1
|
Abdelsalam RM, Hamam HW, Eissa NM, El-Sahar AE, Essam RM. Empagliflozin Dampens Doxorubicin-Induced Chemobrain in Rats: The Possible Involvement of Oxidative Stress and PI3K/Akt/mTOR/NF-κB/TNF-α Signaling Pathways. Mol Neurobiol 2025; 62:3480-3492. [PMID: 39302617 DOI: 10.1007/s12035-024-04499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Chemobrain is a cognitive impairment observed in up to 75% of cancer patients treated with doxorubicin (DOX). Cognitive deficits associated with DOX are complex, and multiple interplay pathways contribute to memory impairment and the loss of concentration. Empagliflozin (EMPA), a sodium-glucose co-transporter-2 (SGLT-2) inhibitor with neuroprotective potential, has recently been elucidated because of its regulatory effects on oxidative stress and neuroinflammation. Thus, this study aimed to explore the protective mechanisms of EMPA in DOX-induced chemobrain. Rats were allocated to four groups: normal (NC), EMPA, DOX, and EMPA + DOX. Chemobrain was induced in the third and fourth groups by DOX (2 mg/kg, IP) on the 0th, 7th, 14th, and 21st days of the study, while EMPA was administered (10 mg/kg, PO) for 28 consecutive days in both the EMPA and EMPA + DOX groups. Behavioral and biochemical assessments were then performed. Rats treated with DOX exhibited significant memory, learning, and muscle coordination dysfunctions. Moreover, DOX boosted oxidative stress in the brain, as evidenced by elevated malondialdehyde (MDA) content together with decreased levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and reduced glutathione (GSH). Neuroinflammation was also observed as an upsurge of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB) (p65). Additionally, DOX diminished the expression of brain-derived neurotrophic factor (BDNF) and increased phosphoinositol-3-kinase (PI3K), phosphorylated-Akt (pAkt), and mammalian target of rapamycin (mTOR) content. EMPA exhibited potent neuroprotective potential in DOX-induced cognitive impairment, attributed to its antioxidant and neuroplasticity-enhancing properties and suppression of the PI3K/Akt/mTOR/NF-κB/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Hatem W Hamam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Noha M Eissa
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Amaro-Leal Â, Afonso AI, Machado F, Shvachiy L, Rocha I, Outeiro TF, Geraldes V. Dose-Dependent Cognitive Decline, Anxiety, and Locomotor Impairments Induced by Doxorubicin: Evidence from an Animal Model. BIOLOGY 2024; 13:939. [PMID: 39596894 PMCID: PMC11592173 DOI: 10.3390/biology13110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Cognitive impairment and anxiety are common side effects of chemotherapy, particularly with the use of doxorubicin (DOX), known as "chemobrain". This study aimed to examine the dose-dependent effects of DOX on cognitive decline, anxiety, and locomotor activity in healthy female Wistar rats. The rats were divided into groups receiving low (2 mg/kg), intermediate (4 mg/kg), and high (5 mg/kg) doses of DOX for four weeks, alongside a control group. Behavioral tests, including open field, elevated plus maze, and Y-maze tests, assessed anxiety, locomotion, and cognitive performance, while brain tissue analysis evaluated neuroinflammation using markers such as GFAP and Iba-1. The results showed that all doses of DOX induced anxiety-like behavior, reduced locomotion, and caused neuroinflammation in the hippocampus, with more severe effects at higher doses. Notably, high-dose DOX also caused short-term memory deficits. These findings highlight the dose-dependent nature of DOX's impact on behavior and cognition, suggesting that DOX plays a key role in the development of cognitive symptoms during chemotherapy. Further research is needed to understand the mechanisms behind these effects and to explore potential interventions.
Collapse
Affiliation(s)
- Ângela Amaro-Leal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ana I. Afonso
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Filipa Machado
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Liana Shvachiy
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Isabel Rocha
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Vera Geraldes
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
4
|
Chen Y, Pang J, Chen Y, Liang Y, Zhang Z, Wang Z. Diallyl trisulfide regulates PGK1/Nrf2 expression and reduces inflammation to alleviate neurological damage in mice after traumatic brain injury. Brain Res 2024; 1843:149116. [PMID: 38977238 DOI: 10.1016/j.brainres.2024.149116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Diallyl trisulfide (DATS) has a direct antioxidant capacity and emerges as a promising neuroprotective agent. This study was designed to investigate the role of DATS in traumatic brain injury (TBI). METHODS TBI mouse models were established using the controlled cortical impact, followed by DATS administration. The effects of DATS on neurological deficit, brain damage, inflammation and phosphoglycerate kinase 1 (PGK1) expression were detected using mNSS test, histological analysis, TUNEL assay, enzyme-linked immunosorbent assay and immunofluorescence. PC12 cells were subjected to H2O2-induced oxidative injury after pre-treatment with DATS, followed by cell counting kit-8 assay, flow cytometry and ROS production detection. Apoptosis-related proteins and the PGK1/nuclear factor erythroid-2 related factor 2 (Nrf2) pathway were examined using Western blot. RESULTS DATS ameliorated the cerebral cortex damage, neurological dysfunction and apoptosis, as well as decreased PGK1 expression and expressions of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in mice after TBI. DATS also enhanced viability, blocked apoptosis and inhibited ROS production in H2O2-induced PC12 cells. DATS downregulated Cleaved-Caspase3, Bax and PGK1 levels, and upregulated Bcl-2 and Nrf2 levels in TBI mouse models and the injured cells. CONCLUSION DATS regulates PGK1/Nrf2 expression and inflammation to alleviate neurological damage in mice after TBI.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Jianliang Pang
- Department of Vascular Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) , PR China
| | - Yulong Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Ying Liang
- Injection Room, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhengbo Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhangquan Wang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China.
