1
|
Zheng ML, Yang ZH, He B, Sun X, Zhan YT, Shao AQ, Hong YC, Yin CX, Wang MZ, Ba YC, Ye P. GFOD1 regulates oxidative stress-induced damage in ADHD via NF-κB signaling pathway. Brain Res 2025; 1858:149605. [PMID: 40210145 DOI: 10.1016/j.brainres.2025.149605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a mental behavioral disorder that poses a serious health risk. Oxidative stress, which damages the function of neurons and astrocytes, has been discovered as a key factor contributing to ADHD pathology. A newly identified gene, Glucose-fructose oxidoreductase domain 1 (GFOD1), may be linked to the development of ADHD. It plays a role in regulating oxidative stress in ADHD; however, its exact role is unclear. This manuscript investigates the changes of GFOD1 expression and aim to correlate this with oxidative stress induced by NF-κB signaling pathway in the rat brains with ADHD and in vitro astrocytes. Our results revealed an increase in GFOD1 expression in the prefrontal cortex and cerebellar cortex of rats with ADHD, accompanied by neuronal injury and increased glial fibrillary acidic protein (GFAP) expression in astrocytes, concomitant with activation of the NF-κB p65/NOX2 signaling pathway. Along with this, GFOD1 overexpression in astrocytes resulted in an up-regulation of this signaling pathway similarly. Both ADHD rats and astrocytes in overexpressing GFOD1 showed elevated levels of reactive oxygen species (ROS) and Malondialdehyde (MDA), reduced activity of superoxide dismutase (SOD). Furthermore, treatment with the methylphenidate (MPH) did not affect GFOD1 expression. But it impacted the levels of oxidative stress mediated by the NF-κB p65/NOX2 signaling pathway. Overall, it is suggested that GFOD1 may contribute to increased levels of oxidative stress specifically in the prefrontal cortex and cerebellar cortex regions and astrocytes affected by ADHD via up-regulation of the NF-κB p65/NOX2/oxidative stress axis.
Collapse
Affiliation(s)
- Meng-Ling Zheng
- Department of Human Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan Province 650500, China.
| | - Zhi-Hong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Science, Kunming Medical University, Yunnan Province 650500, China.
| | - Bin He
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650500, China.
| | - Xin Sun
- Department of Human Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan Province 650500, China.
| | - Yu-Ting Zhan
- The First School of Clinical Medicine, Kunming Medical University Kunming, Yunnan Province 650500, China.
| | - An-Qi Shao
- Faculty of Basic Medical Science, Kunming Medical University, Yunnan Province 650500, China.
| | - Yu-Chen Hong
- Faculty of Basic Medical Science, Kunming Medical University, Yunnan Province 650500, China.
| | - Cai-Xin Yin
- Faculty of Basic Medical Science, Kunming Medical University, Yunnan Province 650500, China.
| | - Ming-Zheng Wang
- Faculty of Basic Medical Science, Kunming Medical University, Yunnan Province 650500, China.
| | - Ying-Chun Ba
- Department of Human Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan Province 650500, China.
