1
|
Armijo M, Silva C, Barrias P, Gunther G, Sandoval-Altamirano C. A new Rose Bengal glycopolymer: Photosensitization in two stages. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125391. [PMID: 39520819 DOI: 10.1016/j.saa.2024.125391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial photodynamic therapy is a promising alternative to deal with antimicrobial resistance. However, both the low specificity and low local oxygen molecular concentrations decrease the antimicrobial efficiency limiting its use. An interesting approach to the problem is the use of molecules that can react reversibly with singlet oxygen by the formation of reversible endoperoxides, such as naphthalene, anthracene and pyridone derivatives. Particularly, the use of these molecules with mannosyl derivatives allow the interaction with adhesins presented on pili and fimbriae improving the localization near to bacteria. In this work, we synthesized polymeric nanoparticles able to generate singlet oxygen (under both irradiation and dark conditions) in the vicinity of a center capable of recognizing mannose and oxidize nearby biomolecules. Rose Bengal was used as photosensitizer due to its attractive photophysical properties (vis absorption, high singlet oxygen generation) and biocompatibility. The polymeric nanoparticles were obtained by radical polymerization using polyvinyl alcohol as a template, showing sizes around 300 nm with negative zeta potential by dynamic light scattering. The singlet oxygen generation was monitored following DPBF consumption and showed to be dependent on the amount of pyridone in the feed of polymers. In addition, the release of singlet oxygen was also dependent on pyridone concentration showing a slower rate constant at 40 % pyridone, while for contents of 10 % and 60 % higher rate constants were observed. The specific interaction of glycopolymers with Concanavalin A was demonstrated by successful agglutination assays, but also a low participation of unspecific interactions for polymers without mannosyl derivatives was observed. On the other hand, the oxidation of amino acids of Concanavalin A was monitored by acrylamide gel electrophoresis. Type I and Type II photosensitization were observed with the formation of dimers and fragments with lower molecular weight, while in dark conditions only products with lower molecular weight were observed, result consistent with singlet oxygen released by pyridone endoperoxides.
Collapse
Affiliation(s)
- Maryan Armijo
- Universidad de Santiago de Chile, Facultad de Química y Biología, Casilla 40 correo 33, Santiago, Chile
| | - Christian Silva
- Universidad de Santiago de Chile, Facultad de Química y Biología, Casilla 40 correo 33, Santiago, Chile
| | - Pablo Barrias
- Universidad Mayor, Facultad de Ciencias, Ingeniería y Tecnología, Centro de Nanotecnología Aplicada, Camino La Pirámide 5750, Huechuraba 8580745, Santiago, Chile
| | - Germán Gunther
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Casilla 233, Santiago, Chile.
| | | |
Collapse
|
2
|
Gui N, Zhang X, Yang C, Ran R, Yang C, Zeng X, Li G. A high-strength collagen-based antimicrobial film grafted with ε-polylysine fabrication by riboflavin-mediated ultraviolet irradiation for pork preservation. Food Chem 2024; 461:140889. [PMID: 39173254 DOI: 10.1016/j.foodchem.2024.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.
Collapse
Affiliation(s)
- Nina Gui
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Chun Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xingling Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
4
|
Li J, Wang Z, Xiao N, Guo S, Ai M. Endogenous reactive oxygen species (ROS)-driven protein oxidation regulates emulsifying and foaming properties of liquid egg white. Int J Biol Macromol 2024; 268:131843. [PMID: 38663701 DOI: 10.1016/j.ijbiomac.2024.131843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/30/2024]
Abstract
Highly oxidative reactive oxygen species (ROS) attack protein structure and regulate its functional properties. The molecular structures and functional characteristics of egg white (EW) protein (EWP) during 28 d of aerobic or anaerobic storage were explored to investigate the "self-driven" oxidation mechanism of liquid EW mediated by endogenous ROS signaling. Results revealed a significant increase in turbidity during the storage process, accompanied by protein crosslinking aggregation. The ROS yield initially increased and then decreased, leading to a substantial increase in carbonyl groups and tyrosine content. The free sulfhydryl groups and molecular flexibility in EWP exhibited synchronicity with ROS production, reflecting the self-repairing ability of cysteine residues in EWP. Fourier-transform infrared spectroscopy indicated stable crosslinking between EWP molecules in the early oxidation stage. However, continuous ROS attacks accelerated EWP degradation. Compared with the control group, the aerobic-stimulated EWP showed a significant decrease in foaming capacity from 30.5 % to 9.6 %, whereas the anaerobic-stimulated EWP maintained normal levels. The emulsification performance exhibited an increasing-then-decreasing trend. In conclusion, ROS acted as the predominant factor causing deterioration of liquid EW, triggering moderate oxidation that enhanced the superior foaming and emulsifying properties of EWP, and excessive oxidation diminished the functional characteristics by affecting the molecular structure.