| |
Collapse
|
5
|
Singh A, Kumar V, Langeh U, Kapil L, Kaur S, Rana N, Bhattacharya A, Singh R, Bhatti JS, Singh C. In-vitro and in-vivo studies of two-drug cocktail therapy targeting chemobrain via the Nrf2/NF-κB signaling pathway. J Mol Histol 2024; 55:599-625. [PMID: 39042217 DOI: 10.1007/s10735-024-10217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Today, we critically need alternative therapeutic options for chemotherapy-induced cognitive impairment (CICI), often known as chemo brain. Mitochondrial dysfunction and oxidative stress are two of the primary processes that contribute to the development of chemobrain. Therefore, the purpose of this study was to investigate how CoQ10 and berberine shield neurons from chemotherapy-induced damage in in-vitro studies and memory loss in vivo studies. For the in-vitro investigation, we employed SH-SY5Y cell lines, and for the in-vivo study, we used female Swiss albino mice divided into seven different groups. Data from in-vitro studies revealed that treatment with coenzyme Q10 (CoQ10) and berberine improved chemotherapy-induced toxicity by reducing mitochondrial and total cellular ROS, as well as apoptosis-elicited markers (caspase 3 and 9). CoQ10 and berberine therapy inhibited the nuclear translocation of NF-κB and, consequently, the subsequent expressions of NLRP3 and IL-1β, implying the prevention of inflammasome formation. Furthermore, CoQ10 and berberine therapy boosted Nrf2 levels. This is a regulator for cellular resistance to oxidants. The in vivo results showed that treatment with CoQ10 (40 mg/kg) and berberine (200 mg/kg) improved the behavioral alterations induced by CAF (40/4/25 mg/kg) in both the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests. Furthermore, biochemical and molecular evidence revealed the antioxidant, mitochondrial restorative, and anti-inflammatory potential of CoQ10 (40 mg/kg) and berberine (200 mg/kg) against CAF (40/4/25 mg/kg) subjected mice. In addition, the histological analysis using H&E staining and transmission electron microscopy (for mitochondrial morphology) showed that mice treated with the cocktails had an increased number of healthy neurons with intact mitochondria and a reduced presence of autophagic vacuoles in the hippocampal region of the brain. These findings back up our theory about this novel cocktail method for CAF-induced cognitive impairment.
Collapse
Affiliation(s)
- Arti Singh
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India.
- Department of Pharmaceutical Sciences, School of Health Science & Technology, UPES, Dehradun, India.
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, 500037, Telangana, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| |
Collapse
|
6
|
El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats; insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell 2024; 87:102313. [PMID: 38286061 DOI: 10.1016/j.tice.2024.102313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Doxorubicin (Dox) is one of the most effective anti-neoplastic agents. Quercetin (QE) exhibits antioxidant and anti-inflammatory properties. AIM To detect neuroprotective properties of quercetin in rats exposed to doxorubicin-induced brain injury. MATERIAL AND METHODS 48 rats were allocated equally into four groups: control group: (given normal saline), QE group: (given 80 mg/kg of QE orally daily for 2 weeks), Dox group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections), and Dox+QE group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections and 80 mg/kg of QE orally daily for 2 weeks). Subsequently, biochemical analyses were carried out along with histopathological (light and electron microscopic) and immunohistochemical examinations of the cerebral cortex and hippocampus. RESULTS The Dox group revealed a decline in the activities of superoxide dismutase, catalase, and glutathione peroxidase, along with an increase in malondialdehyde and an increase in DNA damage. Furthermore, sections of the cerebral cortex and hippocampus revealed neurodegenerative changes, decreased synaptophysin, and increased Interleukin-1 beta expressions. Biochemical and histopathological results were markedly improved by QE administration. CONCLUSIONS It can be concluded that QE induces protective effects against Dox-induced neurotoxicity.
Collapse
Affiliation(s)
- Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Anatomy, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Ibrahim Amin Ibrahim
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Mahde Kamel
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ola Ali Abdelwahab
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Da-Silva OF, Adelowo AR, Babalola AA, Ikeji CN, Owoeye O, Rocha JBT, Adedara IA, Farombi EO. Diphenyl Diselenide Through Reduction of Inflammation, Oxidative Injury and Caspase-3 Activation Abates Doxorubicin-Induced Neurotoxicity in Rats. Neurochem Res 2024; 49:1076-1092. [PMID: 38267690 DOI: 10.1007/s11064-023-04098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.
Collapse
Affiliation(s)
- Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin R Adelowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesina A Babalola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Xie H, Cheng Y, Cai Y, Ren T, Zhang B, Chen N, Wang J. A H 2O 2-specific fluorescent probe for evaluating oxidative stress in pesticides-treated cells, rice roots and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133426. [PMID: 38185089 DOI: 10.1016/j.jhazmat.2024.133426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Hydrogen peroxide (H2O2) plays an irreplaceable role in the evaluation of the redox status in versatile circumstances. The levels of H2O2 can be affected by both internal and external stimuli, including environmental hazards. Abnormal production of H2O2 is a common characteristic of pesticide-caused damage. Therefore, H2O2 levels can intuitively and conveniently reflect the oxidative stress caused by various pesticides in cells and organisms. However, reliable and convenient monitoring of H2O2 in living cells is still limited by the lack of specific imaging probes. In this study, a fluorescent probe (HBTM-HP) was developed for in situ observation of H2O2 fluctuations caused by pesticide treatment over time in mammalian cells, rice roots and zebrafish. HBTM-HP showed high sensitivity and selectivity for H2O2. Fluorescence imaging results confirmed that HBTM-HP could be applied to reveal H2O2 production induced by multiple pesticides. This study revealed that HBTM-HP could serves as a versatile tool to monitor the redox status related to H2O2 both in vitro and in vivo upon exposure to pesticides, and also provides a basis for clarifying the mechanisms of pesticides in physiological and pathological processes.
Collapse
Affiliation(s)
- Hui Xie
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China; Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Yuchun Cheng
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Yiheng Cai
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Tianrui Ren
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Nan Chen
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China.
| | - Jian Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China.
| |
Collapse
|
9
|
Liu M, Huang S, Park S. Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways. Photochem Photobiol Sci 2024; 23:463-478. [PMID: 38326693 DOI: 10.1007/s43630-023-00531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-β and wingless-related integration site (Wnt)/β-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), β-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/β-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating β-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, 048011, China
| | - Shaokai Huang
- Department of Bioconvergence, Hoseo University, Asan, 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea.
| |
Collapse
|
10
|
Fatima T, Abrar H, Jahan N, Shamim S, Ahmed N, Ali AB, Begum I, Ahmed W. Molecular marker identification, antioxidant, antinociceptive, and anti-inflammatory responsiveness of malonic acid capped silver nanoparticle. Front Pharmacol 2024; 14:1319613. [PMID: 38357362 PMCID: PMC10864560 DOI: 10.3389/fphar.2023.1319613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Nano-sized silver has drawn a great deal of attention in the field of health sciences owing to its remarkable therapeutic applications. Interestingly, the method applied to synthesize nanoparticles and the choice of reagents considerably influence their therapeutic potential and toxicities. Current research has explored the toxicity, anti-inflammatory, antinociceptive, and antioxidant responses of the malonic acid-capped silver nanoparticles (MA-AgNPs (C) by using sodium borohydride as a reducing agent at low temperatures by employing both in vitro and in vivo approaches. Furthermore, it has highlighted the synergistic effect of these novel compounds with conventional anti-inflammatory therapeutic agents. Acute and sub-acute toxicity analysis performed following OECD guidelines showed that the studied MA-AgNPs (C) are safer, and prominent toxic signs have not been detected at the highest studied dose of 2,000 mg/kg. Cytotoxicity evaluation through brine shrimp lethality revealed 20% lethality at the highest concentration of 169.8 μg/mL. Significantly, positive anti-inflammatory and analgesic responses alone as well as synergism with the standard were identified through in vitro as well as in vivo methods which were more potent at a lower dose (200 mg/kg). Notably synergistic outcomes were more pronounced than individual ones, indicating their prominent effect as a feasible drug delivery system. IL-6 and TNF-α assessment in excised paw tissue through RTPCR technique further supported their anti-inflammatory potential. DPPH assay revealed eminent in vitro antioxidant activity which was further corroborated by in vivo antioxidant assessment through evaluation of SOD in excised paw tissue.
