1
|
Myszko M, Bychowski J, Skrzydlewska E, Łuczaj W. The Dual Role of Oxidative Stress in Atherosclerosis and Coronary Artery Disease: Pathological Mechanisms and Diagnostic Potential. Antioxidants (Basel) 2025; 14:275. [PMID: 40227238 PMCID: PMC11939617 DOI: 10.3390/antiox14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of atherosclerosis and coronary artery disease (CAD), with both beneficial and detrimental effects on cardiovascular health. On one hand, the excessive production of reactive oxygen species (ROS) contributes to endothelial dysfunction, inflammation, and vascular remodeling, which are central to the development and progression of CAD. These pathological effects drive key processes such as atherosclerosis, plaque formation, and thrombosis. On the other hand, moderate levels of oxidative stress can have beneficial effects on cardiovascular health. These include regulating vascular tone by promoting blood vessel dilation, supporting endothelial function through nitric oxide production, and enhancing the immune response to prevent infections. Additionally, oxidative stress can stimulate cellular adaptation to stress, promote cell survival, and encourage angiogenesis, which helps form new blood vessels to improve blood flow. Oxidative stress also holds promise as a source of biomarkers that could aid in the diagnosis, prognosis, and monitoring of CAD. Specific oxidative markers, such as malondialdehyde (MDA), isoprostanes (isoP), ischemia-modified albumin, and antioxidant enzyme activity, have been identified as potential indicators of disease severity and therapeutic response. This review explores the dual nature of oxidative stress in atherosclerosis and CAD, examining its mechanisms in disease pathogenesis as well as its emerging role in clinical diagnostics and targeted therapies. The future directions for research aimed at harnessing the diagnostic and therapeutic potential of oxidative stress biomarkers are also discussed. Understanding the balance between the detrimental and beneficial effects of oxidative stress could lead to innovative approaches in the prevention and management of CAD.
Collapse
Affiliation(s)
- Marcin Myszko
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| |
Collapse
|
2
|
Jarocka-Karpowicz I, Stasiewicz A, Olchowik-Grabarek E, Sękowski S, Kacprowska A, Skrzydlewska E. Antioxidant and membrane-protective effects of the 3-O-ethyl ascorbic acid-cannabigerol system on UVB-irradiated human keratinocytes. Free Radic Biol Med 2025; 228:251-266. [PMID: 39778604 DOI: 10.1016/j.freeradbiomed.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The lack of effective protection against UVB radiation, that severely disrupts the metabolism of keratinocytes, underlines the search for bioactive compounds that would provide effective protection without causing side effects. Therefore, the aim of the study has been to assess the effect of two compounds, that are different in terms of structure and properties: 3-O-ethyl ascorbic acid-EAA (a stable derivative of vitamin C) and cannabigerol-CBG, used separately or concurrently, on the metabolism of keratinocytes previously exposed to UVB. The obtained results indicate diverse, yet mutually reinforcing localization of the tested compounds, both within the membrane structures and cytosol. When used concurrently, EAA + CBG effectively prevent modifications of the structure of cell membranes, particularly the increase in their fluidity and permeability caused by UVB. It promotes cell survival and enhances the expression of membrane transporters, especially BCRP. Moreover, the concurrent use of both compounds, by reducing the level of ROS and regulating the expression of both Nrf2 activators (p62, MAPK) and inhibitors (Keap1, Bach1, PAGM5), supports the antioxidant efficiency of cells, visible in the increased activity of antioxidant enzymes (SOD1/2, CAT) and the effectiveness of GSH- and Trx-dependent antioxidant systems. Consequently, oxidative modifications of lipids (assessed as 4-HNE and isoprostanes) and proteins (measured as 4-HNE-protein adducts and carbonyl groups) are reduced. The tested compounds also reveal anti-inflammatory effects by modifying the expression of the activator (p62) and inhibitors (IKKα, IKKβ) of NFκB. The observed EAA + CBG effect in preventing changes in the structure and functionality of keratinocyte membranes, maintaining redox balance, and mitigating inflammatory effects caused by UVB provides the basis for further research.
Collapse
Affiliation(s)
- Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Szymon Sękowski
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Aleksandra Kacprowska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| |
Collapse
|
3
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Al-Jaber H, Al-Muraikhy S, Jabr A, Yousef A, Anwardeen NR, Elrayess MA, Al-Mansoori L. Comparing Methods for Induction of Insulin Resistance in Mouse 3T3-L1 Cells. Curr Diabetes Rev 2025; 21:1-12. [PMID: 38204253 DOI: 10.2174/0115733998263359231211044539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple in vitro models are utilized for this purpose, but their technical distinctions and relevance to in vivo conditions remain unclear. This study aims to assess the effectiveness of existing in vitro models in inducing IR and their ability to replicate in vivo IR conditions. BACKGROUND Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic in vivo conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders. OBJECTIVE 1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR). 2- Compare the effectiveness of present in vitro models in inducing insulin resistance (IR). 3- Assess the relevance of the existing cell culture models in simulating the in vivo conditions and environment that provoke the induction of insulin resistance (IR). METHODS AND MATERIAL In vitro, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel. RESULTS We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (P<0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAOA expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence in vitro by IRinducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both P<0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected. CONCLUSION In summary, different in vitro models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of in vivo adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Aldana Jabr
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Aisha Yousef
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
5
|
Sakano M, Tomita Y, Kanazawa T, Ishibashi S, Ikeda M, Oshita H, Hananoi Y, Kato Y, Yamamoto K, Furukawa A, Kinoshita M, Haruki S, Tokunaga M, Kinugasa Y, Kurata M, Kitagawa M, Ohashi K, Yamamoto K. Prognostic significance and therapeutic potential of guanosine triphosphate cyclohydrolase 1 in esophageal squamous cell carcinoma: clinical implications of ferroptosis and lipid peroxidation regulation. Front Oncol 2024; 14:1459940. [PMID: 39723384 PMCID: PMC11668648 DOI: 10.3389/fonc.2024.1459940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024] Open
Abstract
Background Esophageal cancer, particularly esophageal squamous cell carcinoma (ESCC), is a leading cause of cancer-related death and has a poor prognosis. Despite the advancements in multidisciplinary therapies, resistance to conventional treatments warrants the development of novel therapeutic strategies. Ferroptosis, a form of cell death dependent on intracellular iron, has emerged as a potential mechanism for targeting cancer cells resistant to apoptosis. Guanosine triphosphate cyclohydrolase 1 (GCH1) has been identified as a novel antagonist of ferroptosis; however, its role in ESCC remains unclear. This study aimed to investigate the correlation between the expression and accumulation of the lipid peroxidation markers and regulators, including GCH1, in patients with ESCC and examined their prognostic significance. Furthermore, we investigated the relationship between lipid peroxidation regulators and cell death using an in vitro system to establish the basis for new therapeutic strategies. Methods We retrospectively analyzed 312 patients with ESCC who underwent radical esophagectomy at the Tokyo Medical and Dental University. Immunohistochemistry was performed to evaluate the expression of lipid peroxidation markers (4-hydroxy-2-nonenal) and regulators (glutathione peroxidase 4 [GPX4], ferroptosis suppressor protein 1 [FSP1], and GCH1). The correlation between these markers, clinicopathological features, and overall survival was assessed. In vitro experiments were performed using KYSE-150 cells to investigate the effects of GCH1 knockdown and overexpression on cell proliferation, cisplatin-induced cell death, and ferroptosis. Results Low GCH1 expression was significantly associated with a poor prognosis in patients with ESCC. GCH1 expression correlated with lymph node metastases, vessel invasion, and the pathological tumor stage. In vitro, GCH1-knockdown cells exhibited increased proliferation and resistance to cisplatin-induced cell death, whereas GCH1 overexpression reduced cell proliferation. Simultaneous inhibition of GPX4 and FSP1 induced mild cell death; however, GCH1 knockdown dramatically enhanced ferroptosis, suggesting a synergistic effect. Conclusion GCH1 is a critical prognostic factor for ESCC and plays a significant role in the regulation of cell proliferation and ferroptosis. Targeting GCH1 in combination with GPX4 and FSP1 inhibitors may offer a novel therapeutic strategy for overcoming resistance in ESCC. Further studies are warranted to elucidate the involved molecular mechanisms and validate these findings in vivo.