| | - Pin Ye
- Department of Human Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
2
|
Xie XB, Shu Y, Cui ZJ. To activate NAD(P)H oxidase with a brief pulse of photodynamic action. FASEB J 2024; 38:e70246. [PMID: 39655710 PMCID: PMC11629461 DOI: 10.1096/fj.202402292r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidases (NOX) are a major cellular source of reactive oxygen species, regulating vital physiological functions, whose dys-regulation leads to a plethora of major diseases. Much effort has been made to develop varied types of NOX inhibitors, but biotechnologies for spatially and temporally controlled NOX activation, however, are not readily available. We previously found that ultraviolet A (UVA) irradiation activates NOX2 in rodent mast cells, to elicit persistent calcium spikes. NOX2 is composed of multiple subunits, making studies of its activation rather complicated. Here we show that the single-subunit nonrodent-expressing NOX5, when expressed ectopically in CHO-K1 cells, is activated by UVA irradiation (380 nm, 0.1-12 mW/cm2, 1.5 min) inducing repetitive calcium spikes, as monitored by Fura-2 fluorescent calcium imaging. UVA-elicited calcium oscillations are inhibited by NOX inhibitor diphenyleneiodonium chloride (DPI) and blocked by singlet oxygen (1O2) quencher Trolox-C (300 μM). A brief pulse of photodynamic action (1.5 min) with photosensitizer sulfonated aluminum phthalocyanine (SALPC 2 μM, 675 nm, 85 mW/cm2) in NOX5-CHO-K1 cells, or with genetically encoded protein photosensitizer miniSOG fused to N-terminus of NOX5 (450 nm, 85 mW/cm2) in miniSOG-NOX5-CHO-K1 cells, induces persistent calcium oscillations, which are blocked by DPI. In the presence of Trolox-C, miniSOG photodynamic action no longer induces any calcium increases in miniSOG-NOX5-CHO-K1 cells. DUOX2 in human thyroid follicular cells SW579 and in DUOX2-CHO-K1 cells is similarly activated by UVA irradiation and SALPC photodynamic action. These data together suggest that NOX is activated with a brief pulse of photodynamic action.
Collapse
Affiliation(s)
- Xiao Bing Xie
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yu Shu
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Zong Jie Cui
- College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
3
|
Eslami H, Rokhzadi K, Basiri M, Esmaeili-Mahani S, Mahmoodi Z, Haji-Allahverdipoor K. Direct Interaction of Minocycline to p47phox Contributes to its Attenuation of TNF-α-Mediated Neuronal PC12 Cell Death: Experimental and Simulation Validation. Cell Biochem Biophys 2024; 82:1261-1277. [PMID: 38739323 DOI: 10.1007/s12013-024-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Minocycline, a repurposed approved medication, shows promise in treating neurodegeneration. However, the specific pathways targeted by minocycline remain unclear despite the identification of molecular targets. This study explores minocycline's potential protective effects against TNF-α-mediated neuronal death in PC12 cells, with a focus on unraveling its interactions with key molecular targets. The study begins by exploring minocycline's protective role against TNF-α-mediated neuronal death in PC12 cells, showcasing a substantial reduction in cleaved caspase-3 expression, DNA fragmentation, and intracellular ROS levels following minocycline pretreatment. Subsequently, a comprehensive analysis utilizing pull-down assays, computational docking, mutation analysis, molecular dynamics simulations, and free energy calculations is conducted to elucidate the direct interaction between minocycline and p47phox-the organizer subunit of NADPH oxidase-2 (NOX2) complex. Computational insights, including a literature survey and analysis of key amino acid residues, reveal a potential binding site for minocycline around Trp193 and Cys196. In silico substitutions of Trp193 and Cys196 further confirm their importance in binding with minocycline. These integrated findings underscore minocycline's protective mechanisms, linking its direct interaction with p47phox to the modulation of NOX2 activity and attenuation of NOX-derived ROS generation. Minocycline demonstrates protective effects against TNF-α-induced PC12 cell death, potentially linked to its direct interaction with p47phox. This interaction leads to a reduction in NOX2 complex assembly, ultimately attenuating NOX-derived ROS generation. These findings hold significance for researchers exploring neuroprotection and the development of p47phox inhibitors.