Collapse
Affiliation(s)
- Jiayi Li
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Sosa MJ, Fonseca JL, Sakaya A, Urrutia MN, Petroselli G, Erra-Balsells R, Quindt MI, Bonesi SM, Cosa G, Vignoni M, Thomas AH. Alkylation converts riboflavin into an efficient photosensitizer of phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184155. [PMID: 37003545 DOI: 10.1016/j.bbamem.2023.184155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
A new decyl chain [-(CH2)9CH3] riboflavin conjugate has been synthesized and investigated. A nucleophilic substitution (SN2) reaction was used for coupling the alkyl chain to riboflavin (Rf), a model natural photosensitizer. As expected, the alkylated compound (decyl-Rf) is significantly more lipophilic than its precursor and efficiently intercalates within phospholipid bilayers, increasing its fluorescence quantum yield. The oxidative damage to lipid membranes photoinduced by decyl-Rf was investigated in large and giant unilamellar vesicles (LUVs and GUVs, respectively) composed of different phospholipids. Using a fluorogenic probe, fast radical formation and singlet oxygen generation was demonstrated upon UVA irradiation in vesicles containing decyl-Rf. Photosensitized formation of conjugated dienes and hydroperoxides, and membrane leakage in LUVs rich in poly-unsaturated fatty acids were also investigated. The overall assessment of the results shows that decyl-Rf is a significantly more efficient photosensitizer of lipids than its unsubstituted precursor and that the association to lipid membranes is key to trigger phospholipid oxidation. Alkylation of hydrophilic photosensitizers as a simple and general synthetic tool to obtain efficient photosensitizers of biomembranes, with potential applications, is discussed.
Collapse
Affiliation(s)
- María José Sosa
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | - José Luis Fonseca
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina; Department of Chemistry, Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, QC, Canada
| | - Aya Sakaya
- Department of Chemistry, Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, QC, Canada
| | - María Noel Urrutia
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | - Gabriela Petroselli
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Rosa Erra-Balsells
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Matías I Quindt
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Sergio M Bonesi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Gonzalo Cosa
- Department of Chemistry, Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, QC, Canada
| | - Mariana Vignoni
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina.
| | - Andrés H Thomas
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina.
| |
Collapse
|
6
|
Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway. Sci Rep 2022; 12:21191. [PMID: 36476946 PMCID: PMC9729611 DOI: 10.1038/s41598-022-25474-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are key enzymes of the pentose phosphate pathway, responsible for the NADPH production in cells. We investigated modification of both enzymes mediated by peroxyl radicals (ROO·) to determine their respective susceptibilities to and mechanisms of oxidation. G6PDH and 6PGDH were incubated with AAPH (2,2'-azobis(2-methylpropionamidine)dihydrochloride), which was employed as ROO· source. The enzymatic activities of both enzymes were determined by NADPH release, with oxidative modifications examined by electrophoresis and liquid chromatography (LC) with fluorescence and mass (MS) detection. The activity of G6PDH decreased up to 62.0 ± 15.0% after 180 min incubation with 100 mM AAPH, whilst almost total inactivation of 6PGDH was determined under the same conditions. Although both proteins contain abundant Tyr (particularly 6PGDH), these residues were minimally affected by ROO·, with Trp and Met being major targets. LC-MS and in silico analysis showed that the modification sites of G6PDH are distant to the active site, consistent with a dispersed distribution of modifications, and inactivation resulting from oxidation of multiple Trp and Met residues. In contrast, the sites of oxidation detected on 6PGDH are located close to its catalytic site indicating a more localized oxidation, and a consequent high susceptibility to ROO·-mediated inactivation.