Collapse
Affiliation(s)
- Tehrim Fatima
- Department of Pharmacology, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Hina Abrar
- Department of Pharmacology, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Noor Jahan
- Department of Pharmacology, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sana Shamim
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Nazia Ahmed
- Dow Research Institute of Biotechnology and Biosciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Asma Basharat Ali
- Department of Anatomy, Jinnah Medical and Dental College, Karachi, Pakistan
| | - Irshad Begum
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Waqas Ahmed
- School of Public Health, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
11
|
Qu Z, Tian J, Sun J, Shi Y, Yu J, Zhang W, Zhuang C. Diallyl trisulfide inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer via modulating gut microbiota and the PPARγ/NF-κB pathway. Food Funct 2024; 15:158-171. [PMID: 38086660 DOI: 10.1039/d3fo03914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Smoking is the primary risk factor for developing lung cancer. Chemoprevention could be a promising strategy to reduce the incidence and mortality rates of lung cancer. Recently, we reported that A/J mice exposed to tobacco smoke carcinogens displayed the reshaping of gut microbiota. Additionally, garlic oil was found to effectively inhibit the carcinogenic effects of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in lung tumorigenesis. Diallyl trisulfide (DATS), which is the predominant compound in garlic oil, exhibits various biological activities. To further explore the chemopreventive action and potential mechanism of DATS on lung tumorigenesis, we established a lung adenocarcinoma model in A/J mice stimulated by NNK. Subsequently, we employed multi-omics combined molecular biology technologies to clarify the mechanism. The results indicated that DATS significantly decreased the number of lung tumors in NNK induced A/J mice. Interestingly, we discovered that DATS could modulate gut microbiota, particularly increasing the abundance of F. rodentium, which has inhibitory effects on tumor growth. Mechanistically, DATS could activate the PPARγ pathway, leading to the negative regulation of the NF-κB signaling pathway and subsequent suppression of NF-κB-mediated inflammatory factors. Collectively, these findings provide support for DATS as a potential novel chemopreventive agent for tobacco carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Zhuo Qu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiahui Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin 300134, China
| | - Ying Shi
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Wannian Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunlin Zhuang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
12
|
Sun Y, Xu D, Yang W, Zhang H, Su Y, Gao B, Zou X, Zhong Y, Sun H, Xiang L. Diallyl trisulfide improves spinal cord ischemia-reperfusion injury damage by activating AMPK to stabilize mitochondrial function. J Orthop Surg Res 2023; 18:838. [PMID: 37932742 PMCID: PMC10629077 DOI: 10.1186/s13018-023-04176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Spinal cord ischemia-reperfusion injury (SCII) is a catastrophic event, which can cause paraplegia in severe cases. In the reperfusion stage, oxidative stress was up-regulated, which aggravated the injury and apoptosis of neurons. As the main active ingredient of garlic, diallyl trisulfide (DATS) displays strong antioxidant capacity. However, it is unknown whether DATS can protect the neurons of SCII. MATERIALS AND METHODS In this study, the descending aorta at the distal end of the left subclavian artery was ligated and perfused again after 14 min. Samples including blood and spinal cord (L2-L5) were taken 24 h later for morphological and biochemical examination. RESULTS After SCII, the rats showed motor dysfunction, increase apoptosis, malondialdehyde content, mitochondrial biogenesis and dynamic balance disorder. After the application of DATS, the adenosine monophosphate activated protein kinase (AMPK) was activated, the mitochondrial damage was improved, the oxidative stress was weakened, and the neuronal damage was recovered to some extent. However, the addition of compound C significantly weakened the protective effect of DATS. CONCLUSION Oxidative stress caused by mitochondrial damage was one of the important mechanisms of neuronal damage in SCII. DATS could activate AMPK, stabilize mitochondrial biogenesis and dynamic balance, and reduce neuronal damage caused by oxidative stress.
Collapse
Affiliation(s)
- Yang Sun
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
- Postgraduate College, China Medical University, No. 77, Puhe Road, New Shenbei District, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Dengyue Xu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Weidong Yang
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Hongquan Zhang
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Yi Su
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Bin Gao
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Xiaowei Zou
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Yiming Zhong
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Huanwei Sun
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China.