Collapse
Affiliation(s)
- Habib Eslami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medicinal Sciences, Bandar Abbas, Iran
| | - Koosha Rokhzadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mahmoodi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kaveh Haji-Allahverdipoor
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
5
|
Structure, Activation, and Regulation of NOX2: At the Crossroad between the Innate Immunity and Oxidative Stress-Mediated Pathologies. Antioxidants (Basel) 2023; 12:antiox12020429. [PMID: 36829988 PMCID: PMC9952346 DOI: 10.3390/antiox12020429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multisubunit enzyme complex that participates in the generation of superoxide or hydrogen peroxide (H2O2) and plays a key role in several biological functions. Among seven known NOX isoforms, NOX2 was the first identified in phagocytes but is also expressed in several other cell types including endothelial cells, platelets, microglia, neurons, and muscle cells. NOX2 has been assigned multiple roles in regulating many aspects of innate and adaptive immunity, and human and mouse models of NOX2 genetic deletion highlighted this key role. On the other side, NOX2 hyperactivation is involved in the pathogenesis of several diseases with different etiologies but all are characterized by an increase in oxidative stress and inflammatory process. From this point of view, the modulation of NOX2 represents an important therapeutic strategy aimed at reducing the damage associated with its hyperactivation. Although pharmacological strategies to selectively modulate NOX2 are implemented thanks to new biotechnologies, this field of research remains to be explored. Therefore, in this review, we analyzed the role of NOX2 at the crossroads between immunity and pathologies mediated by its hyperactivation. We described (1) the mechanisms of activation and regulation, (2) human, mouse, and cellular models studied to understand the role of NOX2 as an enzyme of innate immunity, (3) some of the pathologies associated with its hyperactivation, and (4) the inhibitory strategies, with reference to the most recent discoveries.
Collapse
|
6
|
Ren H, Xia X, Dai X, Dai Y. The role of neuroplastin65 in macrophage against E. coli infection in mice. Mol Immunol 2022; 150:78-89. [PMID: 36007354 DOI: 10.1016/j.molimm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Innate immune response constitutes the first line of defense against pathogens. Inflammatory responses involve close contact between different populations of cells. These adhesive interactions mediate migration of cells to sites of infection leading the effective action of cells within the lesions. Cell adhesion molecules are critical to controlling immune response mediating cell adhesion or chemotaxis, as well as coordinating actin-based cell motility during phagocytosis and chemotaxis. Recently, a newly discovered neuroplastin (Np) adhesion molecule is found to play an important role in the nervous system. However, there is limited information on Np functions in immune response. To understand how Np is involved in innate immune response, a mouse model of intraperitoneal infection was established to investigate the effect of Np on macrophage-mediated clearance of E. coli infection and its possible molecular mechanisms. METHODS Specific deficiency mice with Nptn gene controlling Np65 isoform were employed in this study. The expression levels of mRNA and proteins were detected by qPCR and western blot, or evaluated by flow cytometry. The expression level of NO and ROS were measured with their specific indicators. Cell cycle and apoptosis were detected by specific detection kits. Acid phosphatase activity was measured by flow cytometry after labelling with LysoRed fluorescent probe. Bone marrow derived macrophages (BMDMs) were isolated from bone marrow of mice hind legs. Cell proliferation was detected by CCK8 assay. Cell migration was measured by wound healing assay or transwell assay. RESULTS The lethal dose of E. coli infection in Np65-/- mice dropped to the half of lethal dose in WT mice. The bacterial load in the spleen, kidney and liver from Np65-/- mice were significantly higher than that from WT mice, which were due to the dramatic reduction of NO and ROS production in phagocytes from Np65-/- mice. Np65 gene deficiency remarkably impaired phagocytosis and function of lysosome in macrophage. Furthermore, Np65 molecule was involved in maturation and proliferation, even in migration and chemotaxis of BMDM in vitro. CONCLUSION This study for the first time demonstrates that Np is involved in multi-function of phagocytes during bacterial infection, proposing that Np adhesion molecule plays a critical role in clearing pathogen infection in innate immunity.