Collapse
Affiliation(s)
- Masayoshi Sakano
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinobu Tomita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Kanazawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruna Oshita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuri Hananoi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Kato
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kurara Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mayumi Kinoshita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Shigeo Haruki
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Yao B, Ma J, Ran Q, Chen H, He X. Mechanism of Valeriana officinalis L. extract improving atherosclerosis by regulating PGC-1α/Sirt3/Epac1 pathway. Front Pharmacol 2024; 15:1483518. [PMID: 39629078 PMCID: PMC11611558 DOI: 10.3389/fphar.2024.1483518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Objective To investigate the protective effect of the of Valeriana officinalis L. extract on mitochondrial injury in AS mice and the underlying mechanism. Methods Firstly, Ultra-High performance liquid chromatography-quadrupole time-of-flight mass spectrometer (UPLC / Q-TOF-MS) was proposed to explore the chemical composition of Valeriana officinalis L. extract. ApoE-/- mice were employed for in vivo experiments. The efficacy of Valeriana officinalis L. extract was detected by B-ultrasound, Biochemical, Oil Red O staining, HE staining and Masson staining analysis. The molecular mechanism of Valeriana officinalis L. extract in regulating mitochondrial energy metabolism for the treatment of atherosclerosis was elucidated after Monitoring System of Vascular Microcirculation in Vivo and transmission electron microscopy. Use the corresponding reagent kit to detect ACTH level, CHRNα1 level and ATP level, and measure the expression levels of PGC-1α, Sirt3, Epac1, Caspase-3, and Caspase-9 through real-time qPCR, and Western blot. Results A total of 29 metabolites were newly discovered from KYXC using UPLC-MS. The drug had a significant positive effect on the growth of atherosclerotic plaque in mice. It also improved the microcirculation of the heart and mesentery, reduced the levels of CHOL, TG, and VLDL in the serum, and increased the levels of HDL-C to maintain normal lipid metabolism in the body. Additionally, it increased the levels of ATP, improved the ultrastructure of mitochondria to maintain mitochondrial energy metabolism, and increased the levels of T-SOD to combat oxidative stress of the organism. Furthermore, the drug significantly increased the mRNA and protein expression of PGC-1α and Sirt3 in aortic tissue, while decreasing the mRNA and protein expression of Epac1, Caspase-3, and Caspase-9. Conclusion This study has verified that the extract of Valeriana officinalis L. is highly effective in enhancing atherosclerosis disease. The mechanism is suggested through the PGC-1α/Sirt3/Epac1 signaling pathway, which improves mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Bo Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jingzhuo Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingzhi Ran
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanhui He
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Halasz M, Łuczaj W, Jarocka-Karpowicz I, Stasiewicz A, Soldo AM, Soldo I, Pajtak A, Senčar M, Grgić T, Kolak T, Žarković N, Skrzydlewska E, Jaganjac M. Relationship between systemic biomarker of lipid peroxidation 4-hydroxynonenal and lipidomic profile of morbidly obese patients undergoing bariatric surgery. Free Radic Biol Med 2024; 224:564-573. [PMID: 39278574 DOI: 10.1016/j.freeradbiomed.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Obesity is characterized by fat accumulation, impaired metabolism and oxidative stress, frequently associated with lipid peroxidation and generation of bioactive 4-hydroxynonenal (4-HNE). This study aimed to evaluate the impact of bariatric surgery-induced weight loss on lipid peroxidation and associated perturbations in lipid profile. Plasma samples of twenty obese individuals before and 6 months after bariatric surgery were collected in addition to samples of ten healthy controls. HILIC-LC-MS/MS platform was used to characterize phospholipid profile, while lipid peroxidation markers 15-F2t-IsoP, 10-F4t-NeuroP and reactive aldehyde 4-HNE were quantified by RP-LC-MS/MS and GC-MS, respectively. Six months post-surgery lipid peroxidation markers decreased significantly and the BMI of morbidly obese patients decreased by 13 on average. Lipidomics analysis, identified 117 phospholipid species from seven classes, and showed obesity-associated lipidome perturbations, particularly in ether-linked phosphatidylethanolamines (PEo). A total of 45 lipid species were found to be significantly altered with obesity, while 10 lipid species correlated with lipid peroxidation markers. Sample pairwise analyses indicated an interesting link between 4-HNE and the amount of two PEos, PEo (38:2) and PEo (36:2). The results indicate that weight loss-induced improvement of redox homeostasis together with changes in lipid metabolites may serve as markers of metabolic improvement. However, further studies are needed to understand the role of obesity-induced oxidative stress on ether lipid biosynthesis and lipidome perturbations, as well as the impact of bariatric surgery on metabolic improvement.
Collapse
Affiliation(s)
- Mirna Halasz
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Ana Maria Soldo
- Internal Medicine Clinic, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Ivo Soldo
- Surgery Clinic, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Alen Pajtak
- Department of Abdominal Surgery, General Hospital Varazdin, Varazdin, Croatia
| | - Marin Senčar
- Department of Abdominal Surgery, General Hospital Varazdin, Varazdin, Croatia
| | - Tihomir Grgić
- Surgery Clinic, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Toni Kolak
- Department of Abdominal Surgery, University Hospital Dubrava, Zagreb, Croatia
| | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland.
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
He L, Chen Q, Wang L, Pu Y, Huang J, Cheng CK, Luo JY, Kang L, Lin X, Xiang L, Fang L, He B, Xia Y, Lui KO, Pan Y, Liu J, Zhang CL, Huang Y. Activation of Nrf2 inhibits atherosclerosis in ApoE -/- mice through suppressing endothelial cell inflammation and lipid peroxidation. Redox Biol 2024; 74:103229. [PMID: 38870781 PMCID: PMC11247299 DOI: 10.1016/j.redox.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored. METHODS RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice. RESULTS Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. CONCLUSIONS Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Juan Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Jiang-Yun Luo
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Liang Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yin Xia
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China.
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
9
|
Fujii J, Imai H. Oxidative Metabolism as a Cause of Lipid Peroxidation in the Execution of Ferroptosis. Int J Mol Sci 2024; 25:7544. [PMID: 39062787 PMCID: PMC11276677 DOI: 10.3390/ijms25147544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis is a type of nonapoptotic cell death that is characteristically caused by phospholipid peroxidation promoted by radical reactions involving iron. Researchers have identified many of the protein factors that are encoded by genes that promote ferroptosis. Glutathione peroxidase 4 (GPX4) is a key enzyme that protects phospholipids from peroxidation and suppresses ferroptosis in a glutathione-dependent manner. Thus, the dysregulation of genes involved in cysteine and/or glutathione metabolism is closely associated with ferroptosis. From the perspective of cell dynamics, actively proliferating cells are more prone to ferroptosis than quiescent cells, which suggests that radical species generated during oxygen-involved metabolism are responsible for lipid peroxidation. Herein, we discuss the initial events involved in ferroptosis that dominantly occur in the process of energy metabolism, in association with cysteine deficiency. Accordingly, dysregulation of the tricarboxylic acid cycle coupled with the respiratory chain in mitochondria are the main subjects here, and this suggests that mitochondria are the likely source of both radical electrons and free iron. Since not only carbohydrates, but also amino acids, especially glutamate, are major substrates for central metabolism, dealing with nitrogen derived from amino groups also contributes to lipid peroxidation and is a subject of this discussion.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
- Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
10
|
Dupuy J, Fouché E, Noirot C, Martin P, Buisson C, Guéraud F, Pierre F, Héliès-Toussaint C. A dual model of normal vs isogenic Nrf2-depleted murine epithelial cells to explore oxidative stress involvement. Sci Rep 2024; 14:10905. [PMID: 38740939 DOI: 10.1038/s41598-024-60938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.
Collapse
Affiliation(s)
- Jacques Dupuy
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Edwin Fouché
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Céline Noirot
- National Research Institute for Agriculture and Environment (INRAE), Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Pierre Martin
- National Research Institute for Agriculture and Environment (INRAE), Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Charline Buisson
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Françoise Guéraud
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Fabrice Pierre
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Cécile Héliès-Toussaint
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
11
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
12
|
Wang J, Feng X, Liu X, Wang G, Xiong Y, Zhang L, Zhang Y, Lu H. In-Depth Profiling of 4-Hydroxy-2-nonenal Modification via Reversible Thiazolidine Chemistry. Anal Chem 2024; 96:5125-5133. [PMID: 38502245 DOI: 10.1021/acs.analchem.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Protein modification by lipid-derived electrophiles (LDEs) is associated with various signaling pathways. Among these LDEs, 4-hydroxy-2-nonenal (HNE) is the most toxic, and protein modified with HNE has been linked to various diseases, including Alzheimer's and Parkinson's. However, due to their low abundance, in-depth profiling of HNE modifications still presents challenges. This study introduces a novel strategy utilizing reversible thiazolidine chemistry to selectively capture HNE-modified proteins and a palladium-mediated cleavage reaction to release them. Thousands of HNE-modified sites in different cell lines were identified. Combined with ABPP, we discovered a set of HNE-sensitive sites that offer a new tool for studying LDE modifications in proteomes.
