cell death in high glucose-induced cardiomyocytes. CONCLUSIONS We have provided evidence that cardiomyocyte necroptosis is present in diabetic hearts and that MLKL-mediated cardiomyocyte necroptosis contributes to diabetic cardiomyopathy. These findings highlight MLKL-mediated necroptosis as a target for cardiac protection in diabetes.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Weimin Ding
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoyun Ji
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
- Department of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
33
|
Zhang H, Shen F, Yu J, Ge J, Sun Y, Fu H, Cheng Y. Plasmodium vivax Protein PvTRAg23 Triggers Spleen Fibroblasts for Inflammatory Profile and Reduces Type I Collagen Secretion via NF-κBp65 Pathway. Front Immunol 2022; 13:877122. [PMID: 35769479 PMCID: PMC9235351 DOI: 10.3389/fimmu.2022.877122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
Plasmodium vivax is the most widespread human malaria parasite. The spleen is one of the most significant immune organs in the course of Plasmodium infection, and it contains splenic fibroblasts (SFs), which supports immunologic function by secreting type I collagen (collagen I). Plasmodium proteins have rarely been found to be involved in collagen alterations in the spleen during infection. Here, we selected the protein P. vivax tryptophan-rich antigen 23 (PvTRAg23), which is expressed by the spleen-dependent gene Pv-fam-a and is a member of the PvTRAgs family of export proteins, suggesting that it might have an effect on SFs. The protein specifically reduced the level of collagen I in human splenic fibroblasts (HSFs) and bound to cells with vimentin as receptors. However, such collagen changes were not mediated by binding to vimentin, but rather activating the NF-κBp65 pathway to produce inflammatory cytokines. Collagen impaired synthesis accompanied by extracellular matrix-related changes occurred in the spleen of mice infected with P. yoelii 17XNL. Overall, this study is the first one to report and verify the role of Plasmodium proteins on collagen in HSF in vitro. Results will contribute to further understanding of host spleen structural changes and immune responses after Plasmodium infection.
Collapse
Affiliation(s)
- Hangye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feihu Shen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Lianyungan Center for Disease Control and Prevention, Wuxi, China
| | - Jiali Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jieyun Ge
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yifan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Haitian Fu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Yang Cheng,
| |
Collapse
|
34
|
Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang R, Yang Z, Tian Y, Zhu Y, Wang C, Deng C, Zhang S, Yang Y. The NLRP3 inflammasome in fibrosis and aging: The known unknowns. Ageing Res Rev 2022; 79:101638. [PMID: 35525426 DOI: 10.1016/j.arr.2022.101638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/27/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Aging-related diseases such as cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases are often accompanied by fibrosis. The NLRP3 inflammasome triggers the inflammatory response and subsequently promotes fibrosis through pathogen-associated molecular patterns (PAMPs). In this review, we first introduce the general background and specific mechanism of NLRP3 in fibrosis. Second, we investigate the role of NLRP3 in fibrosis in different organs/tissues. Third, we discuss the relationship between NLRP3 and fibrosis during aging. In summary, this review describes the latest progress on the roles of NLRP3 in fibrosis and aging and reveals the possibility of NLRP3 as an antifibrotic and anti-aging treatment target.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuxuan Hou
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanli Zhu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
35
|
RIPK1-RIPK3 mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac fibroblasts. Cell Death Dis 2022; 13:147. [PMID: 35165268 PMCID: PMC8844355 DOI: 10.1038/s41419-022-04587-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are critical regulators of programmed necrosis or necroptosis. However, the role of the RIPK1/RIPK3 signaling pathway in myocardial fibrosis and related diabetic cardiomyopathy is still unclear. We hypothesized that RIPK1/RIPK3 activation mediated myocardial fibrosis by impairing the autophagic flux. To this end, we established in vitro and in vivo models of type 2 diabetes mellitus with high glucose fat (HGF) medium and diet respectively. HGF induced myocardial fibrosis, and impaired cardiac diastolic and systolic function by activating the RIPK1/RIPK3 pathway, which increased the expression of autophagic related proteins such as LC3-II, P62 and active-cathepsin D. Inhibition of RIPK1 or RIPK3 alleviated HGF-induced death and fibrosis of cardiac fibroblasts by restoring the impaired autophagic flux. The autophagy blocker neutralized the effects of the RIPK1 inhibitor necrostatin-1 (Nec-1) and RIPK3 inhibitor GSK872 (GSK). RIPK1/RIPK3 inhibition respectively decreased the levels of RIPK3/p-RIPK3 and RIPK1/p-RIPK1. P62 forms a complex with RIPK1-RIPK3 and promotes the binding of RIPK1 and RIPK3, silencing of RIPK1 decreased the association of RIPK1 with P62 and the binding of P62 to LC3. Furthermore, inhibition of both kinases in combination with a low dose of Nec-1 and GSK in the HGF-treated fibroblasts significantly decreased cell death and fibrosis, and restored the autophagic flux. In the diabetic rat model, Nec-1 (1.65 mg/kg) treatment for 4 months markedly alleviated myocardial fibrosis, downregulated autophagic related proteins, and improved cardiac systolic and diastolic function. In conclusion, HGF induces myocardial fibrosis and cardiac dysfunction by activating the RIPK1-RIPK3 pathway and by impairing the autophagic flux, which is obviated by the pharmacological and genetic inhibition of RIPK1/RIPK3.