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
13
|
Li X, Gao Y, Li B, Zhao W, Cai Q, Yin W, Zeng S, Li X, Gao H, Cheng M. Integrated proteomics and metabolomics analysis of D-pinitol function during hippocampal damage in streptozocin-induced aging-accelerated mice. Front Mol Neurosci 2023; 16:1251513. [PMID: 38025258 PMCID: PMC10664147 DOI: 10.3389/fnmol.2023.1251513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Diabetes can cause hippocampal damage and lead to cognitive impairment. Diabetic cognitive impairment (DCI) is a chronic complication of diabetes associated with a high disability rate; however, its pathogenesis and therapeutic targets are unclear. We aimed to explore the mechanism of hippocampal damage during diabetes and evaluate the potential role of D-pinitol (DP) in protecting hippocampal tissue and improving cognitive dysfunction. Methods DP (150 mg/kg/day) was administered intragastrically to streptozocin-induced aging-accelerated mice for 8 weeks. Hippocampal tissues were examined using tandem mass tag (TMT)-based proteomics and liquid chromatography-mass spectrometry (LC-MS)/MS-based non-targeted metabolomic analysis. Differentially expressed proteins (DEPs) and differentially regulated metabolites (DRMs) were screened for further analysis, and some DEPs were verified using western blotting. Results Our results showed that 329 proteins had significantly altered hippocampal expression in untreated diabetic mice (DM), which was restored to normal after DP treatment in 72 cases. In total, 207 DRMs were identified in the DM group, and the expression of 32 DRMs was restored to normal post-DP treatment. These proteins and metabolites are involved in metabolic pathways (purine metabolism, arginine and proline metabolism, and histidine metabolism), actin cytoskeleton regulation, oxidative phosphorylation, and Rap1-mediated signaling. Conclusions Our study may help to better understand the mechanism of diabetic hippocampal damage and cognitive impairment and suggest a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
- Department of Diabetes, The Third People's Hospital of Gansu Province, Lanzhou, China
| | - Yuan Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Qian Cai
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Wenbin Yin
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Shudong Zeng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Xiaoli Li
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| |
Collapse
|
14
|
Kamińska K, Cudnoch-Jędrzejewska A. A Review on the Neurotoxic Effects of Doxorubicin. Neurotox Res 2023; 41:383-397. [PMID: 37351828 PMCID: PMC10499694 DOI: 10.1007/s12640-023-00652-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Anthracyclines, a class of drugs considered as most effective anticancer drugs, used in the various regimens of cancer chemotherapy, induce long-term impairment of mitochondrial respiration, increase reactive oxygen species, and induce other mechanisms potentially leading to neurotoxicity. According to literature findings, one drug of this class - doxorubicin used to treat e.g. breast cancer, bladder cancer, lymphoma, and acute lymphocytic leukemia may induce such effects in the nervous system. Doxorubicin has poor penetration into the brain due to the lack of drug penetration through the blood-brain barrier, thus the toxicity of this agent is the result of its peripheral action. This action is manifested by cognitive impairment and anatomical changes in the brain and peripheral nervous system found in both preclinical and clinical studies in adult patients. Furthermore, more than 50% of children with cancer are treated with anthracyclines including doxorubicin, which may affect their nervous system, and lead to lifelong damage in many areas of their life. Despite ongoing research into the side effects of this drug, the mechanism of its neurotoxicity action on the central and peripheral nervous system is still not well understood. This review aims to summarize the neurotoxic effects of doxorubicin in preclinical (in vitro and in vivo) research and in clinical studies. Furthermore, it discusses the possible mechanisms of the toxic action of this agent on the nervous system.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
15
|
Hsieh DJY, Tsai BCK, Barik P, Shibu MA, Kuo CH, Kuo WW, Lin PY, Shih CY, Lin SZ, Ho TJ, Huang CY. Human adipose-derived stem cells preconditioned with a novel herbal formulation Jing Shi attenuate doxorubicin-induced cardiac damage. Aging (Albany NY) 2023; 15:9167-9181. [PMID: 37708248 PMCID: PMC10522400 DOI: 10.18632/aging.205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 μg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.
Collapse
Affiliation(s)
- Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Parthasarathi Barik
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, USA
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | | | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
16
|
Mohammed AS, Al-Hassani AN, Alrawi RA, Tawfeeq RD. The protective effect of taurine, piracetam and vinpocetine on etoposide-induced inflammation and brain injury in the serum of female albino rats. Ecancermedicalscience 2023; 17:1499. [PMID: 36816786 PMCID: PMC9937074 DOI: 10.3332/ecancer.2023.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 01/24/2023] Open
Abstract
Etoposide (ETP) is one of the leading antitumour agents in cancer chemotherapy. Many studies have reported on ETP-induced peripheral neuropathy; however, few reports have focused on its brain toxicity. The current research investigates the protective potential of taurine, piracetam and vinpocetine on serum biomarkers associated with inflammation and brain injury induced by ETP in a rodent model. A total of 30 female albino rats were equally divided into five groups; the 1st and 2nd groups were the control and ETP-treated groups, respectively, while the 3rd, 4th and 5th groups were ETP-treated rats cotreated with taurine, piracetam and vinpocetine, respectively. Administration of ETP reduced body weight significantly, enhanced production of serum proinflammatory cytokines including tumour necrosis factor-alpha, interleukin-1 beta (IL-1β) and IL-6 and decreased glutathione serum levels. Moreover, ETP treatment resulted in upregulation of glial fibrillary acidic protein expression and histopathological alterations in the rats' brain compared to the control group. Co-treatment with taurine, piracetam and vinpocetine counteracted ETP-induced brain injury and altered serum biomarkers levels. We concluded that co-treatment with vinpocetine could serve as a complementary therapeutic agent in reducing brain injury and toxicity induced by ETP.
Collapse
Affiliation(s)
- Arwa Salam Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Ansam N Al-Hassani
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Rafal Abdulrazaq Alrawi
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Rawaz D Tawfeeq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| |
Collapse
|
17
|
El-Ashmawy NE, Khedr NF, Shaban MN, Al-Ashmawy GM. Diallyl trisulfide modulated autophagy in isoproterenol induced acute myocardial infarction. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-022-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Abstract
Background
Acute myocardial infarction (AMI) is the most serious manifestation of coronary artery disease. The initial ischemia in AMI causes biochemical and metabolic alterations in cardiomyocytes.
Objectives
The present study aimed to investigate the biomolecular mechanisms underlying cardioprotective effects of diallyl trisulfide (DATS) as well as captopril (CAP) in isoproterenol (ISO) induced AMI focusing on autophagy & PI3K/Akt signaling.
Methods
Seventy male Albino rats were divided into seven groups as follows: Normal control, ISO, ISO + LY294002 (PI3K inhibitor), DATS+ISO, CAP+ISO, DATS+LY294002 + ISO, and CAP+LY294002 + ISO. All treatments (40 mg/kg DATS, 50 mg/kg CAP & 0.3 mg/kg LY294002) were given daily for two weeks before ISO injection (85 mg/kg for 2 days). At the end of the experiment, serum and cardiac tissues were collected. Serum cardiac troponin I (cTnI), and creatine kinase MB (CK-MB) were measured. Cardiac glutathione peroxidase (GSH-px), malondialdehyde (MDA), hypoxia-inducible factor 1 alpha (HIF-1α), autophagy proteins (P62 & LC3IIB) and gene expression of PI3K, Akt, FOXO-1, and eNOS were assessed. Histopathological examination of heart tissue was performed.
Results
DATS and CAP significantly (p < 0.01) decreased serum CK-MB and cTnI, cardiac levels of MDA, HIF-1α, p62 and LC3IIB along with an increase in GSH-px activity compared with ISO group. Moreover, DATS and CAP significantly up-regulated PI3K, Akt, and eNOS gene expression but down-regulated FOXO-1 expression compared to ISO group. However, LY294002 reversed DATS and CAP cardioprotective effects.
Conclusion
DATS and CAP prior treatment proved cardioprotective effects via modulation of autophagy, PI3K/Akt signaling, eNOS and FOXO-1 downregulation in ISO induced AMI rat model.