Collapse
Affiliation(s)
- Jun Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xiaoxiao Feng
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Xuejiao Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Guoli Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Yingying Xiong
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Tufail N, Abidi M, Warsi MS, Kausar T, Nayeem SM. Computational and physicochemical insight into 4-hydroxy-2-nonenal induced structural and functional perturbations in human low-density lipoprotein. J Biomol Struct Dyn 2024; 42:2698-2713. [PMID: 37154523 DOI: 10.1080/07391102.2023.2208234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Lipid peroxidation (LPO) is a biological process that frequently occurs under physiological conditions. Undue oxidative stress increases the level of LPO; which may further contribute to the development of cancer. 4-Hydroxy-2-nonenal (HNE), one of the principal by-products of LPO, is present in high concentrations in oxidatively stressed cells. HNE rapidly reacts with various biological components, including DNA and proteins; however, the extent of protein degradation by lipid electrophiles is not well understood. The influence of HNE on protein structures will likely have a considerable therapeutic value. This research elucidates the potential of HNE, one of the most researched phospholipid peroxidation products, in modifying low-density lipoprotein (LDL). In this study, we tracked the structural alterations in LDL by HNE using various physicochemical techniques. To comprehend the stability, binding mechanism and conformational dynamics of the HNE-LDL complex, computational investigations were carried out. LDL was altered in vitro by HNE, and the secondary and tertiary structural alterations were examined using spectroscopic methods, such as UV-visible, fluorescence, circular dichroism and fourier transform infrared spectroscopy. Carbonyl content, thiobarbituric acid-reactive-substance (TBARS) and nitroblue tetrazolium (NBT) reduction assays were used to examine changes in the oxidation status of LDL. Thioflavin T (ThT), 1-anilinonaphthalene-8-sulfonic (ANS) binding assay and electron microscopy were used to investigate aggregates formation. According to our research, LDL modified by HNE results in changes in structural dynamics, oxidative stress and the formation of LDL aggregates. The current investigation must characterize HNE's interactions with LDL and comprehend how it can change their physiological or pathological functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neda Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Xiang Y, Song X, Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch Toxicol 2024; 98:579-615. [PMID: 38265475 PMCID: PMC10861688 DOI: 10.1007/s00204-023-03660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.
Collapse
Affiliation(s)
- Yao Xiang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
16
|
Zhang L, Lang F, Feng J, Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117275. [PMID: 37797873 DOI: 10.1016/j.jep.2023.117275] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Fenglong Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
17
|
Xiong J, Zhang L, Chen G, Dong P, Tong J, Hua L, Li N, Wen L, Zhu L, Chang W, Jin Y. Associations of CKIP-1 and LOX-1 polymorphisms with the risk of type 2 diabetes mellitus with hypertension among Chinese adults. Acta Diabetol 2024; 61:43-52. [PMID: 37668684 DOI: 10.1007/s00592-023-02175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) and hypertension are common high-incidence diseases, closely related, and have common pathogenic basis such as oxidative stress. Casein kinase 2 interacting protein-1 (CKIP-1) and low-density lipoprotein receptor (LOX-1) are considered to be important factors affect the level of oxidative stress in the body. The main purpose of this study was to explore the relationship between CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 (rs1050283 G > A, rs11053646 C > G) polymorphisms and the risk of hypertension and diabetes, and try to find new candidate genes for diabetes and diabetes with hypertension etiology in Chinese population. METHODS 574 T2DM patients and 597 controls frequently matched by age and sex were selected for genotyping of CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 gene (rs1050283 G > A, rs11053646 C > G). Logistic regression was used to analyze the correlation between different genotypes and the risk of T2DM and T2DM with hypertension, and the results were expressed as odds ratio (OR) and 95% confidence interval (95% CI). RESULTS We found that the risk of T2DM in the AA + AT genotype of rs6693817 was higher than that in the TT genotype in Chinese population (OR = 1.318, 95%CI: 1.011-1.717, P = 0.041), and the difference was still significant after adjustment (OR = 1.370, 95%CI: 1.043-1.799, Padjusted = 0.024), the difference of heterozygotes (AT vs TT: OR = 1.374, 95%CI: 1.026-1.840, Padjusted = 0.033) was statistically significant. But after Bonferroni correction, the significance of the above sites disappeared. And rs6693817 was associated with the risk of T2DM combined with hypertension before and after adjustment in dominant model (OR = 1.424, 95% CI: 1.038-1.954, P = 0.028; OR = 1.460, 95% CI: 1.057-2.015, Padjusted = 0.021, respectively) and in heterozygote model (OR = 1.499, 95% CI: 1.069-2.102, P = 0.019; OR = 1.562, 95% CI: 1.106-2.207, Padjusted = 0.011, respectively). However, only the statistical significance of the heterozygous model remained after Bonferroni correction. rs2306235, rs1050283 and rs11053646 were not significantly correlated with T2DM and T2DM combined with hypertension risk (P > 0.05). CONCLUSIONS The results suggest that CKIP-1 rs6693817 is related to the susceptibility of Chinese people to T2DM with hypertension, providing a new genetic target for the treatment of diabetes with hypertension with in the future.
Collapse
Affiliation(s)
- Jiajie Xiong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pu Dong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Jiani Tong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Long Hua
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Liying Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Weiwei Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| | - Yuelong Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
18
|
Yui K, Imataka G, Shiohama T. Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms. Curr Issues Mol Biol 2023; 45:9149-9164. [PMID: 37998751 PMCID: PMC10670603 DOI: 10.3390/cimb45110574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The association between the lipid peroxidation product malondialdehyde (MDA)-modified low-density lipoprotein (MDA-LDL) and the pathophysiology of autism spectrum disorder (ASD) is unclear. This association was studied in 17 children with ASD and seven age-matched controls regarding autistic behaviors. Behavioral symptoms were assessed using the Aberrant Behavior Checklist (ABC). To compensate for the small sample size, adaptive Lasso was used to increase the likelihood of accurate prediction, and a coefficient of variation was calculated for suitable variable selection. Plasma MDA-LDL levels were significantly increased, and plasma SOD levels were significantly decreased in addition to significantly increased plasma docosahexaenoic acid (DHA) levels and significantly decreased plasma arachidonic acid (ARA) levels in the 17 subjects with ASD as compared with those of the seven healthy controls. The total ABC scores were significantly higher in the ASD group than in the control group. The results of multiple linear regression and adaptive Lasso analyses revealed an association between increased plasma DHA levels and decreased plasma ARA levels, which were significantly associated with total ABC score and increased plasma MDA-LDL levels. Therefore, an imbalance between plasma DHA and ARA levels induces ferroptosis via lipid peroxidation. Decreased levels of α-linolenic acid and γ-linolenic acid may be connected to the total ABC scores with regard to lipid peroxidation.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- Department of Urology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
19
|
Yarana C, Maneechote C, Khuanjing T, Ongnok B, Prathumsap N, Thanasrisuk S, Pattanapanyasat K, Chattipakorn SC, Chattipakorn N. Potential roles of 4HNE-adducted protein in serum extracellular vesicles as an early indicator of oxidative response against doxorubicin-induced cardiomyopathy in rats. Curr Res Toxicol 2023; 5:100134. [PMID: 37964944 PMCID: PMC10641738 DOI: 10.1016/j.crtox.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Late-onset cardiomyopathy is becoming more common among cancer survivors, particularly those who received doxorubicin (DOXO) treatment. However, few clinically available cardiac biomarkers can predict an unfavorable cardiac outcome before cell death. Extracellular vesicles (EVs) are emerging as biomarkers for cardiovascular diseases and others. This study aimed to measure dynamic 4-hydroxynonenal (4HNE)-adducted protein levels in rats treated chronically with DOXO and examine their link with oxidative stress, antioxidant gene expression in cardiac tissues, and cardiac function. Twenty-two male Wistar rats were randomly assigned to receive intraperitoneal injection of normal saline (n = 8) or DOXO (3 mg/kg, 6 doses, n = 14). Before and after therapy, serum EVs and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were determined. Tunable resistive pulse sensing was used to measure EV size and concentration. ELISA was used to assess 4HNE-adducted protein in EVs and cardiac tissues. Differential-display reverse transcription-PCR was used to quantitate cardiac Cat and Gpx1 gene expression. Potential correlations between 4HNE-adducted protein levels in EVs, cardiac oxidative stress, antioxidant gene expression, and cardiac function were determined. DOXO-treated rats showed more serum EV 4HNE-adducted protein than NSS-treated rats at day 9 and later endpoints, whereas NT-proBNP levels were not different between groups. Moreover, on day 9, surviving rats' EVs had higher levels of 4HNE-adducted protein, and these correlated positively with concentrations of heart tissue 4HNE adduction and copy numbers of Cat and Gpx1, while at endpoint correlated negatively with cardiac functions. Therefore, 4HNE-adducted protein in serum EVs could be an early, minimally invasive biomarker of the oxidative response and cardiac function in DOXO-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chontida Yarana