Collapse
|
36
|
Leng Y, Zhang Y, Li X, Wang Z, Zhuang Q, Lu Y. Receptor Interacting Protein Kinases 1/3: The Potential Therapeutic Target for Cardiovascular Inflammatory Diseases. Front Pharmacol 2021; 12:762334. [PMID: 34867386 PMCID: PMC8637748 DOI: 10.3389/fphar.2021.762334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The receptor interacting protein kinases 1/3 (RIPK1/3) have emerged as the key mediators in cell death pathways and inflammatory signaling, whose ubiquitination, phosphorylation, and inhibition could regulate the necroptosis and apoptosis effectually. Recently, more and more studies show great interest in the mechanisms and the regulator of RIPK1/3-mediated inflammatory response and in the physiopathogenesis of cardiovascular diseases. The crosstalk of autophagy and necroptosis in cardiomyocyte death is a nonnegligible conversation of cell death. We elaborated on RIPK1/3-mediated necroptosis, pathways involved, the latest regulatory molecules and therapeutic targets in terms of ischemia reperfusion, myocardial remodeling, myocarditis, atherosclerosis, abdominal aortic aneurysm, and cardiovascular transplantation, etc.
Collapse
Affiliation(s)
- Yiming Leng
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yao Lu
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Tsai HY, Hsu YJ, Lu CY, Tsai MC, Hung WC, Chen PC, Wang JC, Hsu LA, Yeh YH, Chu P, Tsai SH. Pharmacological Activation Of Aldehyde Dehydrogenase 2 Protects Against Heatstroke-Induced Acute Lung Injury by Modulating Oxidative Stress and Endothelial Dysfunction. Front Immunol 2021; 12:740562. [PMID: 34764958 PMCID: PMC8576434 DOI: 10.3389/fimmu.2021.740562] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chu Hung
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
38
|
Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021; 12:733537. [PMID: 34745104 PMCID: PMC8566982 DOI: 10.3389/fimmu.2021.733537] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex syndrome promoted by pathogenic and host factors; it is characterized by dysregulated host responses and multiple organ dysfunction, which can lead to death. However, its underlying molecular mechanisms remain unknown. Proteomics, as a biotechnology research area in the post-genomic era, paves the way for large-scale protein characterization. With the rapid development of proteomics technology, various approaches can be used to monitor proteome changes and identify differentially expressed proteins in sepsis, which may help to understand the pathophysiological process of sepsis. Although previous reports have summarized proteomics-related data on the diagnosis of sepsis and sepsis-related biomarkers, the present review aims to comprehensively summarize the available literature concerning “sepsis”, “proteomics”, “cecal ligation and puncture”, “lipopolysaccharide”, and “post-translational modifications” in relation to proteomics research to provide novel insights into the molecular mechanisms of sepsis.