Collapse
|
7
|
Jiang S, Fuentes-Lemus E, Davies MJ. Oxidant-mediated modification and cross-linking of beta-2-microglobulin. Free Radic Biol Med 2022; 187:59-71. [PMID: 35609861 DOI: 10.1016/j.freeradbiomed.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Beta-2-microglobulin (B2M) is synthesized by all nucleated cells and forms part of the major histocompatibility complex (MHC) class-1 present on cell surfaces, which presents peptide fragments to cytotoxic CD8+ T-lymphocytes, or by association with CD1, antigenic lipids to natural killer T-cells. Knockout of B2M results in loss of these functions and severe combined immunodeficiency. Plasma levels of this protein are low in healthy serum, but are elevated up to 50-fold in some pathologies including chronic kidney disease and multiple myeloma, where it has both diagnostic and prognostic value. High levels of the protein are associated with amyloid formation, with such deposits containing significant levels of modified or truncated protein. In the current study we examine the chemical and structural changes induced of B2M generated by both inflammatory oxidants (HOCl and ONOOH), and photo-oxidation (1O2) which is linked with immunosuppression. Oxidation results in oligomer formation, with this occurring most readily with HOCl and 1O2, and a loss of native protein conformation. LC-MS analysis provided evidence for nitrated (from ONOOH), chlorinated (from HOCl) and oxidized residues (all oxidants) with damage detected at Tyr, Trp, and Met residues, together with cleavage of the disulfide (cystine) bond. An intermolecular di-tyrosine crosslink is also formed between Tyr10 and Tyr63. The pattern of these modifications is oxidant specific, with ONOOH inducing a greater range of modifications than HOCl. Comparison of the sites of modification with regions identified as amyloidogenic indicate significant co-localization, consistent with the hypothesis that oxidation may contribute, and predispose B2M, to amyloid formation.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
8
|
Savina ED, Tsentalovich YP, Sherin PS. Influence of viscosity on mechanism and products of radical reactions of kynurenic acid and tryptophan. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
10
|
Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2021; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
|
11
|
Fuentes-Lemus E, Jiang S, Hägglund P, Davies MJ. High concentrations of casein proteins exacerbate radical chain reactions and increase the extent of oxidative damage. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Dántola ML, Neyra Recky JR, Lorente C, Thomas AH. Photosensitized Dimerization of Tyrosine: The Oxygen Paradox †. Photochem Photobiol 2021; 98:687-695. [PMID: 34738644 DOI: 10.1111/php.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023]
Abstract
In electron-transfer initiated photosensitization processes, molecular oxygen (O2 ) is not involved in the first bimolecular event, but almost always participates in subsequent steps giving rise to oxygenated products. An exception to this general behavior is the photosensitized dimerization of tyrosine (Tyr), where O2 does not participate as a reactant in any step of the pathway yielding Tyr dimers (Tyr2 ). In the pterin (Ptr) photosensitized oxidation of Tyr, O2 does not directly participate in the formation of Tyr2 and quenches the triplet excited state of Ptr, the reactive species that initiates the process. However, O2 is necessary for the dimerization, phenomenon that we have named as the oxygen paradox. Here, we review the literature on the photosensitized formation of Tyr2 and present results of steady-state and time resolved experiments, in search of a mechanistic model to explain the contradictory role of O2 in this photochemical reaction system.