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasa Thanasrisuk
- Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
21
|
Fujii J, Soma Y, Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules 2023; 28:molecules28104085. [PMID: 37241826 DOI: 10.3390/molecules28104085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Energy transfer to ground state triplet molecular oxygen results in the generation of singlet molecular oxygen (1O2), which has potent oxidizing ability. Irradiation of light, notably ultraviolet A, to a photosensitizing molecule results in the generation of 1O2, which is thought to play a role in causing skin damage and aging. It should also be noted that 1O2 is a dominant tumoricidal component that is generated during the photodynamic therapy (PDT). While type II photodynamic action generates not only 1O2 but also other reactive species, endoperoxides release pure 1O2 upon mild exposure to heat and, hence, are considered to be beneficial compounds for research purposes. Concerning target molecules, 1O2 preferentially reacts with unsaturated fatty acids to produce lipid peroxidation. Enzymes that contain a reactive cysteine group at the catalytic center are vulnerable to 1O2 exposure. Guanine base in nucleic acids is also susceptible to oxidative modification, and cells carrying DNA with oxidized guanine units may experience mutations. Since 1O2 is produced in various physiological reactions in addition to photodynamic reactions, overcoming technical challenges related to its detection and methods used for its generation would allow its potential functions in biological systems to be better understood.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
22
|
Wroński A, Gęgotek A, Skrzydlewska E. Protein adducts with lipid peroxidation products in patients with psoriasis. Redox Biol 2023; 63:102729. [PMID: 37150149 DOI: 10.1016/j.redox.2023.102729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023] Open
Abstract
Psoriasis, one of the most frequent immune-mediated skin diseases, is manifested by numerous psoriatic lessons on the skin caused by excessive proliferation and keratinization of epidermal cells. These disorders of keratinocyte metabolism are caused by a pathological interaction with the cells of the immune system, including lymphocytes, which in psoriasis are also responsible for systemic inflammation. This is accompanied by oxidative stress, which promotes the formation of lipid peroxidation products, including reactive aldehydes and isoprostanes, which are additional pro-inflammatory signaling molecules. Therefore, the presented review is focused on highlighting changes that occur during psoriasis development at the level of lipid peroxidation products, including 4-hydroxynonenal, 4-oxononenal, malondialdehyde, and acrolein, and their influence on protein structures. Furthermore, we will examine inducing agents of cellular functioning, as well as intercellular signaling. These lipid peroxidation products can form adducts with a variety of proteins with different functions in the body, including proteins within skin cells and cells of the immune system. This is especially true in autoimmune diseases such as psoriasis. For example, these changes concern proteins involved in maintaining redox homeostasis or pro-inflammatory signaling. Therefore, the formation of such adducts should attract attention, especially during the design of preventive cosmetics or anti-psoriasis therapies.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland.
| | | |
Collapse
|
23
|
Fujii J, Yamada KI. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radic Res 2023; 57:353-372. [PMID: 37551716 DOI: 10.1080/10715762.2023.2244155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The presence of hydrogen peroxide along with ferrous iron produces hydroxyl radicals that preferably oxidize polyunsaturated fatty acids (PUFA) to alkyl radicals (L•). The reaction of L• with an oxygen molecule produces lipid peroxyl radical (LOO•) that collectively trigger chain reactions, which results in the accumulation of lipid peroxidation products (LOOH). Oxygenase enzymes, such as lipoxygenase, also stimulate the peroxidation of PUFA. The production of phospholipid hydroperoxides (P-LOOH) can result in the destruction of the architecture of cell membranes and ultimate cell death. This iron-dependent regulated cell death is generally referred to as ferroptosis. Radical scavengers, which include tocopherol and nitric oxide (•NO), react with lipid radicals and terminate the chain reaction. When tocopherol reductively detoxifies lipid radicals, the resultant tocopherol radicals are recycled via reduction by coenzyme Q or ascorbate. CoQ radicals are reduced back by the anti-ferroptotic enzyme FSP1. •NO reacts with lipid radicals and produces less reactive nitroso compounds. The resulting P-LOOH is reductively detoxified by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxin 6 (PRDX6). The hydrolytic removal of LOOH from P-LOOH by calcium-independent phospholipase A2 leads the preservation of membrane structure. While the expression of such protective genes or the presence of these anti-oxidant compounds serve to maintain a healthy condition, tumor cells employ them to make themselves resistant to anti-tumor treatments. Thus, these defense mechanisms against ferroptosis are protective in ordinary cells but are also potential targets for cancer treatment.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Physical Chemistry for Life Science Laboratory, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Park J, Kong C, Shin J, Park JY, Na YC, Han SH, Chang JW, Song SH, Chang WS. Combined Effects of Focused Ultrasound and Photodynamic Treatment for Malignant Brain Tumors Using C6 Glioma Rat Model. Yonsei Med J 2023; 64:233-242. [PMID: 36996894 PMCID: PMC10067799 DOI: 10.3349/ymj.2022.0422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is an intractable disease for which various treatments have been attempted, but with little effect. This study aimed to measure the effect of photodynamic therapy (PDT) and sonodynamic therapy (SDT), which are currently being used to treat brain tumors, as well as sono-photodynamic therapy (SPDT), which is the combination of these two. MATERIALS AND METHODS Four groups of Sprague-Dawley rats were injected with C6 glioma cells in a cortical region and treated with PDT, SDT, and SPDT. Gd-MRI was monitored weekly and 18F-FDG-PET the day before and 1 week after the treatment. The acoustic power used during sonication was 5.5 W/cm² using a 0.5-MHz single-element transducer. The 633-nm laser was illuminated at 100 J/cm². Oxidative stress and apoptosis markers were evaluated 3 days after treatment using immunohistochemistry (IHC): 4-HNE, 8-OhdG, and Caspase-3. RESULTS A decrease in tumor volume was observed in MRI imaging 12 days after the treatment in the PDT group (p<0.05), but the SDT group showed a slight increase compared to the 5-Ala group. The high expression rates of reactive oxygen species-related factors, such as 8-OhdG (p<0.001) and Caspase-3 (p<0.001), were observed in the SPDT group compared to other groups in IHC. CONCLUSION Our findings show that light with sensitizers can inhibit GBM growth, but not ultrasound. Although SPDT did not show the combined effect in MRI, high oxidative stress was observed in IHC. Further studies are needed to investigate the safety parameters to apply ultrasound in GBM.
Collapse
Affiliation(s)
- Junwon Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chanho Kong
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jaewoo Shin
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Korea
| | - Seung Hee Han
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyun Song
- Department of Electronics Engineering, Sookmyung Women's University, Seoul, Korea.
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Relationship between 4-Hydroxynonenal (4-HNE) as Systemic Biomarker of Lipid Peroxidation and Metabolomic Profiling of Patients with Prostate Cancer. Biomolecules 2023; 13:biom13010145. [PMID: 36671530 PMCID: PMC9855859 DOI: 10.3390/biom13010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
An oxidative degradation product of the polyunsaturated fatty acids, 4-hydroxynonenal (4-HNE), is of particular interest in cancer research due to its concentration-dependent pleiotropic activities affecting cellular antioxidants, metabolism, and growth control. Although an increase in oxidative stress and lipid peroxidation was already associated with prostate cancer progression a few decades ago, the knowledge of the involvement of 4-HNE in prostate cancer tumorigenesis is limited. This study investigated the appearance of 4-HNE-protein adducts in prostate cancer tissue by immunohistochemistry using a genuine 4-HNE monoclonal antibody. Plasma samples of the same patients and samples of the healthy controls were also analyzed for the presence of 4-HNE-protein adducts, followed by metabolic profiling using LC-ESI-QTOF-MS and GC-EI-Q-MS. Finally, the analysis of the metabolic pathways affected by 4-HNE was performed. The obtained results revealed the absence of 4-HNE-protein adducts in prostate carcinoma tissue but increased 4-HNE-protein levels in the plasma of these patients. Metabolomics revealed a positive association of different long-chain and medium-chain fatty acids with the presence of prostate cancer. Furthermore, while linoleic acid positively correlated with the levels of 4-HNE-protein adducts in the blood of healthy men, no correlation was obtained for cancer patients indicating altered lipid metabolism in this case. The metabolic pathway of unsaturated fatty acids biosynthesis emerged as significantly affected by 4-HNE. Overall, this is the first study linking 4-HNE adduction to plasma proteins with specific alterations in the plasma metabolome of prostate cancer patients. This study revealed that increased 4-HNE plasma protein adducts could modulate the unsaturated fatty acids biosynthesis pathway. It is yet to be determined if this is a direct result of 4-HNE or whether they are produced by the same underlying mechanisms. Further mechanistic studies are needed to grasp the biological significance of the observed changes in prostate cancer tumorigenesis.