Collapse
Affiliation(s)
- He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| | - Song Chen
- Department of Trauma Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Cao Y, Dong Z, Yang D, Ma X, Wang X. Alleviation of glucolipotoxicity-incurred cardiomyocyte dysfunction by Z-ligustilide involves in the suppression of oxidative insult, inflammation and fibrosis. Chem Phys Lipids 2021; 241:105138. [PMID: 34547276 DOI: 10.1016/j.chemphyslip.2021.105138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus ranks as a major risk cause for disability and death around the world due to its complications, especially diabetic cardiomyopathy (DCM). Glucolipotoxicity is one of the critical causal factors of DCM. Recent finding confirms the beneficial roles of Z-ligustilide in diabetes mellitus. Nevertheless, its efficacy in DCM remains elusive. Here, Z-ligustilide elevated high glucose/high palmitic acid (HG/P)-inhibited cell viability and attenuated HG/P-induced cell apoptosis, caspase-3 activity, pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression. Furthermore, Z-ligustilide alleviated HG/P-evoked oxidative damage by decreasing HG/P-induced elevation in ROS, lactate dehydrogenase (LDH) and malondialdehyde (MDA) leakage, but increasing antioxidant enzyme-superoxide dismutase (SOD) and glutathione (GSH) levels suppressed by HG/P. Concomitantly, Z-ligustilide attenuated HG/P-induced cardiomyocyte fibrosis by increasing MMP-14 expression and diminishing HG/P-enhanced fibrotic protein expression, including collagen I, collagen II and TGF-β. Mechanistically, Z-ligustilide offset the adverse effects of HG/P on the activation of the AMPK/GSK-3β/Nrf2 pathway. Importantly, blocking the AMPK signaling overturned the protective efficacy of Z-ligustilide against HG/P-induced cardiomyocyte oxidative damage, inflammation and fibrosis. Together, these findings highlight that Z-ligustilide may alleviate glucolipotoxicity-induced cardiomyocyte dysfunction by regulating cell oxidative injury, inflammation and fibrosis via the AMPK/GSK-3β/Nrf2 pathway. Consequently, Z-ligustilide may represent a promising therapeutic agent against DCM by restoring cardiomyocyte dysfunction.
Collapse
Affiliation(s)
- Yiqiu Cao
- Department of cardiac surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zhu Dong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Cardiovascular surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, PR China
| | - Dongpeng Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Cardiovascular surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510515, Guangdong, PR China
| | - Ximiao Ma
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of cardiothoracic surgery, Haikou people's hospital, Haikou 570208, Hainan, PR China
| | - Xiaowu Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Cardiovascular surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, PR China.
| |
Collapse
|
40
|
Pan L, Ding W, Li J, Gan K, Shen Y, Xu J, Zheng M. Aldehyde dehydrogenase 2 alleviates monosodium iodoacetate-induced oxidative stress, inflammation and apoptosis in chondrocytes via inhibiting aquaporin 4 expression. Biomed Eng Online 2021; 20:80. [PMID: 34362382 PMCID: PMC8349086 DOI: 10.1186/s12938-021-00917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a common cause of disability among the elderly. We aimed to explore the effects of aldehyde dehydrogenase (ALDH) 2 on the progression of KOA and identifying the potential mechanisms. METHODS First, ALDH2 expression in knee joint effusion of patients with KOA and the levels of oxidative stress-related markers were determined. After ALDH2 overexpression in monosodium iodoacetate (MIA)-treated SW1353 cells, cell viability was tested with CCK-8 assay. Subsequently, oxidative stress and inflammation-associated factors were measured. Meanwhile, cell apoptosis was assessed with TUNEL staining and expression of apoptosis-related proteins was detected by western blotting. To analyze the mechanism of ALDH2 in KOA, aquaporin 4 (AQP4) expression was determined using western blotting following ALDH2-upregulation. Subsequently, AQP4 was overexpressed to evaluate the changing of oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA with ALDH2 overexpression. RESULTS Results indicated that knee joint effusion with higher ALDH2 expression displayed lower oxidative stress. In addition, significantly upregulated ALDH2 expression was observed in MIA-treated SW1353 cells. ALDH2 overexpression oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA. Moreover, MIA-triggered elevated expression of AQP4, which was reduced by ALDH2 overexpression. By contrast, AQP4-upregulation abrogated the inhibitory effects of ALDH2 on oxidative stress, inflammation and apoptosis in MIA-induced SW1353 cells. CONCLUSIONS ALDH2 inactivates the expression of AQP4, by which mechanism the MIA-induced oxidative stress, inflammation and apoptosis injuries were alleviated, which provides a novel insight for understanding the mechanism of KOA and a promising target for the treatment of this disease.