Collapse
|
18
|
Ongnok B, Maneechote C, Chunchai T, Pantiya P, Arunsak B, Nawara W, Chattipakorn N, Chattipakorn SC. Modulation of mitochondrial dynamics rescues cognitive function in rats with 'doxorubicin-induced chemobrain' via mitigation of mitochondrial dysfunction and neuroinflammation. FEBS J 2022; 289:6435-6455. [PMID: 35514149 DOI: 10.1111/febs.16474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 05/04/2022] [Indexed: 01/18/2023]
Abstract
Doxorubicin (DOX), an effective, extensively used chemotherapeutic drug, can cause cognitive deterioration in cancer patients. The associated debilitating neurological sequelae are referred to as chemobrain. Our recent work demonstrated that Dox treatment resulted in an imbalance in mitochondrial dynamics, ultimately culminating in cognitive decline in rats. Therefore, in this study, we aim to explore the therapeutic efficacy of a pharmacological intervention, which modulates mitochondrial dynamics using a potent mitochondrial fission inhibitor (Mdivi-1) and mitochondrial fusion promoter (M1) against Dox-induced chemobrain. In the study, male Wistar rats were randomly assigned to receive either normal saline solution or six doses of Dox (3 mg·kg-1 ) via intraperitoneal injection. Then, the Dox-treated rats were intraperitoneally given either 1% DMSO as the vehicle, Mdivi-1 (1.2 mg·kg-1 ), M1 (2 mg·kg-1 ), or a combined treatment of Mdivi-1 and M1 for 30 consecutive days. Long-term learning and memory were evaluated using the novel object location task and novel object recognition task. Following euthanasia, the rat brains were dissected to enable further molecular investigation. We demonstrated that long-term treatment with mitochondrial dynamic modulators suppressed mitochondrial fission in the hippocampus following Dox treatment, leading to an improvement in brain homeostasis. Mitochondrial dynamic modulator treatments restored cognitive function in Dox-treated rats by attenuating neuroinflammation, decreasing oxidative stress, preserving synaptic integrity, reducing potential Alzheimer's related lesions, and mitigating both apoptosis and necroptosis following Dox administration. Together, our findings suggested that mitochondrial dynamics modulators protected against Dox-induced cognitive impairment by rebalancing mitochondrial homeostasis and attenuating both oxidative and inflammatory insults.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Chayodom Maneechote
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Busarin Arunsak
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Wichwara Nawara
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Thailand
| |
Collapse
|
19
|
Zhang T, Dong Z, Liu F, Pan E, He N, Ma F, Wang G, Wang Y, Dong J. Avermectin induces carp neurotoxicity by mediating blood-brain barrier dysfunction, oxidative stress, inflammation, and apoptosis through PI3K/Akt and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113961. [PMID: 35969982 DOI: 10.1016/j.ecoenv.2022.113961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Avermectin, a "low toxicity insecticide", has been widely used in recent years, but its non-target toxicity, especially to aquatic organisms, has been neglected. In this study, we evaluated the neurotoxic effects of avermectin on carp by establishing a 96 h avermectin acute toxicity test, and its possible mechanism was discussed. The 96 h LC50 of avermectin in carp was found to be 24.04 μg/L. Therefore, 3.005 μg/L and 12.02 μg/L were used as the low-dose and high-dose groups, respectively, to investigate the neurotoxic effects of avermectin on carp. The results of high-performance liquid chromatography (HPLC) analysis showed that avermectin accumulated in the carp brain. Histopathological observation and immunohistochemical analysis (IHC) of TNF-α and Bax showed that avermectin exposure led to inflammatory cell infiltration and neuronal necrosis. The mRNA levels of tight junction genes and the IHC results of ZO-1 and Occludin showed that the structure of the blood-brain barrier (BBB) was destroyed. Biochemical analysis showed that avermectin induced the accumulation of MDA in the brain and decreased the activity of antioxidant enzymes CAT and SOD, leading to oxidative stress. In addition, avermectin induces brain inflammation by activating NF-κB pathway and releasing inflammatory factors IL-1β, IL-6, TNF-α and iNOS. TEM and TUNEL assays showed that exposure to avermectin induced apoptosis in brain. what is more, the expression of apoptosis-related genes and proteins suggested that avermectin-induced apoptosis may be associated with inhibition of the PI3K/Akt signaling pathway. This study also showed that avermectin-induced NF-κB signaling activation was partially dependent on its upstream PI3K/Akt signaling pathway. Therefore, this study concludes that avermectin can induce neurotoxicity in carp by disrupting the blood-brain barrier structure and generating oxidative stress, inflammation, and apoptosis and that NF-κB and PI3K/Akt signaling pathways are involved in this process.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhuhua Dong
- Deapartment of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
20
|
Chunchai T, Arinno A, Ongnok B, Pantiya P, Khuanjing T, Prathumsap N, Maneechote C, Chattipakorn N, Chattipakorn SC. Ranolazine alleviated cardiac/brain dysfunction in doxorubicin-treated rats. Exp Mol Pathol 2022; 127:104818. [PMID: 35882281 DOI: 10.1016/j.yexmp.2022.104818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 02/08/2023]
Abstract
Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
21
|
Abd El-Aal SA, AbdElrahman M, Reda AM, Afify H, Ragab GM, El-Gazar AA, Ibrahim SSA. Galangin Mitigates DOX-induced Cognitive Impairment in Rats: Implication of NOX-1/Nrf-2/HMGB1/TLR4 and TNF-α/MAPKs/RIPK/MLKL/BDNF. Neurotoxicology 2022; 92:77-90. [PMID: 35843304 DOI: 10.1016/j.neuro.2022.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