Collapse
|
27
|
Liu L, Lian N, Shi L, Hao Z, Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front Cell Dev Biol 2023; 10:1079548. [PMID: 36684424 PMCID: PMC9846271 DOI: 10.3389/fcell.2022.1079548] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Ferroptosis is a recognized novel form of programmed cell death pathway, featuring abnormalities in iron metabolism, SystemXc-/glutathione axis, and lipid peroxidation regulation. A variety of ferroptosis inducers can influence glutathione peroxidase directly or indirectly via diverse pathways, leading to decreased antioxidant capacity, accumulated cellular lipid peroxides, and finally inducing ferroptosis. To date, mounting studies confirm the association of ferroptosis with various cutaneous diseases, including skin homeostasis, neoplastic diseases, infectious diseases, genetic skin disease, inflammatory skin diseases, and autoimmune diseases. There are shared characteristics regarding ferroptosis and various cutaneous diseases in terms of pathophysiological mechanisms, such as oxidative stress associated with iron metabolism disorder and accumulated lipid peroxides. Therefore, we summarize the current knowledge regarding the mechanisms involved in the regulation of ferroptosis for further discussion of its role in the pathogenesis and prognosis of skin diseases. Gaining insight into the underlying mechanisms of ferroptosis and the associated dermatological disorders could illuminate the pathogenesis and treatments of different cutaneous diseases.
Collapse
Affiliation(s)
- Lihao Liu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Ni Lian
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Liqing Shi
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Zhimin Hao
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China,*Correspondence: Kun Chen,
| |
Collapse
|
28
|
Jaganjac M, Zarkovic N. Lipid Peroxidation Linking Diabetes and Cancer: The Importance of 4-Hydroxynonenal. Antioxid Redox Signal 2022; 37:1222-1233. [PMID: 36242098 DOI: 10.1089/ars.2022.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.
Collapse
Affiliation(s)
- Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
29
|
Cong P, Tong C, Mao S, Shi X, Liu Y, Shi L, Jin H, Liu Y, Hou M. Proteomic global proteins analysis in blast lung injury reveals the altered characteristics of crucial proteins in response to oxidative stress, oxidation-reduction process and lipid metabolic process. Exp Lung Res 2022; 48:275-290. [PMID: 36346360 DOI: 10.1080/01902148.2022.2143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Blast lung injury (BLI) is the most common fatal blast injury induced by overpressure wave in the events of terrorist attack, gas and underground explosion. Our previous work revealed the characteristics of inflammationrelated key proteins involved in BLI, including those regulating inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process. However, the molecular characteristics of oxidative-related proteins in BLI ar still lacking. Methods: In this study, protein expression profiling of the blast lungs obtained by tandem mass tag (TMT) spectrometry quantitative proteomics were re-analyzed to identify the characteristics of oxidative-related key proteins. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h and 1 w after blast exposure. The differential protein expression was identified by bioinformatics analysis and verified by western blotting. Results: The results demonstrated that thoracic blast exposure induced reactive oxygen species generation and lipid peroxidation in the lungs. Analysis of global proteins and oxidative-related proteomes showed that 62, 59, 73, 69, 27 proteins (accounted for 204 distinct proteins) were identified to be associated with oxidative stress at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. These 204 distinct proteins were mainly enriched in response to oxidative stress, oxidation-reduction process and lipid metabolic process. We also validated these results by western blotting. Conclusions: These findings provided new perspectives on blast-induced oxidative injury in lung, which may potentially benefit the development of future treatment of BLI.
Collapse
Affiliation(s)
- Peifang Cong
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Changci Tong
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Shun Mao
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Lin Shi
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China.,Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China.,The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
30
|
Nowowiejska J, Baran A, Flisiak I. Psoriasis and neurodegenerative diseases—a review. Front Mol Neurosci 2022; 15:917751. [PMID: 36226313 PMCID: PMC9549431 DOI: 10.3389/fnmol.2022.917751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a chronic skin disease with underlying genetic, inflammatory and immunological background, which is a great medical problem, currently regarded as a systemic condition. Neurodegenerative diseases (NDs) are characterized by a progressive loss of nervous tissue, which affects elderly people more frequently; therefore, it is suspected that, due to society's aging, morbidity is going to increase. We performed a thorough review in order to investigate for the first time whether psoriasis may predispose to different particular neurodegenerative diseases—Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PubMed search resulted in the retrieval of 833 records, of which 77 eligible were included in the review. Our thorough analysis revealed there are some potential links between psoriasis and NDs (inflammation, oxidative stress, genetics, cardiometabolic disorders), but there is no strong evidence that psoriasis may predispose to NDs. Based on the evidence, it seems that the risk of PD in psoriatics is not increased, and the evidence for increased risk of AD slightly prevails the data that state the opposite. ALS risk does not seem to be increased in psoriatics. The paucity of original studies does not allow for the formulation of definitive conclusions but encourages to perform further investigations.
Collapse
|
31
|
Kasica NP, Zhou X, Jester HM, Holland CE, Ryazanov AG, Forshaw TE, Furdui CM, Ma T. Homozygous knockout of eEF2K alleviates cognitive deficits in APP/PS1 Alzheimer’s disease model mice independent of brain amyloid β pathology. Front Aging Neurosci 2022; 14:959326. [PMID: 36158543 PMCID: PMC9500344 DOI: 10.3389/fnagi.2022.959326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Maintenance of memory and synaptic plasticity depends on de novo protein synthesis, and accumulating evidence implicates a role of dysregulated mRNA translation in cognitive impairments associated with Alzheimer’s disease (AD). Accumulating evidence demonstrates hyper-phosphorylation of translation factor eukaryotic elongation factor 2 (eEF2) in the hippocampi of human AD patients as well as transgenic AD model mice. Phosphorylation of eEF2 (at the Thr 56 site) by its only known kinase, eEF2K, leads to inhibition of general protein synthesis. A recent study suggests that amyloid β (Aβ)-induced neurotoxicity could be associated with an interaction between eEF2 phosphorylation and the transcription factor nuclear erythroid 2-related factor (NRF2)-mediated antioxidant response. In this brief communication, we report that global homozygous knockout of the eEF2K gene alleviates deficits of long-term recognition and spatial learning in a mouse model of AD (APP/PS1). Moreover, eEF2K knockout does not alter brain Aβ pathology in APP/PS1 mice. The hippocampal NRF2 antioxidant response in the APP/PS1 mice, measured by expression levels of nicotinamide adenine dinucleotide plus hydrogen (NADPH) quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), is ameliorated by suppression of eEF2K signaling. Together, the findings may contribute to our understanding of the molecular mechanisms underlying AD pathogenesis, indicating that suppression of eEF2K activity could be a beneficial therapeutic option for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Nicole P. Kasica
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hannah M. Jester
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Caroline E. Holland
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alexey G. Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Tom E. Forshaw
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Cristina M. Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Tao Ma,
| |
Collapse
|
32
|
Hsu CG, Chávez CL, Zhang C, Sowden M, Yan C, Berk BC. The lipid peroxidation product 4-hydroxynonenal inhibits NLRP3 inflammasome activation and macrophage pyroptosis. Cell Death Differ 2022; 29:1790-1803. [PMID: 35264781 PMCID: PMC9433404 DOI: 10.1038/s41418-022-00966-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Pyroptosis is a form of cell death triggered by the innate immune system that has been implicated in the pathogenesis of sepsis and acute lung injury. At the cellular level, pyroptosis is characterized by cell swelling, membrane rupture, and release of inflammatory cytokines, such as IL-1β. However, the role of endogenous lipids in pyroptosis remains underappreciated. We discovered that 4-hydroxynonenal (HNE), a major endogenous product of lipid peroxidation, inhibited pyroptosis and inflammasome activation. HNE at physiological concentrations (3 µM) blocked nigericin and ATP-induced cell death, as well as secretion of IL-1β, by mouse primary macrophages and human peripheral blood mononuclear cells. Treatment with HNE, or an increase of endogenous HNE by inhibiting glutathione peroxidase 4, reduced inflammasome activation in mouse models of acute lung injury and sepsis. Mechanistically, HNE inhibited the NLRP3 inflammasome activation independently of Nrf2 and NF-κB signaling, and had no effect on the NLRC4 or AIM2 inflammasome. Furthermore, HNE directly bound to NLRP3 and inhibited its interaction with NEK7. Our findings identify HNE as a novel, endogenous inhibitor of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chia George Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Camila Lage Chávez
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chongyang Zhang
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark Sowden
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Bradford C Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
33
|
Soldo AM, Soldo I, Karačić A, Konjevod M, Perkovic MN, Glavan TM, Luksic M, Žarković N, Jaganjac M. Lipid Peroxidation in Obesity: Can Bariatric Surgery Help? Antioxidants (Basel) 2022; 11:antiox11081537. [PMID: 36009256 PMCID: PMC9405425 DOI: 10.3390/antiox11081537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and chronic oxidative stress, often being associated with each other in a vicious circle, are important factors of chronic diseases. Although it was usually considered to accompany aging and wealth, global trends show the increase in obesity among children even in Third World countries. Being manifested by an imbalance between energy consumption and food intake, obesity is characterized by an excessive or abnormal fat accumulation, impaired redox homeostasis and metabolic changes often associated with the self-catalyzed lipid peroxidation generating 4-hydroxynonenal, pluripotent bioactive peroxidation product of polyunsaturated fatty acids. Conservative methods targeting obesity produced only modest and transient results in the treatment of morbid obesity. Therefore, in recent years, surgery, primarily bariatric, became an attractive treatment for morbid obesity. Since adipose tissue is well known as a stress organ with pronounced endocrine functions, surgery results in redox balance and metabolic improvement of the entire organism. The source of bioactive lipids and lipid-soluble antioxidants, and the complex pathophysiology of lipid peroxidation should thus be considered from the aspects of personalized and integrative biomedicine to treat obesity in an appropriate way.