Collapse
Affiliation(s)
- Lingxiao Pan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Wei Ding
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Jie Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Yandong Shen
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Junxiang Xu
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Minzhe Zheng
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China.
| |
Collapse
|
41
|
Wang D, Cao H, Wang X, Wang J, Wang M, Zhang J, Wang L. SIRT1 is Required for Exercise-Induced Beneficial Effects on Myocardial Ischemia/Reperfusion Injury. J Inflamm Res 2021; 14:1283-1296. [PMID: 33854356 PMCID: PMC8039203 DOI: 10.2147/jir.s300997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Background Exercise training has been regarded as an effective mean of prevention and treatment of cardiovascular diseases (CVD), and exercise can improve the antioxidant capacity of the myocardial. While SIRT1 has been proved to protects the heart from myocardial ischemia/reperfusion (MI/R) injury and apoptosis, less is known about the association between exercise-induced cardioprotection and SIRT1. Methods and Results MI/R injury model was constructed after swimming training in mice. Significantly reduced myocardial infarct size, decreased apoptosis ratio and upregulated SIRT1 protein expression in heart were found in swam mice by 2,3,5-triphenyltetrazolium chloride (TTC) staining of heart sections, TUNEL staining of frozen sections and Western blotting. The results of TUNEL staining and Western blotting suggested activation of SIRT1 using resveratrol (RSV) or inhibition of SIRT1 using EX527 in vitro blocked or accelerated cardiomyocytes apoptosis which induced by hypoxia/reoxygenation (H/R) respectively and regulated the expression of antioxidants in vitro. PGC-1α has been identified as one of the downstream genes of SIRT1 modulating oxidative stress and apoptosis. Importantly, the data of TTC staining, TUNEL staining, Western blotting, echocardiography and histopathological staining revealed that mice with inducible cardiac SIRT1-knockout blocked the protective effects of exercise preconditioning on myocardial infarct size, myocardial apoptosis, adverse ventricular remodeling, cardiac fibrosis and cardiac dysfunction after MI/R injury, simultaneously exercise-induced expression of myocardial antioxidant stress factors was hindered which was detected by immunohistochemical analysis. Conclusion SIRT1 protects against oxidative stress after MI/R injury by activating downstream PGC-1α and promoting the production of antioxidant enzymes. SIRT1 is required for exercise to protect against myocardial apoptosis and maladaptive ventricular remodelling induced by myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hongyan Cao
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Jinchun Wang
- Department of Emergency, Jilin Provincial FAW General Hospital, Changchun, 130011, People's Republic of China
| | - Manli Wang
- Department of Geriatrics, Changchun Central Hospital, Changchun, 130000, People's Republic of China
| | - Jian Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Lin Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
42
|
Wang W, Cao Z, Liang H, Zhao C, Gong B, Hu J. Effect of low-dose ethanol on NLRP3 inflammasome in diabetes-induced lung injury. Exp Anim 2021; 70:364-371. [PMID: 33814530 PMCID: PMC8390306 DOI: 10.1538/expanim.20-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To observe the changes in NLR family pyrin domain containing 3 (NLRP3) inflammasome in a rat model of diabetes-induced lung injury, and investigate the effect of low-dose ethanol on the production of NLRP3 inflammasome. The type I diabetic mellitus (DM) rat model was established, and the rats were divided into four groups: normal control group (CON group), low-dose ethanol group (EtOH group), diabetes group (DM group) and DM+EtOH group. The rats were fed for 6 and 12 weeks, respectively. The ratio of lung wet weight/body weight (lung/body coefficient) was calculated, and the changes of pulmonary morphology and fibrosis were observed by HE and Masson staining. The changes in pulmonary ultra-structure were examined by electron microscopy. The expressions of mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) and NLRP3 inflammasome key factors, NLRP3, ASC and caspase-1 proteins were detected by western blot. Compared with the CON group, the lung/body coefficient was increased (P<0.05), lung fibrosis occurred, ALDH2 protein expression was decreased, and NLRP3, ASC and caspase-1 protein expressions were increased in the DM rats (P<0.05). Compared with the DM group, the lung/body coefficient and fibrosis degree were decreased, ALDH2 protein expression was increased (P<0.05), and NLRP3, ASC and caspase-1 protein expressions were decreased in the DM+EtOH group (P<0.05). Hence, low-dose ethanol increased ALDH2 protein expression and alleviated diabetes-induced lung injury by inhibiting the production of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenlian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China.,Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital of Nanjing University of Chinese Medicine, 1-1 Zhongfu Road, Jiangsu 210000, P.R. China
| | - Zhenzhen Cao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| | - Huan Liang
- Department of Physiology, Bengbu Medical College, 2600 Donghai Avenue, Anhui 233030, P.R. China.,Bengbu Medical College Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical College, 2600 Donghai Avenue, Anhui 233030, P.R. China
| | - Chengling Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| | - Beilei Gong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| | - Junfeng Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| |
Collapse
|
43
|
Zhou G, Wang T, Zha XM. RNA-Seq analysis of knocking out the neuroprotective proton-sensitive GPR68 on basal and acute ischemia-induced transcriptome changes and signaling in mouse brain. FASEB J 2021; 35:e21461. [PMID: 33724568 PMCID: PMC7970445 DOI: 10.1096/fj.202002511r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
44
|
Attenuating senescence and dead cells accumulation as heart failure therapy: Break the communication networks. Int J Cardiol 2021; 334:72-85. [PMID: 33794236 DOI: 10.1016/j.ijcard.2021.03.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
|
45
|
Xu Q, Tan X, Xian W, Geng J, Li H, Tang B, Zhang H, Wang H, Gao Q, Kang P. Changes of Necroptosis in Irbesartan Medicated Cardioprotection in Diabetic Rats. Diabetes Metab Syndr Obes 2021; 14:3851-3863. [PMID: 34522112 PMCID: PMC8434868 DOI: 10.2147/dmso.s300388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is strongly linked to microvascular disease, renin-angiotensin system (RAS) activation, cardiac inflammation and cell apoptosis. Irbesartan is an angiotensin II (Ang II) receptor antagonist in RAS system, which inhibited the conversion of Ang I into Ang II, while the specific mechanism is still obscure. OBJECTIVE This study aims to investigate the expressions necroptosis RIP1-RIP3-MLKL pathway in myocardium of diabetic rats, and the protective action of irbesartan on myocardial damage. MATERIALS AND METHODS In our study, 30 Sprague-Dawley rats were divided into 5 groups: CON4W, high glucose and high caloric (HC4W), diabetes mellitus 4 weeks (DM4W group), diabetes mellitus 8 weeks (DM8W group), and irbesartan diabetes 8 weeks (Ir DM8W group). RESULTS We discovered that as diabetes progresses, the rats gradually lost weight, the HW/BW ratio were increased gradually, and the cardiac function became worse accompanied with the aggravation of inflammatory injury. Meanwhile, the myocardial fibers and cells were disordered, and the expression of positive substances, RIP1 and RIP3 increased significantly. The mRNA and protein levels of myocardial RIP1, RIP3 and MLKL were all increased with the progression of DM. After the intervention of irbesartan in diabetic rats, the cardiac function was improved, whereas inflammatory injury and HW/BW ratio were decreased. Also, the myocardial fibrosis injury was attenuated, and the PAS positive substances, RIP1 and RIP3 were significantly decreased. The curative effect of irbesartan was related to decreased myocardial RIP1, RIP3 and MLKL mRNA and protein levels. CONCLUSION In conclusion, irbesartan has a cardioprotective effect on the diabetic rats, and its mechanism may be connected with inhibition of RIP1-RIP3-MLKL pathway.