The cognitive and behavioral decline observed in cancer survivors who underwent doxorubicin (DOX)-based treatment raises the need for therapeutic interventions to counteract these complications. Galangin (GAL) is a flavonoid-based phytochemical with pronounced protective effects in various neurological disorders. However, its impact on DOX-provoked neurotoxicity has not been clarified. Hence, the current investigation aimed to explore the ability of GAL to ameliorate DOX-provoked chemo-brain in rats. DOX (2mg/kg, once/week, i.p.) and GAL (50mg/kg, 5 times/week., via gavage) were administered for four successive weeks. The MWM and EPM tests were used to evaluate memory disruption and anxiety-like behavior, respectively. Meanwhile, targeted biochemical markers and molecular signals were examined by the aid of ELISA, Western blotting, and immune-histochemistry. In contrast to DOX-impaired rats, GAL effectively preserved hippocampal neurons, improved cognitive/behavioral functions, and enhanced the expression of the cell repair/growth index and BDNF. The antioxidant feature of GAL was confirmed by the amelioration of MDA, NO and NOX-1, along with restoring the Nrf-2/HO-1/GSH cue. In addition, GAL displayed marked anti-inflammatory properties as verified by the suppression of the HMGB1/TLR4 nexus and p-NF-κB p65 to inhibit TNF-α, IL-6, IL-1β, and iNOS. This inhibitory impact extended to entail astrocyte activation, as evidenced by the diminution of GFAP. These beneficial effects were associated with a notable reduction in p-p38MAPK, p-JNK1/2, and p-ERK1/2, as well as the necroptosis cascade p-RIPK1/p-RIPK3/p-MLKL. Together, these pleiotropic protective impacts advocate the concurrent use of GAL as an adjuvant agent for managing DOX-driven neurodegeneration and cognitive/behavioral deficits. DATA AVAILABILITY: The authors confirm that all relevant data are included in the supplementary materials.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon 51001, Iraq; Department of Clinical Pharmacy, Badr University Hospital, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | |
Collapse
|
22
|
Bolton SG, Pluth MD. Efficient inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by sulfuration with solubilized elemental sulfur. Free Radic Biol Med 2022; 185:46-51. [PMID: 35470062 DOI: 10.1016/j.freeradbiomed.2022.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO) have garnered increasing scientific interest in recent decades due to their classifications as members of the gasotransmitter family of signaling molecules. Due to the versatility of sulfur redox chemistry in biological systems, H2S specifically is being studied for its ability to modulate cellular redox environments, particularly through the downstream production of oxidized sulfur species. A major mechanism of this regulation is through a posttranslational modification known as persulfidation, where oxidized sulfur atoms are appended to free cysteine in proteins. Currently, it is difficult to discern the activity of H2S itself versus these oxidized sulfur species, particularly sulfane sulfur (S0). We have previously developed a method of solvating S8, a source of pure S0, to more accurately study persulfidation and sulfuration in general. Here, we apply this pure S0 to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which has previously been shown to be inhibited by S0-containing polysulfides via persulfidation. Using solvated S0, we demonstrate that native, reduced GAPDH can be completely inhibited by sulfuration with S0. Further, oxidized GAPDH activity cannot be rescued using S0, demonstrating that it is the oxidation of reduced GAPDH by S0 that curtails its activity. We also compare inhibition of GAPDH by pure S0 to different polysulfides and demonstrate the modulating effects that pendant alkyl groups have on GAPDH inhibition. These results highlight the promise of this novel, simplified system for the study of S0.
Collapse
Affiliation(s)
- Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
23
|
Xia SL, Ma ZY, Wang B, Gao F, Yi CG, Zhou XX, Guo SY, Zhou L. In vitro anti-synovial sarcoma effect of diallyl trisulfide and mRNA profiling. Gene 2022; 816:146172. [PMID: 34995734 DOI: 10.1016/j.gene.2021.146172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Synovial sarcoma (SS) is a malignant soft tissue sarcoma and its natural history is a long, indolent clinical course followed by high rate of local recurrence and distant metastasis. Current therapies are still limited in increasing satisfactory of 5-year survival, especially for patients with recurrence and metastasis. Accordingly, finding new therapeutic drug for SS treatment is clinically urgent need. Diallyl trisulfide (DATS), a bioactive compound derived from garlic, is reported as a promising anti-cancer agent for various carcinomas. However, its effect on anti-SS remains unknown. This study investigated the anti-SS effect of DATS in human synovial sarcoma SW982 cells. METHODS CCK-8 assay were used to examine the cell viability. High-content Imaging System was used to examine the apoptosis, intracellular ROS and autophagy. Flow cytometry was used to detect cell cycle. qPCR and Western blot were used to examine the expression of related mRNA and protein. High-throughput RNA-sequencing and bio-information analysis were used to investigate the mRNA profiling. RESULTS The results showed a suppressive effect of DATS on tumor biology of SW982 cells including inducing apoptosis, triggering G2/M cell cycle arrest, elevating intracellular ROS and damaging mitochondria. Further high-throughput RNA-sequencing analysis clarified a comprehensive molecular portrait for DATS-induced transcriptional regulation. Besides, protein-protein interaction (PPI) analysis demonstrated that a network consisted of FOXM1, CCNA2, CCNB1, MYBL2, PLK1 and CDK1 might be response for DATS-induced G2/M cell cycle arrest and increased intracellular ROS. Notably, protein feature analysis revealed structure enrichment in microtubule network like kinesin motors domain, and tubulin domain. Molecular function analysis suggested that DATS-induced dysfunction of microtubule network might be the major cause for its effect on cell cycle arrest and successive apoptosis. Furthermore, 28 hub genes (including KIF2C, PLK1, CDK1, BIRC5, CCNB2, CENPF, TPX2, TOP2A and so on) were determined. Finally, pathway analysis showed that DATS-induced differentially expressed genes were mainly involved in cell cycle. CONCLUSION Collectively, our findings for the first time provided the DATS-induced cellular response and transcriptional profiling of SW982 cells, which proposes that suppression of DATS on SS is multi-targeted and represent a therapeutic evidence for SS.
Collapse
MESH Headings
- Allyl Compounds/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Autophagy/drug effects
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Databases, Genetic
- Drug Screening Assays, Antitumor
- Flow Cytometry
- Garlic/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mitochondria/drug effects
- Protein Interaction Maps/drug effects
- RNA, Messenger
- RNA, Neoplasm/chemistry
- Reactive Oxygen Species/metabolism
- Sarcoma, Synovial/drug therapy
- Sarcoma, Synovial/genetics
- Sequence Analysis, RNA
- Sulfides/therapeutic use
- Transcriptome
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Cun-Guo Yi
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Xiao-Xiao Zhou
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Li Zhou
- Department of Oncology and Hematology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China.