Collapse
Affiliation(s)
- Ana Maria Soldo
- Department of Gastroenterology, General Hospital “Dr. Ivo Pedisic”, 44000 Sisak, Croatia
| | - Ivo Soldo
- Surgery Clinic, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Andrija Karačić
- Surgery Clinic, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | | | | | - Martina Luksic
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Neven Žarković
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- Correspondence: (N.Ž.); (M.J.)
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- Correspondence: (N.Ž.); (M.J.)
| |
Collapse
|
34
|
LTBP2 Knockdown Promotes Ferroptosis in Gastric Cancer Cells through p62-Keap1-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6532253. [PMID: 35968244 PMCID: PMC9371865 DOI: 10.1155/2022/6532253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies. Ferroptosis is a new type of peroxidation-driven and iron-dependent cell death. However, the biological functions and exact regulatory mechanisms of ferroptosis in GC remain elusive. Here, we performed RNAi and gene transfection, cell viability assay, lipid peroxidation assay, reactive oxygen species (ROS) assay, glutathione assay, qRT-PCR, Western blotting, and transmission electron microscopy (TEM) to study ferroptosis in gastric cancer. The results revealed that silencing latent transforming growth factor β binding proteins (LTBP2) can significantly inhibit GC cell proliferation and decrease cellular GSH levels, reduce GPX4 activity, and increase ROS generation and malondialdehyde (MDA) levels, leading to ferroptosis in GC cells. In addition, we demonstrate that suppression of LTBP2 could regulate the p62-Keap1-Nrf2 pathway, thereby downregulating the GPX4 and xCT expression and upregulating the PTGS2 and 4HNE expression. Our findings described a new role of LTBP2 in regulating ferroptosis, which heralds the prospect of ferroptosis-mediated cancer therapy.
Collapse
|
35
|
Ferreri C, Sansone A, Chatgilialoglu C, Ferreri R, Amézaga J, Burgos MC, Arranz S, Tueros I. Critical Review on Fatty Acid-Based Food and Nutraceuticals as Supporting Therapy in Cancer. Int J Mol Sci 2022; 23:ijms23116030. [PMID: 35682708 PMCID: PMC9181022 DOI: 10.3390/ijms23116030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/02/2023] Open
Abstract
Fatty acids have an important place in both biological and nutritional contexts and, from a clinical point of view, they have known consequences for diseases’ onset and development, including cancer. The use of fatty acid-based food and nutraceuticals to support cancer therapy is a multidisciplinary subject, involving molecular and clinical research. Knowledge regarding polyunsaturated fatty acids essentiality/oxidizability and the role of lipogenesis-desaturase pathways for cell growth, as well as oxidative reactivity in cancer cells, are discussed, since they can drive the choice of fatty acids using their multiple roles to support antitumoral drug activity. The central role of membrane fatty acid composition is highlighted for the application of membrane lipid therapy. As fatty acids are also known as biomarkers of cancer onset and progression, the personalization of the fatty acid-based therapy is also possible, taking into account other important factors such as formulation, bioavailability and the distribution of the supplementation. A holistic approach emerges combining nutra- and pharma-strategies in an appropriate manner, to develop further knowledge and applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the Hospital Pathway, Pitigliano Hospital, ASL Sudest Toscana, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Mercedes Caro Burgos
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| |
Collapse
|
36
|
Du K, Shi J, Cheng S, Hang S, Ding Z, Liu S, Li D. Upregulation of the TFEB-mediated lysosome function relieves 4-Hydroxynonenal-Induced apoptosis. Chem Biol Interact 2022; 362:109963. [PMID: 35550146 DOI: 10.1016/j.cbi.2022.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
Abstract
4-Hydroxynonenal (4-HNE), the most toxic end-product of lipid peroxidation formed during oxidative stress, has been implicated in many diseases including neurodegenerative diseases, metabolic diseases, myocardial diseases, cancer and age-related diseases. 4-HNE can actively react with DNA, proteins and lipids, causing rapid cell death. The accumulation of 4-HNE leads to induction of autophagy, which clears damaged proteins and organelles. However, the underlying mechanism of 4-HNE-regulated autophagy is still not known. Transcriptional factor EB (TFEB) is a master regulator of lysosomal and autophagic functions, which we show here that TFEB is activated by 4-HNE. 4-HNE induces TFEB nuclear translocation and activated TFEB then upregulates the expression of genes required for autophagic and lysosomal biogenesis and function. Reactive oxygen species and Ca2+ are required in this process and TFEB activity is required for 4-HNE-mediated lysosomal function. Most importantly, genetic inhibition of TFEB (TFEB-KO) exacerbates 4-HNE-induced cell death, suggesting that TFEB is essential for cellular adaptive response to 4-HNE-induced cell damage. Hence, targeting TFEB to promote autophagic and lysosomal function may represent a promising approach to treat neurodegenerative and metabolic diseases in which 4-HNE accumulation has been implicated.
Collapse
Affiliation(s)
- Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Jiahui Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shixue Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuqi Hang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zongxian Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Siyu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181:154-165. [PMID: 35149216 DOI: 10.1016/j.freeradbiomed.2022.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Morana Jaganjac
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, Neuropathology Unit, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| |
Collapse
|
38
|
Li H, Zhuang W, Xiong T, Park WS, Zhang S, Zha Y, Yao J, Wang F, Yang Y, Chen Y, Cai L, Ling L, Yu D, Liang J. Nrf2 deficiency attenuates atherosclerosis by reducing LOX-1-mediated proliferation and migration of vascular smooth muscle cells. Atherosclerosis 2022; 347:1-16. [DOI: 10.1016/j.atherosclerosis.2022.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
|
39
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Tanja Matijević Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| |
Collapse
|
40
|
Zhou Z, Collado A, Sun C, Tratsiakovich Y, Mahdi A, Winter H, Chernogubova E, Seime T, Narayanan S, Jiao T, Jin H, Alvarsson M, Zheng X, Yang J, Hedin U, Catrina SB, Maegdefessel L, Pernow J. Downregulation of Erythrocyte miR-210 Induces Endothelial Dysfunction in Type 2 Diabetes. Diabetes 2022; 71:285-297. [PMID: 34753800 DOI: 10.2337/db21-0093] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022]
Abstract
Red blood cells (RBC) act as mediators of vascular injury in type 2 diabetes mellitus (T2DM). miR-210 plays a protective role in cardiovascular homeostasis and is decreased in whole blood of T2DM mice. We hypothesized that downregulation of RBC miR-210 induces endothelial dysfunction in T2DM. RBC were coincubated with arteries and endothelial cells ex vivo and transfused in vivo to identify the role of miR-210 and its target protein tyrosine phosphatase 1B (PTP1B) in endothelial dysfunction. RBC from patients with T2DM and diabetic rodents induced endothelial dysfunction ex vivo and in vivo. miR-210 levels were lower in human RBC from patients with T2DM (T2DM RBC) than in RBC from healthy subjects. Transfection of miR-210 in human T2DM RBC rescued endothelial function, whereas miR-210 inhibition in healthy subjects RBC or RBC from miR-210 knockout mice impaired endothelial function. Human T2DM RBC decreased miR-210 expression in endothelial cells. miR-210 expression in carotid artery plaques was lower in T2DM patients than in patients without diabetes. Endothelial dysfunction induced by downregulated RBC miR-210 involved PTP1B and reactive oxygen species. miR-210 mimic attenuated endothelial dysfunction induced by RBC via downregulating vascular PTP1B and oxidative stress in diabetic mice in vivo. These data reveal that the downregulation of RBC miR-210 is a novel mechanism driving the development of endothelial dysfunction in T2DM.