Collapse
Affiliation(s)
- M Laura Dántola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Jael R Neyra Recky
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Carolina Lorente
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
13
|
Zhuravleva YS, Sherin PS. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part II. Amino acids within the protein globule of lysozyme. Free Radic Biol Med 2021; 174:211-224. [PMID: 34363946 DOI: 10.1016/j.freeradbiomed.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022]
Abstract
An acidosis, a decrease of pH within a living tissue, may alter yields of radical reactions if participating radicals undergo partial or complete protonation. One of photosensitizers found in the human eye lens, kynurenic acid (KNA-), possesses pKa 5.5 for its radical form that is close to physiological pH 6.89 for a healthy lens. In this work we studied the influence of pH on mechanisms and products of photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) within a globule of model protein, Hen White Egg Lysozyme (HEWL). Our results show that the rate constant of back electron transfer from kynurenyl to HEWL• radicals with the restoration of initial reagents - the major decay pathway for these radicals - does not change in the pH 3-7. The quantum yield of HEWL degradation is also pH independent, however a shift of pH from 7 to 5 completely changes the outcome of photoinduced damage to HEWL from intermolecular cross-linking to oxygenation. HPLC-MS analysis has shown that four of six Trp and all Tyr residues of HEWL are modified in different extents at all pH, but the lowering of pH from 7 to 5 significantly changes the direction of main photodamage from Trp62 to Trp108 located at the entrance and bottom of enzymatic center, respectively. A decrease of intermolecular cross-links via Trp62 is followed by an increase in quantities of intramolecular cross-links Tyr20-Tyr23 and Tyr23-Tyr53. The obtained results point out the competence of cross-linking and oxygenation reactions for Trp and Tyr radicals within a protein globule and significant increase of oxygenation to the total damage of protein in the case of cross-linking deceleration by coulombic repulsion of positively charged protein globules.
Collapse
Affiliation(s)
- Yuliya S Zhuravleva
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia.
| |
Collapse
|
14
|
A model to understand type I oxidations of biomolecules photosensitized by pterins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
16
|
Fuentes-Lemus E, Mariotti M, Hägglund P, Leinisch F, Fierro A, Silva E, Davies MJ, López-Alarcón C. Oxidation of lysozyme induced by peroxyl radicals involves amino acid modifications, loss of activity, and formation of specific crosslinks. Free Radic Biol Med 2021; 167:258-270. [PMID: 33731307 DOI: 10.1016/j.freeradbiomed.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/21/2022]
Abstract
The present work examined the oxidation and crosslinking of the anti-bacterial enzyme lysozyme (Lyso), which is present in multiple biological fluids, and released from the cytoplasmic granules of macrophages and neutrophils at sites of infection and inflammation. It is therefore widely exposed to oxidants including peroxyl radicals (ROO•). We hypothesized that exposure to ROO• would generate specific modifications and inter- and intra-protein crosslinks via radical-radical reactions. Lyso was incubated with AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) as a ROO• source. Enzymatic activity was assessed, while oxidative modifications were detected and quantified using electrophoresis and liquid chromatography (UPLC) with fluorescence or mass detection (MS). Computational models of AAPH-Lyso interactions were developed. Exposure of Lyso to AAPH (10 and 100 mM for 3 h, and 20 mM for 1 h), at 37 °C, decreased enzymatic activity. 20 mM AAPH showed the highest efficiency of Lyso inactivation (1.78 mol of Lyso inactivated per ROO•). Conversion of Met to its sulfoxide, and to a lesser extent, Tyr oxidation to 3,4-dihydroxyphenylalanine and diTyr, were detected by UPLC-MS. Extensive transformation of Trp, involving short chain reactions, to kynurenine, oxindole, hydroxytryptophan, hydroperoxides or di-alcohols, and N-formyl-kynurenine was detected, with Trp62, Trp63 and Trp108 the most affected residues. Interactions of AAPH inside the negatively-charged catalytic pocket of Lyso, with Trp108, Asp52, and Glu35, suggest that Trp108 oxidation mediates, at least partly, Lyso inactivation. Crosslinks between Tyr20-Tyr23 (intra-molecular), and Trp62-Tyr23 (inter-molecular), were detected with both proximity (Tyr20-Tyr23), and chain flexibility (Trp62) appearing to favor the formation of covalent crosslinks.
