1
|
Chen X, Shan S, Wang A, Tu C, Wan J, Hong C, Li X, Wang X, Yin J, Tong J, Tian H, Xin L. Repeated radon exposure induced ATM kinase-mediated DNA damage response and protective autophagy in mice and human bronchial epithelial cells. Toxicol Res (Camb) 2024; 13:tfae165. [PMID: 39381598 PMCID: PMC11457374 DOI: 10.1093/toxres/tfae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Radon ( 222 Rn) is a naturally occurring radioactive gas that has been closely linked with the development of lung cancer. In this study, we investigated the radon-induced DNA strand breaks, a critical event in lung carcinogenesis, and the corresponding DNA damage response (DDR) in mice and human bronchial epithelial (BEAS-2B) cells. METHODS Biomarkers of DNA double-strand breaks (DSBs), DNA repair response to DSBs, ataxia-telangiectasia mutated (ATM) kinase, autophagy, and a cell apoptosis signaling pathway as well as cell-cycle arrest and the rate of apoptosis were determined in mouse lung and BEAS-2B cells after radon exposure. RESULTS Repeated radon exposure induced DSBs indicated by the increasing expressions of γ-Histone 2AX (H2AX) protein and H2AX gene in a time and dose-dependent manner. Additionally, a panel of ATM-dependent repair cascades [i.e. non-homologous DNA end joining (NHEJ), cell-cycle arrest and the p38 mitogen activated protein kinase (p38MAPK)/Bax apoptosis signaling pathway] as well as the autophagy process were activated. Inhibition of autophagy by 3-methyladenine pre-treatment partially reversed the expression of NHEJ-related genes induced by radon exposure in BEAS-2B cells. CONCLUSIONS The findings demonstrated that long-term exposure to radon gas induced DNA lesions in the form of DSBs and a series of ATM-dependent DDR pathways. Activation of the ATM-mediated autophagy may provide a protective and pro-survival effect on radon-induced DSBs.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
- Binhai county center for disease control and prevention, 3 Gangcheng Road, Binhai County, Yancheng City, Jiangsu Province, 224500, China
| | - Shan Shan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Aiqing Wang
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Cheng Tu
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jianmei Wan
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Chengjiao Hong
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xiaohan Li
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xueying Wang
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jieyun Yin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jian Tong
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Hailin Tian
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Lili Xin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
2
|
Hogarth KA, Shkumat NA, Goman S, Amirabadi A, Bickford S, Muthusami P, Connolly BL, Maynes JT. Biomarkers of mitochondrial stress and DNA damage during pediatric catheter-directed neuroangiography - a prospective single-center study. Pediatr Radiol 2024; 54:1906-1918. [PMID: 39285018 DOI: 10.1007/s00247-024-06048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Neuroangiography represents a critical diagnostic and therapeutic imaging modality whose associated radiation may be of concern in children. The availability of in vivo radiation damage markers would represent a key advancement for understanding radiation effects and aid in the development of radioprotective strategies. OBJECTIVE Determine if biomarkers of cellular damage can be detected in the peripheral blood mononuclear cells (PBMC) of children undergoing neuroangiography. MATERIALS AND METHODS Prospective single-site study of 27 children. Blood collected pre and post neuroangiography, from which PBMC were isolated and assayed for biomarkers of mitochondrial stress (mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and mitochondrial DNA (mtDNA)) and DNA damage (γH2AX). Dose response of biomarkers vs. radiation dose was analyzed using linear regressions. The cohort was divided into higher (HD) and lower dose (LD) groups and analyzed using linear mixed models and compared using Welch's t-tests. RESULTS No biomarker exhibited a dose-dependent response following radiation (γH2AX: R2 = 0.0012, P = 0.86; MMP: R2 = 0.016, P = 0.53; mtDNA: R2 = 0.10, P = 0.11; ROS: R2 = 0.0023, P = 0.81). Groupwise comparisons showed no significant differences in γH2AX or ROS after radiation (γH2AX: LD: 0.6 ± 6.0, P = 0.92; HD: -7.5 ± 6.3 AU, P = 0.24; ROS: LD: 1.3 ± 2.8, P = 0.64; HD: -3.6 ± 3.0 AU, P = 0.24). Significant changes were observed to mitochondrial markers MMP (-53.7 ± 14.7 AU, P = 0.0014) and mtDNA (-1.1 ± 0.4 AU, P = 0.0092) for HD, but not the LD group (MMP: 26.1 ± 14.7 AU, P = 0.090; mtDNA: 0.2 ± 0.4, P = 0.65). CONCLUSIONS Biomarkers of mitochondrial stress in PBMC were identified during pediatric neuroangiography and warrant further investigation for radiation biodosimetry. However, isolating radiation-specific effects from those of procedural stress and general anesthesia requires further investigation.