Collapse
MESH Headings
- Animals
- Case-Control Studies
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Erythrocytes/metabolism
- Humans
- Male
- Mice
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/physiology
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Changyan Sun
- Division of Molecular Vascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Winter
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Ekaterina Chernogubova
- Division of Molecular Vascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Till Seime
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sampath Narayanan
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jin
- Division of Molecular Vascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiaowei Zheng
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centrum for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Lars Maegdefessel
- Division of Molecular Vascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Zarkovic N, Jakovcevic A, Mataic A, Jaganjac M, Vukovic T, Waeg G, Zarkovic K. Post-mortem Findings of Inflammatory Cells and the Association of 4-Hydroxynonenal with Systemic Vascular and Oxidative Stress in Lethal COVID-19. Cells 2022; 11:cells11030444. [PMID: 35159254 PMCID: PMC8834180 DOI: 10.3390/cells11030444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
A recent comparison of clinical and inflammatory parameters, together with biomarkers of oxidative stress, in patients who died from aggressive COVID-19 and survivors suggested that the lipid peroxidation product 4-hydroxynonenal (4-HNE) might be detrimental in lethal SARS-CoV-2 infection. The current study further explores the involvement of inflammatory cells, systemic vascular stress, and 4-HNE in lethal COVID-19 using specific immunohistochemical analyses of the inflammatory cells within the vital organs obtained by autopsy of nine patients who died from aggressive SAR-CoV-2 infection. Besides 4-HNE, myeloperoxidase (MPO) and mitochondrial superoxide dismutase (SOD2) were analyzed alongside standard leukocyte biomarkers (CDs). All the immunohistochemical slides were simultaneously prepared for each analyzed biomarker. The results revealed abundant 4-HNE in the vital organs, but the primary origin of 4-HNE was sepsis-like vascular stress, not an oxidative burst of the inflammatory cells. In particular, inflammatory cells were often negative for 4-HNE, while blood vessels were always very strongly immunopositive, as was edematous tissue even in the absence of inflammatory cells. The most affected organs were the lungs with diffuse alveolar damage and the brain with edema and reactive astrocytes, whereas despite acute tubular necrosis, 4-HNE was not abundant in the kidneys, which had prominent SOD2. Although SOD2 in most cases gave strong immunohistochemical positivity similar to 4-HNE, unlike 4-HNE, it was always limited to the cells, as was MPO. Due to their differential expressions in blood vessels, inflammatory cells, and the kidneys, we think that SOD2 could, together with 4-HNE, be a potential link between a malfunctioning immune system, oxidative stress, and vascular stress in lethal COVID-19.
Collapse
Affiliation(s)
- Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.J.); (T.V.)
- Correspondence:
| | - Antonia Jakovcevic
- Clinical Hospital Centre Zagreb, Division of Pathology, HR-10000 Zagreb, Croatia; (A.J.); (A.M.); (K.Z.)
| | - Ana Mataic
- Clinical Hospital Centre Zagreb, Division of Pathology, HR-10000 Zagreb, Croatia; (A.J.); (A.M.); (K.Z.)
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.J.); (T.V.)
| | - Tea Vukovic
- Laboratory for Oxidative Stress (LabOS), Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.J.); (T.V.)
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University, A-8010 Graz, Austria;
| | - Kamelija Zarkovic
- Clinical Hospital Centre Zagreb, Division of Pathology, HR-10000 Zagreb, Croatia; (A.J.); (A.M.); (K.Z.)
- Division of Pathology, University of Zagreb School of Medicine, HR-10000 Zagreb, Croatia
| |
Collapse
|
42
|
Chemistry and Biochemistry Aspects of the 4-Hydroxy-2,3-trans-nonenal. Biomolecules 2022; 12:biom12010145. [PMID: 35053293 PMCID: PMC8773729 DOI: 10.3390/biom12010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
4-hydroxy-2,3-trans-nonenal (C9H16O2), also known as 4-hydroxy-2E-nonenal (C9H16O2; HNE) is an α,β-unsaturated hydroxyalkenal. HNE is a major aldehyde, formed in the peroxidation process of ω-6 polyunsaturated fatty acids (ω-6 PUFAs), such as linoleic and arachidonic acid. HNE is not only harmful but also beneficial. In the 1980s, the HNE was regarded as a “toxic product of lipid peroxidation” and the “second toxic messenger of free radicals”. However, already at the beginning of the 21st century, HNE was perceived as a reliable marker of oxidative stress, growth modulating factor and signaling molecule. Many literature data also indicate that an elevated level of HNE in blood plasma and cells of the animal and human body is observed in the course of many diseases, including cancer. On the other hand, it is currently proven that cancer cells divert to apoptosis if they are exposed to supraphysiological levels of HNE in the cancer microenvironment. In this review, we briefly summarize the current knowledge about the biological properties of HNE.
Collapse
|
43
|
Waits A, Chang CH, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen HC, Chen YS, Hwang B, Chen ML. Exposome of attention deficit hyperactivity disorder in Taiwanese children: exploring risks of endocrine-disrupting chemicals. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:169-176. [PMID: 34267309 DOI: 10.1038/s41370-021-00370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Attention-deficit hyperactivity disorder (ADHD) is diagnosed in ~7% of school-aged children. The role of endocrine-disrupting chemicals (EDC) and oxidative stress in ADHD etiology are not clear. OBJECTIVE Assessment of the associations between simultaneous exposure to multiple compounds and ADHD in children. METHODS The case-control study included 76 clinically diagnosed ADHD cases and 98 controls, aged 4-15 years old. Concentrations quartiles of urinary metabolites of acrylamide, acrolein, nonylphenol, phthalates, and organophosphate pesticides and biomarkers of oxidative stress were used to fit logistic regressions for each compound and weighted quantiles sum (WQS) regression for the mixture. RESULTS Positive dose-response relationships with ADHD were observed for 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) (odds ratio(OR)Q4 = 3.73, 95%CI [1.32, 11.04], ptrend = 0.003), dimethyl phosphate (DMP) (ORQ4 = 4.04, 95%CI [1.34, 12.94], ptrend = 0.014) and diethyl phosphate (ORQ4 = 2.61, 95%CI = [0.93, 7.66], ptrend = 0.030), and for the mixture of compounds (ORWQS = 3.82, 95%CI = [1.78, 8.19]) with the main contributions from HNE-MA (28.9%) and DMP (18.4%). CONCLUSIONS The dose-response relationship suggests enhanced susceptibility to EDC burden in children even at lower levels, whereas the main risk is likely from organophosphate pesticides. HNE-MA is recommended as a sensitive biomarker of lipid peroxidation in the further elucidation of the oxidative stress role in ADHD etiology.