Collapse
Affiliation(s)
| | - Michele Mariotti
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Per Hägglund
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Fabian Leinisch
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Angélica Fierro
- Pontificia Universidad Católica de Chile(,) Facultad de Química y de Farmacia, Departamento de Química Orgánica, Santiago, Chile
| | - Eduardo Silva
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Michael J Davies
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark.
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile.
| |
Collapse
|
17
|
Abstract
The changes of lysozyme conformation in the absence and presence of luteolin and luteoloside were investigated by spectral analysis including fluorescence, UV, CD, Raman, and ATR-FTIR, and the biological activity of lysozyme was investigated by lysozyme assay kit. The results showed that the microenvironment hydrophobicity of lysozyme increased and peptide extension decreased with the addition of luteolin or luteoloside. The α-helix of lysozyme might be influenced by luteolin or luteoloside, and its relative content had a significant difference after adding luteolin or luteoloside by the ATR-FTIR method, which was reconfirmed by CD and Raman spectra. The lysozyme activity changed obviously after adding luteolin or luteoloside. All of the conclusions above indicated the active site of lysozyme in the α-helix might be influenced by luteolin and luteoloside.
Collapse
|
18
|
Zhao J, Zhu R, Zhang X, Zhang B, Liu Y, Li Y, Wang W, Phillips DL. A photoenhanced oxidation of amino acids and the cross-linking of lysozyme mediated by tetrazolium salts. Phys Chem Chem Phys 2021; 23:3761-3770. [PMID: 33538741 DOI: 10.1039/d0cp04887a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrazolium salts (TZs) are pervasively utilized as precursors in the dye industry, colorimetric probes in enzyme assays and for exploring nanomaterial toxicity, but its own toxicity is not investigated enough so far. Using femtosecond transient absorption spectroscopy, nanosecond pulse radiolysis (ns-PRL), western blotting and UV-vis absorption spectroscopy, here we characterized a neutral tetrazolinyl radical (with the same maximum absorption at 420 nm and different lifetimes of 5.0 and 9.0 μs for two selected TZs), the key intermediate of TZs reduction, and noticed TZs-formazan production under UV light irradiation accompanied by 41% increase in the cross-linking of lysozyme (Lyso, model protein) compared to TZs-free sample, which uncovered the photoenhanced oxidation of TZs towards Lyso. The ns-PRL in a reductive atmosphere simulated the electron/proton donors of amino acid residues in Lyso upon photoexcitation and revealed the reduction mechanism of TZs, as that first followed one-electron-transfer and then probably proton-coupled electron transfer. This is the first time to report on the photoenhanced oxidation mechanism of TZs, which would provide new insights into the applications of TZs in cell biology, "click" chemistry and nanotoxicology.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 11111, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang S, Carroll L, Mariotti M, Hägglund P, Davies MJ. Formation of protein cross-links by singlet oxygen-mediated disulfide oxidation. Redox Biol 2021; 41:101874. [PMID: 33601275 PMCID: PMC7900768 DOI: 10.1016/j.redox.2021.101874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Cross-links formed within and between proteins are a major cause of protein dysfunction, and are postulated to drive the accumulation of protein aggregates in some human pathologies. Cross-links can be formed from multiple residues and can be reversible (usually sulfur-sulfur bonds) or irreversible (typically carbon-carbon or carbon-heteroatom bonds). Disulfides formed from oxidation of two Cys residues are widespread, with these formed both deliberately, via enzymatic reactions, or as a result of unintended oxidation reactions. We have recently demonstrated that new protein-glutathione mixed disulfides can be formed through oxidation of a protein disulfide to a thiosulfinate, and subsequent reaction of this species with glutathione. Here we investigate whether similar reactions occur between an oxidized protein disulfide, and a Cys residues on a second protein, to give novel protein cross-links. Singlet oxygen (1O2)-mediated oxidation of multiple