Collapse
Affiliation(s)
- Huan Ren
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoxue Xia
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Xueting Dai
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Yalei Dai
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Šrajer Gajdošik M, Kovač Peić A, Begić M, Grbčić P, Brilliant KE, Hixson DC, Josić D. Possible Role of Extracellular Vesicles in Hepatotoxicity of Acetaminophen. Int J Mol Sci 2022; 23:8870. [PMID: 36012131 PMCID: PMC9408656 DOI: 10.3390/ijms23168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
We examined proteomic profiles of rat liver extracellular vesicles (EVs) shed following treatment with a sub-toxic dose (500 mg/kg) of the pain reliever drug, acetaminophen (APAP). EVs representing the entire complement of hepatic cells were isolated after perfusion of the intact liver and analyzed with LC-MS/MS. The investigation was focused on revealing the function and cellular origin of identified EVs proteins shed by different parenchymal and non-parenchymal liver cells and their possible role in an early response of this organ to a toxic environment. Comparison of EV proteomic profiles from control and APAP-treated animals revealed significant differences. Alpha-1-macroglobulin and members of the cytochrome P450 superfamily were highly abundant proteins in EVs shed by the normal liver. In contrast, proteins like aminopeptidase N, metalloreductase STEAP4, different surface antigens like CD14 and CD45, and most members of the annexin family were detected only in EVs that were shed by livers of APAP-treated animals. In EVs from treated livers, there was almost a complete disappearance of members of the cytochrome P450 superfamily and a major decrease in other enzymes involved in the detoxification of xenobiotics. Additionally, there were proteins that predominated in non-parenchymal liver cells and in the extracellular matrix, like fibronectin, receptor-type tyrosine-protein phosphatase C, and endothelial type gp91. These differences indicate that even treatment with a sub-toxic concentration of APAP initiates dramatic perturbation in the function of this vital organ.
Collapse
Affiliation(s)
| | | | - Marija Begić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Petra Grbčić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Kate E. Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Douglas C. Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
8
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
9
|
Zhang Q, Ling S, Hu K, Liu J, Xu JW. Role of the renin-angiotensin system in NETosis in the coronavirus disease 2019 (COVID-19). Pharmacotherapy 2022; 148:112718. [PMID: 35176710 PMCID: PMC8841219 DOI: 10.1016/j.biopha.2022.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Myocardial infarction and stroke are the leading causes of death in the world. Numerous evidence has confirmed that hypertension promotes thrombosis and induces myocardial infarction and stroke. Recent findings reveal that neutrophil extracellular traps (NETs) are involved in the induction of myocardial infarction and stroke. Meanwhile, patients with severe COVID-19 suffer from complications such as myocardial infarction and stroke with pathological signs of NETs. Due to the extremely low amount of virus detected in the blood and remote organs (e.g., heart, brain and kidney) in a few cases, it is difficult to explain the mechanism by which the virus triggers NETosis, and there may be a different mechanism than in the lung. A large number of studies have found that the renin-angiotensin system regulates the NETosis at multiple levels in patients with COVID-19, such as endocytosis of SARS-COV-2, abnormal angiotensin II levels, neutrophil activation and procoagulant function at multiple levels, which may contribute to the formation of reticular structure and thrombosis. The treatment of angiotensin-converting enzyme inhibitors (ACEI), angiotensin II type 1 receptor blockers (ARBs) and neutrophil recruitment and active antagonists helps to regulate blood pressure and reduce the risk of net and thrombosis. The review will explore the possible role of the angiotensin system in the formation of NETs in severe COVID-19.