Collapse
Affiliation(s)
- Kaley A Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada.
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| | - Nicholas A Shkumat
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Simal Goman
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Afsaneh Amirabadi
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Suzanne Bickford
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
- Paediatric Neurovascular Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Prakash Muthusami
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Paediatric Neurovascular Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bairbre L Connolly
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Medical Imaging, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| | - Jason T Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada.
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Zhou XR, Wang XY, Sun YM, Zhang C, Liu KJ, Zhang FY, Xiang B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid Redox Signal 2024; 41:723-743. [PMID: 38069572 DOI: 10.1089/ars.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Xin-Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Yue-Mei Sun
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Ke Jian Liu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fu-Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| |
Collapse
|
4
|
Wang L, Wang B, Zhang X, Yang Z, Zhang X, Gong H, Song Y, Zhang K, Sun M. TDCPP and TiO 2 NPs aggregates synergistically induce SH-SY5Y cell neurotoxicity by excessive mitochondrial fission and mitophagy inhibition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123740. [PMID: 38462198 DOI: 10.1016/j.envpol.2024.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a halogen-containing phosphorus flame retardant, is widely used and has been shown to possess health risks to humans. The sustained release of artificial nanomaterials into the environment increases the toxicological risks of their coexisting pollutants. Nanomaterials may seriously change the environmental behavior and fate of pollutants. In this study, we investigated this combined toxicity and the potential mechanisms of toxicity of TDCPP and titanium dioxide nanoparticles (TiO2 NPs) aggregates on human neuroblastoma SH-SY5Y cells. TDCPP and TiO2 NPs aggregates were exposed in various concentration combinations, revealing that TDCPP (25 μg/mL) reduced cell viability, while synergistic exposure to TiO2 NPs aggregates exacerbated cytotoxicity. This combined exposure also disrupted mitochondrial function, leading to dysregulation in the expression of mitochondrial fission proteins (DRP1 and FIS1) and fusion proteins (OPA1 and MFN1). Consequently, excessive mitochondrial fission occurred, facilitating the translocation of cytochrome C from mitochondria to activate apoptotic signaling pathways. Furthermore, exposure of the combination of TDCPP and TiO2 NPs aggregates activated upstream mitochondrial autophagy but disrupted downstream Parkin recruitment to damaged mitochondria, preventing autophagosome-lysosome fusion and thereby disrupting mitochondrial autophagy. Altogether, our findings suggest that TDCPP and TiO2 NPs aggregates may stimulate apoptosis in neuronal SH-SY5Y cells by inducing mitochondrial hyperfission and inhibiting mitochondrial autophagy.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Dong Z, Yang B, Jia M, Yang C, Wang S, Mu H, Wang J. DDIT3/CHOP promotes LPS/ATP-induced pyroptosis in osteoblasts via mitophagy inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119712. [PMID: 38521466 DOI: 10.1016/j.bbamcr.2024.119712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Inflammatory environments can trigger endoplasmic reticulum (ER) stress and lead to pyroptosis in various tissues and cells, including liver, brain, and immune cells. As a key factor of ER stress, DNA damage-inducible transcript 3 (DDIT3)/CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is upregulated in osteoblasts during inflammatory stimulation. DDIT3/CHOP may therefore regulate osteoblast pyroptosis in inflammatory