| |
Collapse
|
24
|
Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L, Tang QZ. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. Int J Biol Sci 2022; 18:760-770. [PMID: 35002523 PMCID: PMC8741835 DOI: 10.7150/ijbs.65258] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
25
|
Orabi MAA, Khalil HMA, Abouelela ME, Zaafar D, Ahmed YH, Naggar RA, Alyami HS, Abdel-Sattar ES, Matsunami K, Hamdan DI. Carissa macrocarpa Leaves Polar Fraction Ameliorates Doxorubicin-Induced Neurotoxicity in Rats via Downregulating the Oxidative Stress and Inflammatory Markers. Pharmaceuticals (Basel) 2021; 14:1305. [PMID: 34959705 PMCID: PMC8709457 DOI: 10.3390/ph14121305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia;
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt;
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Information and Technology, Cairo 11311, Egypt;
| | - Yasmine H. Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Reham A. Naggar
- Department of pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza 12566, Egypt;
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia;
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan;
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom 32511, Egypt
| |
Collapse
|
26
|
Orabi MAA, Khalil HMA, Abouelela ME, Zaafar D, Ahmed YH, Naggar RA, Alyami HS, Abdel-Sattar ES, Matsunami K, Hamdan DI. Carissa macrocarpa Leaves Polar Fraction Ameliorates Doxorubicin-Induced Neurotoxicity in Rats via Downregulating the Oxidative Stress and Inflammatory Markers. Pharmaceuticals (Basel) 2021; 14:1305. [DOI: https:/doi.org/10.3390/ph14121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Information and Technology, Cairo 11311, Egypt
| | - Yasmine H. Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Reham A. Naggar
- Department of Pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza 12566, Egypt
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom 32511, Egypt
| |
Collapse
|
27
|
Orabi MAA, Khalil HMA, Abouelela ME, Zaafar D, Ahmed YH, Naggar RA, Alyami HS, Abdel-Sattar ES, Matsunami K, Hamdan DI. Carissa macrocarpa Leaves Polar Fraction Ameliorates Doxorubicin-Induced Neurotoxicity in Rats via Downregulating the Oxidative Stress and Inflammatory Markers. Pharmaceuticals (Basel) 2021. [DOI: https://doi.org/10.3390/ph14121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.
Collapse
|
28
|
Ali A, Shibu MA, Kuo CH, Lo JF, Chen RJ, Day CH, Ho TJ, PadmaViswanadha V, Kuo WW, Huang CY. CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med 2021; 173:70-80. [PMID: 34298092 DOI: 10.1016/j.freeradbiomed.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Accumulating studies have demonstrated the protective roles of mesenchymal stem cells against several disorders. However, one of their crucial limitations is reduced viability under stress conditions, including the hyperglycemia induced by diabetes. The molecular mechanisms involved in diabetes-induced kidney injuries are not fully elucidated. In this study, we found that high glucose (HG) reduced human proximal tubular epithelial cell viability. Further, hyperglycemia induced oxidative stress-mediated apoptosis and fibrosis in HK-2 cells via activation of the mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal kinase JNK and p38 kinase. Carboxyl terminus of HSP70 interacting protein (CHIP) overactivation considerably rescued cell viability under HG stress. Moreover, Western blot analysis, flow cytometry, and MitoSOX staining revealed that hyperglycemia-induced mitochondrial oxidative stress production and apoptosis were attenuated in CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Co-culture with CHIP-expressing WJMSCs maintained HK-2 cell viability, and inhibited apoptosis and fibrosis by attenuating HG-induced ROS-mediated MAPK activation. CHIP-overexpressing WJMSCs also rescued the decreased kidney weight and hyperglycemia-induced kidney damage observed in streptozotocin-induced diabetic rats. Cumulatively, the current research findings demonstrate that CHIP suppresses hyperglycemia-induced oxidative stress and confers resistance to MAPK-induced apoptosis and fibrosis, and suggests that CHIP protects WJMSCs and the high quality WJMSCs have therapeutic effects against diabetes-induced kidney injuries.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
29
|
Ibrahim Fouad G, Ahmed KA. Neuroprotective Potential of Berberine Against Doxorubicin-Induced Toxicity in Rat's Brain. Neurochem Res 2021; 46:3247-3263. [PMID: 34403065 DOI: 10.1007/s11064-021-03428-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/13/2023]
Abstract
Chemotherapy-associated neurotoxicity is one of the principal side-effects for doxorubicin (DOX)-treated cancer patients. Despite its poor-penetration across the blood-brain barrier (BBB), DOX is linked to the induction of oxidative stress and neuroinflammation. Berberine (BEB) is a natural polyphenolic alkaloid, which exhibits unique antioxidant activity and anti-inflammatory potential. The present study was performed to investigate the neuroprotective potential of BEB in a rodent model of DOX-induced neurotoxicity. Neurotoxicity was induced in rats via a single acute dose of DOX (20 mg/kg/week, i.p.). BEB was administered at 50 mg/kg/day orally for 10 days before and 4 days after DOX administration. Brain acetylcholinesterase (AChE) activities were evaluated. Oxidative stress was investigated via the colorimetric determination of lipid peroxides, glutathione reduced (GSH) contents and catalase (CAT) activities in the brain tissue. In addition, DOX-induced genotoxicity was evaluated using comet assay. DOX produced a significant elevation in AChE activities. Additionally, DOX provoked oxidative stress as evidenced from the significant elevation in lipid peroxidation along with depletion in GSH contents and CAT activities. Moreover, DOX resulted in neuroinflammation as indicated by the elevation of pro-inflammatory mediator glial fibrillary acid protein (GFAP), as well as, the pro-apoptotic nuclear factor kappa B (NF-κB) and caspase-3 in brain tissue. Co-treatment with BEB significantly counteracted DOX-induced oxidative stress, neuroinflammation and genotoxicity. Histopathological and immunohistochemical examination supported the biochemical results. BEB demonstrated neuroprotective potential through exerting cholinergic, anti-oxidative, genoprotective, anti-inflammatory, and anti-apoptotic activities. Our findings present BEB as a promising "pre-clinical" neuroprotective agent against DOX-induced neurotoxicity during anti-neoplastic therapy.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
30
|
Tang S, Kan J, Sun R, Cai H, Hong J, Jin C, Zong S. Anthocyanins from purple sweet potato alleviate doxorubicin-induced cardiotoxicity in vitro and in vivo. J Food Biochem 2021; 45:e13869. [PMID: 34287964 DOI: 10.1111/jfbc.13869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022]
Abstract
In this study, anthocyanins were extracted and purified from purple sweet potato anthocyanins (PSPA) and the alleviative effect of PSPA on doxorubicin (DOX)-induced cardiotoxicity was investigated. High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) results showed that 10 kinds of substances were identified in PSPA and the PSPA was mainly composed of cyanidin (62.9%) and peonidin (21.46%). In in vitro experiments, PSPA reduced the excessive release of inflammatory factors (NO and TNF-α) induced by DOX and decreased the secretion of trimethylamine oxide (TMAO), lactic dehydrogenase (LDH), and creatine kinase (CK) caused by myocardial injury. In in vivo experiments, PSPA inhibited the release of NO and MDA levels in heart tissue. Meanwhile, mice treated with PSPA decreased the levels of LDH, CK, TNF-α, and TMAO in serum and heart tissue when compared with the DOX group. In addition, the histopathological results of the heart tissue also showed a protective effect of PSPA on the pathological changes in heart. These results provide a reference for the application of PSPA as a functional food to intervene in DOX-induced cardiotoxicity. PRACTICAL APPLICATIONS: The effects of anthocyanins from purple sweet potato anthocyanins (PSPA) on doxorubicin (DOX)-induced cardiotoxicity were investigated in vitro and in vivo. The results indicated that PSPA could significantly ameliorate DOX-induced heart failure. The obtained results could provide the potential application of PSPA as an alternative therapy for cardiotoxicity caused by DOX in the functional food industry.