proteins (α-lactalbumin, lysozyme, beta-2-microglobulin, C-reactive protein), and subsequent incubation with the Cys-containing protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH), generates inter-protein cross-links as detected by SDS-PAGE, immunoblotting and mass spectrometry (MS). The cross-link yield is dependent on the 1O2 concentration, the presence of the original protein disulfide bond, and the free Cys on GAPDH. MS with 18O-labeling has allowed identification of the residues involved in some cases (e.g. Cys25 from the Cys25-Cys80 disulfide in beta-2-microglobulin, with Cys149 or Cys244 of GAPDH). The formation of these cross-links results in a loss of GAPDH enzymatic activity. These data provide 'proof-of-concept' for a novel mechanism of protein cross-link formation which may help rationalize the accumulation of cross-linked proteins in multiple human pathologies.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Effectiveness of Riboflavin and Rose Bengal Photosensitizer Modified Adhesive Resin for Orthodontic Bonding. Pharmaceuticals (Basel) 2021; 14:ph14010048. [PMID: 33435179 PMCID: PMC7826870 DOI: 10.3390/ph14010048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to evaluate the effect of riboflavin (RF) and Rose Bengal (RB) photosensitizer modified adhesive resin on the degree of conversion (DC), and antimicrobial capacity after bonded to tooth surface. Different concentrations of RB and RF were prepared by homogenization method. An ultraviolet light source A (UVA) (375 nm wavelength, 3 mW/cm2 power) was used for 30 min irradiation. FTIR was performed for control and test adhesives to analyze the DC. Antibacterial testing was performed using the MTT assay. Metal brackets were bonded using the modified adhesives and subjected for SEM examination. The surfaces of teeth and metal brackets were examined at ×10 magnification for assessing adhesive remnant index (ARI) after PDT, 24 h and thermocycling. For DC, control group, 0.1% RB and RF after PDT showed the highest value. SEM imaging indicated lowest growth of Streptococcus mutans over 0.5% of RB-PDT and RF-PDT as compared to the control group. The MTT assay outcomes reported that the activity of S. mutans substantially decreased with the addition of a high amount of either RB or RF (p < 0.01). Mean ARI scores showed a significant difference between all groups. This study concluded that 0.1% of either RB or RF after PDT can be used for bonding orthodontic brackets to the tooth surface with substantial antibacterial properties.
Collapse
|
21
|
Gatin A, Billault I, Duchambon P, Van der Rest G, Sicard-Roselli C. Oxidative radicals (HO • or N 3•) induce several di-tyrosine bridge isomers at the protein scale. Free Radic Biol Med 2021; 162:461-470. [PMID: 33217505 DOI: 10.1016/j.freeradbiomed.2020.10.324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/27/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
Among protein oxidative damages, di-tyrosine bridges formation has been evidenced in many neuropathological diseases. Combining oxidative radical production by gamma radiolysis with very performant chromatographic separation coupled to mass spectrometry detection, we brought into light new insights of tyrosine dimerization. Hydroxyl and azide radical tyrosine oxidation leading to di-tyrosine bridges formation was studied for different biological compounds: a full-length protein (Δ25-centrin 2), a five amino acid peptide (KTSLY) and free tyrosine. We highlighted that both radicals generate high proportion of dimers even for low doses. Surprisingly, no less than five different di-tyrosine isomers were evidenced for the protein and the peptide. For tyrosine alone, at least four distinct dimers were evidenced. These results raise some questions about their respective role in vivo and hence their relative toxicity. Also, as di-tyrosine is often used as a biomarker, a better knowledge of the type of dimer detected in vivo is now required.
Collapse
Affiliation(s)
- Anouchka Gatin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France
| | - Isabelle Billault
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France
| | - Patricia Duchambon
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Guillaume Van der Rest
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France
| | - Cécile Sicard-Roselli
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France.