conditions. During this investigation, we found that lipopolysaccharides (LPS)/adenosine 5'-triphosphate (ATP) stimulation in vitro induced osteoblasts to undergo pyroptosis, and the expression of DDIT3/CHOP was increased during this process. The overexpression of DDIT3/CHOP further promoted osteoblast pyroptosis as evidenced by the increased expression of the inflammasome NLR family pyrin domain containing 3 (NLRP3) and ratios of caspase-1 p20/caspase-1 and cleaved gasdermin D (GSDMD)/GSDMD. To explore the specific mechanism of this effect, we found through fluorescence imaging and Western blot analysis that LPS/ATP stimulation promoted PTEN-induced kinase 1 (PINK1)/E3 ubiquitin-protein ligase parkin (Parkin)-mediated mitophagy in osteoblasts, and this alteration was suppressed by the DDIT3/CHOP overexpression, resulting in increased ratio of pyroptosis compared with the control groups. The impact of DDIT3/CHOP on pyroptosis in osteoblasts was reversed by the application of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a specific mitophagy agonist. Therefore, our data demonstrated that DDIT3/CHOP promotes osteoblast pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy in an inflammatory environment.
Collapse
Affiliation(s)
- Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Chang Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Shuo Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Hailin Mu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
6
|
Zhang X, Chen X, Wang A, Wang L, He C, Shi Z, Zhang S, Fu Q, Xu W, Li W, Hu S. Yiqi Jiedu decoction attenuates radiation injury of spermatogenic cells via suppressing IκBα/NF-κB pathway-induced excessive autophagy and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116903. [PMID: 37442494 DOI: 10.1016/j.jep.2023.116903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prescription of Yiqi Jiedu decoction (YQJD) originated from the classic Chinese herbal prescriptions of Danggui Buxue Decoction and Wuzi Yanzong Pill. A previous study has shown that 4 Gy irradiation induced the apoptosis of spermatocytes and revealed autophagosomes in cells exposed to radiation. YQJD decoction has the effect of preventing radiation injury. AIM OF THE STUDY We used spermatocytes (GC-2spd cell line) to investigate the relationship between autophagy and apoptosis of spermatogenic cells after radiation, and the mechanisms of YQJD decoction. MATERIALS AND METHODS Establish an in vitro radiation injury model by irradiating GC-2spd cells with 60Co γ-rays (4 Gy or 8 Gy). Autophagy agonists, autophagy inhibitors and YQJD were used to intervene cells. Cell apoptosis and inflammatory factors were measured. NF-κB localization was observed by immunofluorescence. Autophagy and apoptosis-related proteins and IκBα/NF-κB pathway factors were detected. RESULTS Ionizing radiation promoted the growth of spermatogenic autophagosomes. After radiation, NF-κB was translocated to the nucleus, inflammatory factors were secreted, and IκBα/NF-κB pathway was activated, which promoted autophagy and apoptosis. YQJD decoction can inhibit the phosphorylation of IκBα/NF-κB pathway related factors, regulate the expression of Beclin-1 and Bcl-2 proteins, and inhibit the occurrence of autophagy and apoptosis of irradiated spermatocyte. CONCLUSIONS The research results indicate that ionizing radiation can activate the IκBα/NF-κB signaling pathway in spermatocytes, promote cell autophagy and apoptosis by regulating the expression of Beclin-1 and Bcl-2 factors. The YQJD decoction inhibits the IκBα/NF-κB signaling pathway so as to regulate Beclin-1 and Bcl-2.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Changhao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Wu S, Tian C, Tu Z, Guo J, Xu F, Qin W, Chang H, Wang Z, Hu T, Sun X, Ning H, Li Y, Gou W, Hou W. Protective effect of total flavonoids of Engelhardia roxburghiana Wall. leaves against radiation-induced intestinal injury in mice and its mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116428. [PMID: 36997130 DOI: 10.1016/j.jep.2023.116428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.