Collapse
Affiliation(s)
- Qingmei Xu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xin Tan
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Wei Xian
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Jiayi Geng
- Department of Preventive Medicine, Bengbu Medical College, Bengbu, Anhui, 233000, People’s Republic of China
| | - Haoyu Li
- Clinic Medical College of AnHui Medical University, Hefei, Anhui, 230000, People’s Republic of China
| | - Bi Tang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
- Cardiovascular Disease Research Center of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Heng Zhang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Hongju Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
- Cardiovascular Disease Research Center of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233000, People’s Republic of China
| | - Pinfang Kang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
- Cardiovascular Disease Research Center of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
- Correspondence: Pinfang Kang Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of ChinaTel +86 552-3086107 Email
| |
Collapse
|
46
|
Ding Y, Wang Y, Zhang W, Jia Q, Wang X, Li Y, Lv S, Zhang J. Roles of Biomarkers in Myocardial Fibrosis. Aging Dis 2020; 11:1157-1174. [PMID: 33014530 PMCID: PMC7505259 DOI: 10.14336/ad.2020.0604] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial fibrosis is observed in various cardiovascular diseases and plays a key role in the impairment of cardiac function. Endomyocardial biopsy, as the gold standard for the diagnosis of myocardial fibrosis, has limitations in terms of clinical application. Therefore, biomarkers have been recommended for noninvasive assessment of myocardial fibrosis. This review discusses the role of biomarkers in myocardial fibrosis from the perspective of collagen.
Collapse
Affiliation(s)
- Yuejia Ding
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuan Wang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wanqin Zhang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qiujin Jia
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoling Wang
- 3Qian'an Hospital of Traditional Chinese Medicine, Qian'an 064400, China
| | - Yanyang Li
- 4Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shichao Lv
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin 300000, China
| | - Junping Zhang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
47
|
Deng J, Zhang N, Chen F, Yang C, Ning H, Xiao C, Sun K, Liu Y, Yang M, Hu T, Zhang Z, Jiang W. Irisin ameliorates high glucose-induced cardiomyocytes injury via AMPK/mTOR signal pathway. Cell Biol Int 2020; 44:2315-2325. [PMID: 32770767 DOI: 10.1002/cbin.11441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
High glucose (HG)-induced cardiomyocytes (CMs) injury is a leading cause of diabetic cardiomyopathy with little treatment options. Irisin, a new myokine, which is cleaved from its precursor fibronectin type III domain-containing protein 5 (FNDC5), has aroused great attention as an essential cardioprotective factor and glucose metabolism regulator but little was known on diabetic cardiomyopathy yet. Here, we aim to clarify the role of irisin in the HG-induced CMs injury. Neonatal Sprague-Dawley rat CMs were cultured in a normal or HG medium for 12, 24, and 48 hr, respectively before exposing to irisin. The apoptosis level was determined by terminal-deoxynucleotidyl transferase-mediated-dUTP nick end-labeling assay. Cell viability was measured with the conventional methyl thiazolyl tetrazolium assay. Moreover, reactive oxygen species production was evaluated by dihydroethidium staining. Inflammatory factors, namely tumor necrosis factor-α, interleukin-6, interleukin-1β were determined by enzyme-linked immunosorbent assay kits. Furthermore, protein and messenger RNA (mRNA) expressions were measured by western blot and quantitative real-time polymerase chain reaction, respectively. HG increases the apoptosis of CMs and activated the inflammatory responses and oxidative stress in CMs. Meanwhile, the mRNA and protein expressions of FNDC5 are decreased after HG exposure. Nevertheless, the increased apoptosis is alleviated by irisin treatment. Notably, irisin suppresses the inflammatory responses and oxidative stress in injured CMs. Mechanically, after the administration of Compound C, AMP-activated protein kinase (AMPK) inhibitor, these cardioprotective effects resulting from irisin are reversed. Irisin plays a significant role in antiapoptosis, anti-inflammation, antioxidative stress in HG-induced CMs via AMPK/mammalian target of the rapamycin signaling pathway.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Cardiology, Postgraduate Training Base in PLA Rocket Force Characteristic Medical Center, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ning Zhang
- Department of surgery, Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Feng Chen
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hongjuan Ning
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chun Xiao
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ke Sun
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongfei Liu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ming Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Taohong Hu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Jiang
- Department of Cardiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|