Collapse
|
10
|
Zhang Z, Ding S, Wang Z, Zhu X, Zhou Z, Zhang W, Yang X, Ge J. Prmt1 upregulated by Hdc deficiency aggravates acute myocardial infarction via NETosis. Acta Pharm Sin B 2022; 12:1840-1855. [PMID: 35847488 PMCID: PMC9279636 DOI: 10.1016/j.apsb.2021.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are mobilized and recruited to the injured heart after myocardial infarction, and neutrophil count has been clinically implicated to be associated with coronary disease severity. Histidine decarboxylase (HDC) has been implicated in regulating reactive oxidative species (ROS) and the differentiation of myeloid cells. However, the effect of HDC on neutrophils after myocardial infarction remains unclear. Here, we found that neutrophils were disorderly recruited into the ischemic injured area of the myocardium of Hdc deficiency (Hdc−/−) mice. Moreover, Hdc deficiency led to attenuated adhesion but enhanced migration and augmented ROS/neutrophil extracellular traps (NETs) production in neutrophils. Hdc−/− mouse-derived NETs promoted cardiomyocyte death and cardiac fibroblast proliferation/migration. Furthermore, protein arginine methyltransferase 1 (PRMT1) was increased in Hdc−/− mouse-derived neutrophils but decreased with exogenous histamine treatment. Its expression could be rescued by blocking histamine receptor 1 (H1R), inhibiting ATP synthesis or reducing SWItch/sucrose non fermentable (SWI/SNF) chromatin remodeling complex. Accordingly, histamine or MS023 treatment could decrease ROS and NETs ex vivo, and ameliorated cardiac function and fibrosis, along with the reduced NETs in plasma in vivo. Together, our findings unveil the role of HDC in NETosis by histamine–H1R–ATP–SWI/SNF–PRMT1–ROS signaling and provide new biomarkers and targets for identifying and tuning the detrimental immune state in cardiovascular disease.
Collapse
|
11
|
Wang C, Li YH, Yang ZT, Cheng NT, Tang HX, Xu M. The function and mechanism of microRNA-92a-3p in lipopolysaccharide-induced acute lung injury. Immunopharmacol Immunotoxicol 2021; 44:47-57. [PMID: 34783628 DOI: 10.1080/08923973.2021.2001497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Sepsis-associated acute lung injury (ALI) is a clinically severe respiratory disorder and remains the leading cause of multiple organ failure and mortality. Herein, we used lipopolysaccharide (LPS) to generate sepsis-induced ALI and try to explore the role and mechanism of microRNA-92a-3p (miR-92a-3p) in this process. METHODS Mice were intravenously injected with miR-92a-3p agomir, antagomir and negative controls for 3 consecutive days and then were intratracheally instillated by LPS (5 mg/kg) for 12 h. To knock down the endogenous A-kinase anchoring protein 1 (AKAP1), mice were intratracheally injected with recombinant adenovirus carrying the short hairpin RNA targeting AKAP1 (shAkap1) at 1 week before LPS administration. RESULTS miR-92a-3p level was significantly upregulated in the lungs by LPS injection. miR-92a-3p antagomir reduced LPS-induced intrapulmonary inflammation and oxidative stress, thereby preventing pulmonary injury and dysfunction. In contrast, miR-92a-3p agomir aggravated LPS-induced intrapulmonary inflammation, oxidative stress, pulmonary injury and dysfunction. Moreover, we reported that AKAP1 upregulation was required for the beneficial effects of miR-92a-3p antagomir, and that AKAP1 knockdown completely abolished the anti-inflammatory and antioxidant capacities of miR-92a-3p antagomir. CONCLUSION Our data identify that miR-92a-3p modulates LPS-induced intrapulmonary inflammation, oxidative stress and ALI via AKAP1 in mice.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang-Hao Li
- Department of Thoracic Surgery, Huangmei People's Hospital, Huanggang, China
| | - Ze-Tian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ni-Tao Cheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He-Xiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Li C, Wu M, Gu L, Yin M, Li H, Yuan W, Lin J, Wang Q, Xu Q, Jiang N, Zhao G. α- MSH plays anti-inflammatory and anti-fungal role in Aspergillus Fumigatus keratitis. Curr Eye Res 2021; 47:343-351. [PMID: 34766863 DOI: 10.1080/02713683.2021.2006235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the anti-inflammatory and anti-fungal role of α-melanocyte stimulating hormone (α-MSH) in Aspergillus Fumigatus (A. fumigatus) keratitis. METHOD Corneas of C57BL/6 mice were infected with A. Fumigatus. α-MSH (5 ul, 1x10-4mmol/ml) was given by subconjunctival injection from day 1 to day 3 post infection (p.i.). After 3 days p.i., clinical score was recored and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Pro-inflammatory mediators and pattern recognition receptors (PRRs) were detected. The numbers of neutrophils and macrophages were tested by immunofluorescence staining. The role of α-MSH in RAW264.7 cells after A. fumigatus stimulation were evaluated by PCR and Western blot, and MPKA protein levels including total-JNK (T-JNK), phosphorylated-JNK (P-JNK), total-ERK (T-ERK) and phosphorylated-ERK (P-ERK) were tested via Western blot with or without α-MSH treatment. RESULTS Compared with PBS control group, α-MSH treatment alleviated disease response and decreased clinical score at 3 days p.i. HE staining showed less infiltration in corneal tissue after α-MSH treatment. Plate counting experiment showed that number of viable fungus in corneas of α-MSH treated group was less than control group. mRNA levels of IL-1β, TNF-α, IL-6, MIP-2, LOX-1, Dectin-1 and iNOS were decreased. Protein levels of IL-1β, TNF-α, IL-6 and Dectin-1 were decreased. α-MSH treatment also decreased the infiltrating neutrophils and macrophages. The levels of pro-inflammatory cytokines, Dectin-1 and LOX-1 stimulated by A. fumigatus, were also suppressed by pretreatment of α-MSH in RAW264.7 cells. The ratio of P-JNK/T-JNK and P-ERK/T-ERK were down regulated in α-MSH group compared with PBS control group. CONCLUSION α-MSH alleviates the severity and decreases fungal load of A. fumigatus keratitis in mice. Migration of neutrophils and macrophages are restrained. α-MSH downregulates the expression of dectin-1 and the ratio of P-JNK/T-JNK and P-ERK/T-ERK in A. fumigatus infection.
Collapse
Affiliation(s)
- Cui Li
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Mengqi Wu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Lingwen Gu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Min Yin
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Hui Li
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Wu Yuan
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Jing Lin
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Qian Wang
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Qiang Xu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Nan Jiang
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Guiqiu Zhao
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| |
Collapse
|
13
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
14
|
Hiromura M, Mori Y, Terasaki M, Kushima H, Saito T, Osaka N, Yashima H, Ohara M, Fukui T, Matsui T, Yamagishi SI. Glucose-dependent insulinotropic polypeptide inhibits cardiac hypertrophy and fibrosis in diabetic mice via suppression of TGF-β2. Diab Vasc Dis Res 2021; 18:1479164121999034. [PMID: 35012372 PMCID: PMC8755933 DOI: 10.1177/1479164121999034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic cardiomyopathy is associated with an increased risk for heart failure and death in patients with diabetes. We investigated here whether and how GIP attenuated cardiac hypertrophy and fibrosis in diabetic mice with obesity. Diabetic db/db mice at 7 weeks old were infused with vehicle or GIP (50 nmol/kg/day) for 6 weeks, and hearts were collected for histological and RT-PCR analyzes. Cardiomyocytes isolated from neonatal mice were incubated with or without 300 nM [D-Ala2]-GIP, 30 mM glucose, or 100 μg/mL advanced glycation end products (AGEs) for RT-PCR and lucigenin assays. Compared with non-diabetic mice, diabetic mice exhibited larger left ventricle wall thickness and cardiomyocyte sizes and more fibrotic areas in association with up-regulation of myosin heavy chain β (β-Mhc) and transforming growth factor-beta2 (Tgf-β2) mRNA levels, all of which were inhibited by GIP infusion. High glucose increased NADPH oxidase-driven superoxide generation and up-regulated β-Mhc, Tgf-β2, and receptor for AGEs mRNA levels in cardiomyocytes, and augmented the AGE-induced β-Mhc gene expression. [D-Ala2]-GIP attenuated all of the deleterious effects of high glucose and/or AGEs on cardiomyocytes. Our present findings suggest that GIP could inhibit cardiac hypertrophy and fibrosis in diabetic mice via suppression of TGF-β2.
Collapse
Affiliation(s)
- Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Anti-glycation Research Section, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Yusaku Mori, Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Anti-glycation Research Section, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Sho-ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|