Collapse
Affiliation(s)
- Shaohua Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Chen Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital, Tianjin, 300100, China
| | - Jianghong Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Weida Qin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Huajie Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Tong Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Sun
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| |
Collapse
|
8
|
Temelie M, Talpur R, Dominguez-Prieto M, Dantas Silva A, Cenusa C, Craciun L, Savu DI, Moisoi N. Impaired Integrated Stress Response and Mitochondrial Integrity Modulate Genotoxic Stress Impact and Lower the Threshold for Immune Signalling. Int J Mol Sci 2023; 24:ijms24065891. [PMID: 36982965 PMCID: PMC10059776 DOI: 10.3390/ijms24065891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria-nucleus communication during stress dictates cellular fate with consequences on the etiopathology of multiple age-related diseases. Impaired mitochondrial quality control through loss of function of the mitochondrial protease HtrA2 associates with accumulation of damaged mitochondria and triggers the integrated stress response, implicating the transcription factor CHOP. Here we have employed a combined model of impaired mitochondria quality control, namely HtrA2 loss of function, and/or integrated stress response, namely CHOP loss of function, and genotoxicity to address the distinctive roles of these cellular components in modulating intracellular and intercellular responses. The genotoxic agents employed were cancer therapeutic agents such as irradiation with X-ray and protons or treatment with the radiomimetic bleomycin. The irradiation had an enhanced effect in inducing DNA damage in cells with CHOP loss of function, while the bleomycin treatment induced more DNA damage in all the transgenic cells as compared to the control. The genetic modifications impaired the transmission of DNA damage signalling intercellularly. Furthermore, we have dissected the signalling pathways modulated by irradiation in selected genotypes with RNA sequencing analysis. We identified that loss of HtrA2 and CHOP function, respectively, lowers the threshold where irradiation may induce the activation of innate immune responses via cGAS-STING; this may have a significant impact on decisions for combined therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Mihaela Temelie
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania
| | - Rubab Talpur
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, Leicester LE1 9BH, UK
| | - Marta Dominguez-Prieto
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, Leicester LE1 9BH, UK
| | - Ayanda Dantas Silva
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, Leicester LE1 9BH, UK
| | - Constantin Cenusa
- Radioisotopes and Radiation Metrology Department, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele, Romania
| | - Liviu Craciun
- Applied Nuclear Physics Department, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, Leicester LE1 9BH, UK
| |
Collapse
|
9
|
Liu Y, Qi M, Liu L, Li M, Feng H, Gan Y, Ma S, Liu X. Blocking Adipor1 enhances radiation sensitivity in Hepatoma Carcinoma Cells. Arch Biochem Biophys 2022; 718:109152. [DOI: 10.1016/j.abb.2022.109152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/15/2023]
|
10
|
In situ observation of mitochondrial biogenesis as the early event of apoptosis. iScience 2021; 24:103038. [PMID: 34553131 PMCID: PMC8441175 DOI: 10.1016/j.isci.2021.103038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial biogenesis is a cell response to external stimuli which is generally believed to suppress apoptosis. However, during the process of apoptosis, whether mitochondrial biogenesis occurs in the early stage of the apoptotic cells remains unclear. To address this question, we constructed the COX8-EGFP-ACTIN-mCherry HeLa cells with recombinant fluorescent proteins respectively tagged on the nucleus and mitochondria and monitored the mitochondrial changes in the living cells exposed to gamma-ray radiation. Besides in situ detection of mitochondrial fluorescence changes, we also examined the cell viability, nuclear DNA damage, reactive oxygen species (ROS), mitochondrial superoxide, citrate synthase activity, ATP, cytoplasmic