| |
Collapse
|
22
|
Jiang S, Carroll L, Rasmussen LM, Davies MJ. Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins. Redox Biol 2020; 38:101822. [PMID: 33338920 PMCID: PMC7750407 DOI: 10.1016/j.redox.2020.101822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or binding functions (e.g. receptors). Recent data indicate that disulfides vary markedly with regard to their rate of reaction with two-electron oxidants (e.g. HOCl, ONOOH), with some species being rapidly and readily oxidized. These reactions yielding thiosulfinates that can react further with a thiol to give thiolated products (e.g. glutathionylated proteins with glutathione, GSH). Here we show that these ‘oxidant-mediated thiol-disulfide exchange reactions’ also occur during photo-oxidation reactions involving singlet oxygen (1O2). Reaction of protein disulfides with 1O2 (generated by multiple sensitizers in the presence of visible light and O2), yields reactive intermediates, probably zwitterionic peroxyl adducts or thiosulfinates. Subsequent exposure to GSH, at concentrations down to 2 μM, yields thiolated adducts which have been characterized by both immunoblotting and mass spectrometry. The yield of GSH adducts is enhanced in D2O buffers, and requires the presence of the disulfide bond. This glutathionylation can be diminished by non-enzymatic (e.g. tris-(2-carboxyethyl)phosphine) and enzymatic (glutaredoxin) reducing systems. Photo-oxidation of human plasma and subsequent incubation with GSH yields similar glutathionylated products with these formed primarily on serum albumin and immunoglobulin chains, demonstrating potential in vivo relevance. These reactions provide a novel pathway to the formation of glutathionylated proteins, which are widely recognized as key signaling molecules, via photo-oxidation reactions. Disulfide bonds (DSBs) are critical to protein structure and function. DSBs are rapidly oxidized by singlet oxygen and other oxidants to reactive species. These DSB-derived intermediates react with GSH to give glutathionylated proteins. Glutathionylation can be diminished by reductants, but does not repair DSB damage. Oxidation of human plasma DSBs gives glutathionylated albumin and immunoglobulins.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lars M Rasmussen
- Center for Individualized Medicine in Arterial Diseases (CIMA), Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
23
|
Sinha T, Naash MI, Al-Ubaidi MR. Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Front Cell Dev Biol 2020; 8:861. [PMID: 32984341 PMCID: PMC7481326 DOI: 10.3389/fcell.2020.00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
24
|
Figueroa JD, Zárate AM, Fuentes-Lemus E, Davies MJ, López-Alarcón C. Formation and characterization of crosslinks, including Tyr–Trp species, on one electron oxidation of free Tyr and Trp residues by carbonate radical anion. RSC Adv 2020; 10:25786-25800. [PMID: 35518626 PMCID: PMC9055361 DOI: 10.1039/d0ra04051g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023] Open
Abstract
Dityrosine and ditryptophan bonds have been implied in protein crosslinking. This is associated with oxidative stress conditions including those involved in neurodegenerative pathologies and age-related processes. Formation of dityrosine and ditryptophan derives from radical–radical reactions involving Tyr˙ and Trp˙ radicals. However, cross reactions of Tyr˙ and Trp˙ leading to Tyr–Trp crosslinks and their biological consequences have been less explored. In the present work we hypothesized that exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, would result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks. Here we report a simple experimental procedure, employing CO3˙− generated photochemically by illumination of a Co(iii) complex at 254 nm, that produces micromolar concentrations of Tyr–Trp crosslinks. Analysis by mass spectrometry of solutions containing only the individual amino acids, and the Co(iii) complex, provided evidence for the formation of o,o′-dityrosine and isodityrosine from Tyr, and three ditryptophan dimers from Trp. When mixtures of Tyr and Trp were illuminated in an identical manner, Tyr–Trp crosslinks were detected together with dityrosine and ditryptophan dimers. These results indicate that there is a balance between the formation of these three classes of crosslinks, which is dependent on the Tyr and Trp concentrations. The methods reported here allow the generation of significant yields of isolated Tyr–Trp adducts and their characterization. This technology should facilitate the detection, and examination of the biological consequences of Tyr–Trp crosslink formation in complex systems in future investigations. Exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks.![]()
Collapse
Affiliation(s)
- Juan David Figueroa
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Ana María Zárate
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Eduardo Fuentes-Lemus
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Michael J. Davies
- University of Copenhagen
- Department of Biomedical Sciences
- Copenhagen
- Denmark
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| |
Collapse
|