Collapse
Affiliation(s)
- Alexander Waits
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Betau Hwang
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
44
|
Renuka Sanotra M, Huang WC, Silver S, Lin CY, Chang TC, Nguyen DPQ, Lee CK, Kao SH, Chang-Cheng Shieh J, Lin YF. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer's disease. Clin Biochem 2021; 101:26-34. [PMID: 34933007 DOI: 10.1016/j.clinbiochem.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hyperglycemia leads to lipid peroxidation, producing 4-hydroxynonenal (HNE) adducts which correlate with the production of amyloid-beta (Aβ), one of the hallmarks of Alzheimer's disease (AD). This study is to investigate the interactions of Aβ, HNE adducts and responding autoantibodies during the pathogenesis from hyperglycemia to AD. METHODS A total of 239 Taiwanese serum samples from a healthy control group and patients with hyperglycemia, and AD with and without hyperglycemia were analyzed. Aβ was immunoprecipitated from randomly pooled serum in each group and immunoblotted. Synthetic Aβ1-16 and Aβ17-28 peptides were modified with HNE in vitro and verified with LC-MS/MS. The levels of Aβ, HNE adducts, and autoantibody isotypes IgG and IgM against either native or HNE-modified Aβ were determined with ELISA. The diagnostic power of potential biomarkers was evaluated. RESULTS Increased fasting glucose and decreased high-density-lipoprotein cholesterol in AD groups indicated abnormal metabolism in the pathogenesis progression from hyperglycemia to AD. Indeed, serum Aβ, HNE adducts and most of the autoantibodies recognizing either native or HNE-modified Aβ were increased in the diseased groups. However, HNE adducts had better diagnostic performances than Aβ for both hyperglycemia and AD. Additionally, HNE-Aβ peptide levels were increased, and the responding autoantibodies (most notably IgM) were decreased in hyperglycemic AD group compared to the hyperglycemia only group, suggesting an immunity disturbance in the pathogenesis progression from hyperglycemia to AD. CONCLUSION Hyperglycemia increases the level of HNE adducts which may be neutralized by responding autoantibodies. Depletion of these autoantibodies promotes AD-like pathogenesis. Thus, levels of a patient's HNE adducts and associated responding autoantibodies are potential biomarkers for AD with diabetes.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Simon Silver
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
45
|
Butterfield DA. Ubiquitin carboxyl-terminal hydrolase L-1 in brain: Focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med 2021; 177:278-286. [PMID: 34737037 PMCID: PMC8684818 DOI: 10.1016/j.freeradbiomed.2021.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Neurons must remove aggregated, damaged proteins in order to survive. Among the ways of facilitating this protein quality control is the ubiquitin-proteasomal system (UPS). Aggregated, damaged proteins are targeted for destruction by the UPS by acquiring a polymer of ubiquitin residues that serves as a signal for transport to the UPS. However, before this protein degradation can occur, the polyubiquitin chain must be removed, one residue at a time, a reaction facilitated by the enzyme, ubiquitin C-terminal hydrolase (UCH-L1). In Alzheimer disease brain, this normally abundant protein is both of lower levels and oxidatively and nitrosatively modified than in control brain. This causes diminished function of the pleiotropic UCH-L1 enzyme with consequent pathological alterations in AD brain, and the author asserts the oxidative and nitrosative alterations of UCH-L1 are major contributors to mechanisms of neuronal death in this devastating dementing disorder and its earlier stage, mild cognitive impairment (MCI). This review paper outlines these findings in AD and MCI brain.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
46
|
Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021; 9:8906-8936. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferroptosis, distinct from apoptosis, is a regulated form of cell death caused by lipid peroxidation that has attracted extensive research interest since it was first defined in 2012. Over the past five years, an increasing number of studies have revealed the close relationship between ferroptosis and materials chemistry, in particular nanobiotechnology, and have concluded that nanotechnology-triggered ferroptosis is an efficient and promising antitumor strategy that provides an alternative therapeutic approach, especially for apoptosis-resistant tumors. In this review, we summarize recent advances in ferroptosis-induced tumor therapy at the intersection of materials chemistry, redox biology, and tumor biology. The biological features and molecular mechanisms of ferroptosis are first outlined, followed by a summary of the feasible strategies to induce ferroptosis using nanomaterials and the applications of ferroptosis in combined tumor therapy. Finally, the existing challenges and future development directions in this emerging field are discussed, with the aim of promoting the progress of ferroptosis-based oncotherapy in materials science and nanoscience and enriching the antitumor arsenal.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
47
|
Editorial on Anticancer Antioxidants. Antioxidants (Basel) 2021; 10:antiox10111782. [PMID: 34829653 PMCID: PMC8614914 DOI: 10.3390/antiox10111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
|
48
|
Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays Biochem 2021; 65:925-940. [PMID: 34623415 DOI: 10.1042/ebc20210017] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Ferroptosis is an iron- and lipid peroxidation-dependent cell death modality and emerging evidence indicates that ferroptosis has great explanatory potential for neuronal loss and associated CNS dysfunction in a range of neurodegenerative diseases (e.g., Alzheimer's, Parkinson's and Huntington's diseases, Motor neuron disease, Friedreich ataxia (FRDA)). Ferroptotic death results from lethal levels of phospholipid hydroperoxides that are generated by iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs), such as arachidonic and adrenic acids, which are conjugated to specific phospholipids (e.g., phosphatidylethanolamines (PEs)). The major cellular protector against ferroptosis is glutathione peroxidase 4 (GPX4), a membrane-associated selenoenzyme that reduces deleterious phospholipid hydroperoxides to their corresponding benign phospholipid alcohols in a glutathione-dependent manner. Other complementary protective systems have also been identified that act to bolster cellular defences against ferroptosis. Many pharmacological modulators of the ferroptosis pathway have been identified, targeting proteins involved in iron homoeostasis and autophagy; the production and detoxification of lipid peroxides, and cyst(e)ine/glutathione metabolism. While a growing number of cell signalling pathways converge to regulate the ferroptosis cascade, an emerging understanding of ferroptosis regulation suggests that the ferroptotic 'tone' of cells can be set by the transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), which transcriptionally controls many key components of the ferroptosis pathway. In this review, we provide a critical overview of the relationship between ferroptosis and NRF2 signalling. With a focus on the role of ferroptosis in Alzheimer's disease (AD), we discuss how therapeutic modulation of the NRF2 pathway is a viable strategy to explore in the treatment of ferroptosis-driven neurodegeneration.
Collapse
|
49
|
Al-Menhali AS, Anderson C, Gourine AV, Abramov AY, D'Souza A, Jaganjac M. Proteomic Analysis of Cardiac Adaptation to Exercise by High Resolution Mass Spectrometry. Front Mol Biosci 2021; 8:723858. [PMID: 34540898 PMCID: PMC8440823 DOI: 10.3389/fmolb.2021.723858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Regular exercise has many health benefits, among which is a significant reduction of cardiovascular risk. Although many beneficial effects of exercise are well described, the exact mechanisms by which exercise confers cardiovascular benefits are yet to be fully understood. In the current study, we have used high resolution mass spectrometry to determine the proteomic responses of the heart to exercise training in mice. The impact of exercise-induced oxidative stress on modifications of cardiomyocyte proteins with lipid peroxidation biomarker 4-hydroxynonenal (4-HNE) was examined as well. Fourteen male mice were randomized into the control (sedentary) group and the exercise group that was subjected to a swim exercise training program for 5 days a week for 5 months. Proteins were isolated from the left ventricular tissue, fractionated and digested for shotgun proteomics. Peptides were separated by nanoliquid chromatography and analyzed on an Orbitrap Fusion mass spectrometer using high-energy collision–induced dissociation and electron transfer dissociation fragmentation. We identified distinct ventricular protein signatures established in response to exercise training. Comparative proteomics identified 23 proteins that were upregulated and 37 proteins that were downregulated with exercise, in addition to 65 proteins that were identified only in ventricular tissue samples of exercised mice. Most of the proteins specific to exercised mice are involved in respiratory electron transport and/or implicated in glutathione conjugation. Additionally, 10 proteins were found to be modified with 4-HNE. This study provides new data on the effects of exercise on the cardiac proteome and contributes to our understanding of the molecular mechanisms underlying the beneficial effects of exercise on the heart.
Collapse
Affiliation(s)
- Afnan Saleh Al-Menhali
- Division of Medicine, University College London, London, United Kingdom.,Qatar Analytics and BioResearch Lab, Anti Doping Lab Qatar, Doha, Qatar
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Andrey Y Abramov
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Morana Jaganjac
- Division of Medicine, University College London, London, United Kingdom.,Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
50
|
Perković MN, Milković L, Uzun S, Mimica N, Pivac N, Waeg G, Žarković N. Association of Lipid Peroxidation Product 4-Hydroxynonenal with Post-Traumatic Stress Disorder. Biomolecules 2021; 11:1365. [PMID: 34572578 PMCID: PMC8469760 DOI: 10.3390/biom11091365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Repeated activation of the hypothalamic-pituitary-adrenal axis system, sleep disturbances, and other symptoms related to posttraumatic stress disorder (PTSD) elevate reactive oxygen species, increase inflammation, and accelerate cellular aging, leading to neuroprogression and cognitive decline. However, there is no information about possible involvement of 4-hydroxynonenal (4-HNE), the product of lipid peroxidation associated with stress-associated diseases, in the complex etiology of PTSD. Therefore, the aim of this study was to compare the plasma levels of 4-HNE between war veterans with PTSD (n = 62) and age-, sex- and ethnicity- matched healthy control subjects (n = 58) in order to evaluate the potential of HNE-modified proteins as blood-based biomarker of PTSD. The genuine 4-HNE-Enzyme-Linked Immunosorbent Assay (HNE-ELISA), based on monoclonal antibody specific for HNE-histidine (HNE-His) adducts, was used to determine plasma HNE-protein conjugates. Our results revealed significantly elevated levels of 4-HNE in patients with PTSD. Moreover, the accumulation of plasma 4-HNE seems to increase with aging but in a negative correlation with BMI, showing specific pattern of change for individuals diagnosed with PTSD. These findings suggest that oxidative stress and altered lipid metabolism reflected by increase of 4-HNE might be associated with PTSD. If confirmed with further studies, elevated 4-HNE plasma levels might serve as a potential biomarker of PTSD.
Collapse
Affiliation(s)
- Matea Nikolac Perković
- Laboratory of Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.N.P.); (N.P.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory of Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.N.P.); (N.P.)
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|