and mitochondrial calcium, mitochondrial mass, mitochondrial morphology, and protein expression related to mitochondrial biogenesis, as well as the apoptosis biomarkers. As a result, we confirmed that significant mitochondrial biogenesis took place preceding the radiation-induced apoptosis, and it was closely correlated with the apoptotic cells at late stage. The involved mechanism was also discussed. Dual fluorescence approach was used for in situ observation of living cell processes Radiation-induced effects of mitochondrial biogenesis and apoptosis were observed Relationship between mitochondrial biogenesis and apoptosis was revisited Assessing early mitochondrial biogenesis is critical for predicting later fate of cells
Collapse
|
11
|
Chen W, Liu T, Liang Q, Chen X, Tao W, Fang M, Xiao Y, Chen L. miR-1283 Contributes to Endoplasmic Reticulum Stress in the Development of Hypertension Through the Activating Transcription Factor-4 (ATF4)/C/EBP-Homologous Protein (CHOP) Signaling Pathway. Med Sci Monit 2021; 27:e930552. [PMID: 33911065 PMCID: PMC8095088 DOI: 10.12659/msm.930552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Hypertension-related microRNA(miR)-1283 and its target gene, activating transcription factor-4 (ATF4), can regulate vascular endothelial dysfunction. This study aimed to explore whether miR-1283 prevents hypertension through targeting ATF4. Material/Methods Transcriptome sequencing was performed after overexpression or inhibition of miR-1283 in human amniotic epithelial cells (HAECs). After miR-1283 was overexpressed or inhibited in HAECs, ATF4+/− and wild-type mice were induced with a high-salt diet. We detected the expression of ATF4, C/EBP-homologous protein (CHOP), BH3-interacting domain death agonist (BID), Bcl-2, Bcl-2-like protein 11 (BIM), Bcl-2-like protein 1 (BCL-X), and caspase-3 by PCR and western blotting. We detected the changes of vasoactive substances including nitric oxide (NO), endothelin 1 (ET-1), endothelial protein C receptor (EPCR), thrombin (TM), and von Willebrand factor (vWF) by ELISA. Results Compared with that of the miR-1283- inhibited group, NO was higher in the miR-1283 overexpression group, while the expression of ET-1, EPCR, TM, and vWF were lower. Similarly, compared with that of the miR-1283 inhibited group, the expression of ATF4, CHOP, BID, BIM, and caspase-3 in the miR-1283 overexpression group was downregulated, while the expression of BCL-2 and BCL-X was upregulated (P<0.05). In vivo experiments showed the lack of ATF4 gene could prevent hypertension in mice induced by high-salt diet and protect endothelial function. Conclusions The mechanism of regulating blood pressure and endothelial function of the miR-1283/ATF4 axis was related to inhibiting endoplasmic reticulum stress and cell apoptosis through the ATF4/CHOP signaling pathway. Therefore, the miR-1283/ATF4 axis may be a target for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Weihao Chen
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Tianhao Liu
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Qiuer Liang
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xudong Chen
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wencong Tao
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Meixia Fang
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Liguo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
12
|
Abstract
Autophagy is an evolutionarily conserved process necessary to maintain cell homeostasis in response to various forms of stress such as nutrient deprivation and hypoxia as well as functioning to remove damaged molecules and organelles. The role of autophagy in cancer varies depending on the stage of cancer. Cancer therapeutics can also simultaneously evoke cancer cell senescence and ploidy increase. Both cancer cell senescence and polyploidization are reversible by depolyploidization giving rise to the progeny. Autophagy activation may be indispensable for cancer cell escape from senescence/polyploidy. As cancer cell polyploidy is proposed to be involved in cancer origin, the role of autophagy in polyploidization/depolyploidization of senescent cancer cells seems to be crucial. Accordingly, this review is an attempt to understand the complicated interrelationships between reversible cell senescence/polyploidy and autophagy.