Collapse
Affiliation(s)
- Sixue Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
31
|
Ongnok B, Khuanjing T, Chunchai T, Pantiya P, Kerdphoo S, Arunsak B, Nawara W, Jaiwongkam T, Apaijai N, Chattipakorn N, Chattipakorn SC. Donepezil Protects Against Doxorubicin-Induced Chemobrain in Rats via Attenuation of Inflammation and Oxidative Stress Without Interfering With Doxorubicin Efficacy. Neurotherapeutics 2021; 18:2107-2125. [PMID: 34312765 PMCID: PMC8608968 DOI: 10.1007/s13311-021-01092-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Although doxorubicin (Dox) is an effective chemotherapy medication used extensively in the treatment of breast cancer, it frequently causes debilitating neurological deficits known as chemobrain. Donepezil (DPZ), an acetylcholinesterase inhibitor, provides therapeutic benefits in various neuropathological conditions. However, comprehensive mechanistic insights regarding the neuroprotection of DPZ on cognition and brain pathologies in a Dox-induced chemobrain model remain obscure. Here, we demonstrated that Dox-treated rats manifested conspicuous cognitive deficits and developed chemobrain pathologies as indicated by brain inflammatory and oxidative insults, glial activation, defective mitochondrial homeostasis, increased potential lesions associated with Alzheimer's disease, disrupted neurogenesis, loss of dendritic spines, and ultimately neuronal death through both apoptosis and necroptosis. Intervention with DPZ co-treatment completely restored cognitive function by attenuating these pathological conditions induced by DOX. We also confirmed that DPZ treatment does not affect the anti-cancer efficacy of Dox in breast cancer cells. Together, our findings suggest that DPZ treatment confers potential neuroprotection against Dox-induced chemobrain.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Thawatchai Khuanjing
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, 50200, Chiang Mai, Thailand.
| |
Collapse
|
32
|
Yamaguchi Y, Hirata Y, Saito T, Kumagai H. Combined Effects of Amino Acids in Garlic and Buna-Shimeji ( Hypsizygus marmoreus) on Suppression of CCl 4-Induced Hepatic Injury in Rats. Foods 2021; 10:foods10071491. [PMID: 34199038 PMCID: PMC8306630 DOI: 10.3390/foods10071491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
The combination of the garlic-derived amino acid, S-allyl-l-cysteine sulfoxide (ACSO), and ornithine or arginine on CCl4-induced hepatic injury was examined. After investigating the effectiveness of the mixture of ACSO and ornithine or arginine in preventing hepatic injury in vivo, an extract rich in ACSO and ornithine was prepared by converting arginine in garlic to ornithine by arginase from Hypsizygus marmoreus (buna-shimeji), after screening the productivity of ornithine among 12 kinds of mushrooms. Co-administration of ACSO with ornithine or arginine suppressed the increase in aspartate transaminase, alanine transaminase, and thiobarbituric acid reactive substance, and the decrease in glutathione S-transferase and cytochrome p450 2E1 activities after CCl4 injection more effectively than a single administration of ACSO. All extracts prepared from garlic and buna-shimeji with low and high contents of ACSO and arginine or ornithine significantly suppressed CCl4-induced hepatic injury in rats. Considering that ACSO is tasteless, odourless, and enhances taste, and ornithine has a flat or sweet taste and masks bitterness, the extract rich in ACSO and ornithine from garlic and buna-shimeji could be considered a potential antioxidant food material that can be added to many kinds of food to prevent hepatic injury.
Collapse
Affiliation(s)
- Yusuke Yamaguchi
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan; (Y.Y.); (Y.H.)
| | - Yushi Hirata
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan; (Y.Y.); (Y.H.)
| | - Takeshi Saito
- ACERA Co., Ltd., 156 Nishitakahashi-machi, Kofu-shi 400-0826, Japan;
| | - Hitomi Kumagai
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan; (Y.Y.); (Y.H.)
- Correspondence: ; Tel.: +81-466-3946
| |
Collapse
|
33
|
John J, Kinra M, Mudgal J, Viswanatha GL, Nandakumar K. Animal models of chemotherapy-induced cognitive decline in preclinical drug development. Psychopharmacology (Berl) 2021; 238:3025-3053. [PMID: 34643772 PMCID: PMC8605973 DOI: 10.1007/s00213-021-05977-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/31/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Chemotherapy-induced cognitive impairment (CICI), chemobrain, and chemofog are the common terms for mental dysfunction in a cancer patient/survivor under the influence of chemotherapeutics. CICI is manifested as short/long term memory problems and delayed mental processing, which interferes with a person's day-to-day activities. Understanding CICI mechanisms help in developing therapeutic interventions that may alleviate the disease condition. Animal models facilitate critical evaluation to elucidate the underlying mechanisms and form an integral part of verifying different treatment hypotheses and strategies. OBJECTIVES A methodical evaluation of scientific literature is required to understand cognitive changes associated with the use of chemotherapeutic agents in different preclinical studies. This review mainly emphasizes animal models developed with various chemotherapeutic agents individually and in combination, with their proposed mechanisms contributing to the cognitive dysfunction. This review also points toward the analysis of chemobrain in healthy animals to understand the mechanism of interventions in absence of tumor and in tumor-bearing animals to mimic human cancer conditions to screen potential drug candidates against chemobrain. RESULTS Substantial memory deficit as a result of commonly used chemotherapeutic agents was evidenced in healthy and tumor-bearing animals. Spatial and episodic cognitive impairments, alterations in neurotrophins, oxidative and inflammatory markers, and changes in long-term potentiation were commonly observed changes in different animal models irrespective of the chemotherapeutic agent. CONCLUSION Dyscognition exists as one of the serious side effects of cancer chemotherapy. Due to differing mechanisms of chemotherapeutic agents with differing tendencies to alter behavioral and biochemical parameters, chemotherapy may present a significant risk in resulting memory impairments in healthy as well as tumor-bearing animals.
Collapse
Affiliation(s)
- Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - G. L. Viswanatha
- Independent Researcher, Kengeri, Bangalore, Karnataka India 560060
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| |
Collapse
|