Collapse
|
13
|
Zhang M, Cui Y, Zhu W, Yu J, Cheng Y, Wu X, Zhang J, Xin W, Yu Y, Sun H. Attenuation of the mutual elevation of iron accumulation and oxidative stress may contribute to the neuroprotective and anti-seizure effects of xenon in neonatal hypoxia-induced seizures. Free Radic Biol Med 2020; 161:212-223. [PMID: 33075502 DOI: 10.1016/j.freeradbiomed.2020.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Previous studies have suggested that xenon inhalation has neuroprotective and antiepileptic effects; however, the underlying mechanisms involved remain unclear. This study aimed to investigate the possible xenon inhalation mechanisms involved in the neuroprotection and antiepileptic effects. A neonatal hypoxic C57BL/6J mouse model was used for the experiments. Immediately after hypoxia treatment, the treatment group inhaled a xenon mixture (70% xenon/21% oxygen/9% nitrogen) for 60 min, while the hypoxia group inhaled a non-xenon mixture (21% oxygen/79% nitrogen) for 60 min. Seizure activity was recorded at designated time points using electroencephalography. Oxidative stress levels, iron levels, neuronal injury, and learning and memory functions were also studied. The results showed that hypoxia increased the levels of iron, oxidative stress, mitophagy, and neurodegeneration, which were accompanied by seizures and learning and memory disorders. In addition, our results confirmed that xenon treatment significantly attenuated the hypoxia-induced seizures and cognitive defects in neonatal C57 mice. Moreover, the increased levels of iron, oxidative stress, mitophagy, and neuronal injury were reduced in xenon-treated mice. This study confirms the significant protective effects of a xenon mixture on hypoxia-induced damage in neonatal mice. Furthermore, our results suggest that reducing oxidative stress levels and iron accumulation may be the underlying mechanisms of xenon activity. Studying the protective mechanisms of xenon will advance its applications in potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiangdong Wu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
14
|
Ramesh G, Das S, Bola Sadashiva SR. Berberine, a natural alkaloid sensitizes human hepatocarcinoma to ionizing radiation by blocking autophagy and cell cycle arrest resulting in senescence. J Pharm Pharmacol 2020; 72:1893-1908. [PMID: 32815562 DOI: 10.1111/jphp.13354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study the radiosensitizing potential of Berberine and the underlying mechanism in human hepatocarcinoma (HepG2) cells. METHODS HepG2 cells were challenged with X-rays in combination with Berberine treatment and several in vitro assays were performed. Alteration in cell viability was determined by MTT assay. Changes in intracellular ROS levels, mitochondrial membrane potential/mass, intracellular acidic vesicular organelles as well as cell cycle arrest and apoptotic cell death were analysed by flow cytometry. Induction of autophagy was assessed by staining the cells with Monodansylcadaverine/Lysotracker red dyes and immunoblotting for LC3I/II and p62 proteins. Phase-contrast/fluorescence microscopy was employed to study mitotic catastrophe and senescence. Cellular senescence was confirmed by immunoblotting for p21 levels and ELISA for Interleukin-6. KEY FINDINGS X-rays + Berberine had a synergistic effect in reducing cell proliferation accompanied by a robust G2/M arrest. Berberine-mediated radiosensitization was associated with elevated levels of LC3II and p62 suggesting blocked autophagy that was followed by mitotic catastrophe and senescence. Treatment of cells with X-rays + Berberine resulted in increased oxidative stress, hyperpolarized mitochondria with increased mitochondrial mass and reduced ATP levels. CONCLUSIONS The study expands the understanding of the pharmacological properties of Berberine and its applicability as a radiosensitizer towards treating liver cancer.
Collapse
Affiliation(s)
- Gautham Ramesh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shubhankar Das
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Satish Rao Bola Sadashiva
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|