1
|
Muehler D, Morini S, Geißert J, Engesser C, Hiller KA, Widbiller M, Maisch T, Buchalla W, Cieplik F. Stress response in Escherichia coli following sublethal phenalene-1-one mediated antimicrobial photodynamic therapy: an RNA-Seq study. Photochem Photobiol Sci 2024; 23:1573-1586. [PMID: 39103724 DOI: 10.1007/s43630-024-00617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
Since the molecular mechanisms behind adaptation and the bacterial stress response toward antimicrobial photodynamic therapy (aPDT) are not entirely clear yet, the aim of the present study was to investigate the transcriptomic stress response in Escherichia coli after sublethal treatment with aPDT using RNA sequencing (RNA-Seq). Planktonic cultures of stationary phase E. coli were treated with aPDT using a sublethal dose of the photosensitizer SAPYR. After treatment, RNA was extracted, and RNA-Seq was performed on the Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Furthermore, expression of specific stress response proteins was investigated using Western blot analysis.The analysis of the differential gene expression following pathway enrichment analysis revealed a considerable number of genes and pathways significantly up- or down-regulated in E. coli after sublethal treatment with aPDT. Expression of 1018 genes was up-regulated and of 648 genes was down-regulated after sublethal treatment with aPDT as compared to irradiated controls. Analysis of differentially expressed genes and significantly de-regulated pathways showed regulation of genes involved in oxidative stress response and bacterial membrane damage. In conclusion, the results show a transcriptomic stress response in E. coli upon exposure to aPDT using SAPYR and give an insight into potential molecular mechanisms that may result in development of adaptation.
Collapse
Affiliation(s)
- Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Silvia Morini
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Janina Geißert
- NGS-Competence Center Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Christina Engesser
- NGS-Competence Center Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany.
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Medical Faculty, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Kruszewska-Naczk B, Grinholc M, Waleron K, Bandow JE, Rapacka-Zdończyk A. Can antimicrobial blue light contribute to resistance development? Genome-wide analysis revealed aBL-protective genes in Escherichia coli. Microbiol Spectr 2024; 12:e0249023. [PMID: 38063383 PMCID: PMC10782963 DOI: 10.1128/spectrum.02490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Increasing antibiotic resistance and the lack of new antibiotic-like compounds to combat bacterial resistance are significant problems of modern medicine. The development of new alternative therapeutic strategies is extremely important. Antimicrobial blue light (aBL) is an innovative approach to combat multidrug-resistant microorganisms. aBL has a multitarget mode of action; however, the full mechanism of aBL antibacterial action requires further investigation. In addition, the potential risk of resistance development to this treatment should be considered.
Collapse
Affiliation(s)
- Beata Kruszewska-Naczk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße, Bochum, Germany
| | - Aleksandra Rapacka-Zdończyk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Pierański MK, Kosiński JG, Szymczak K, Sadowski P, Grinholc M. Antimicrobial Photodynamic Inactivation: An Alternative for Group B Streptococcus Vaginal Colonization in a Murine Experimental Model. Antioxidants (Basel) 2023; 12:847. [PMID: 37107222 PMCID: PMC10135335 DOI: 10.3390/antiox12040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Streptococcus agalactiae, referred to as Group B Streptococcus (GBS), is a prominent bacterium causing life-threatening neonatal infections. Although antibiotics are efficient against GBS, growing antibiotic resistance forces the search for alternative treatments and/or prevention approaches. Antimicrobial photodynamic inactivation (aPDI) appears to be a potent alternative non-antibiotic strategy against GBS. METHODS The effect of rose bengal aPDI on various GBS serotypes, Lactobacillus species, human eukaryotic cell lines and microbial vaginal flora composition was evaluated. RESULTS RB-mediated aPDI was evidenced to exert high bactericidal efficacy towards S. agalactiae in vitro (>4 log10 units of viability reduction for planktonic and >2 log10 units for multispecies biofilm culture) and in vivo (ca. 2 log10 units of viability reduction in mice vaginal GBS colonization model) in microbiological and metagenomic analyses. At the same time, RB-mediated aPDI was evidenced to be not mutagenic and safe for human vaginal cells, as well as capable of maintaining the balance and viability of vaginal microbial flora. CONCLUSIONS aPDI can efficiently kill GBS and serve as an alternative approach against GBS vaginal colonization and/or infections.
Collapse
Affiliation(s)
- Michał K. Pierański
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Jan G. Kosiński
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - Klaudia Szymczak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Piotr Sadowski
- Department of Pathomorphology, University Hospital in Kraków, 31-501 Kraków, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| |
Collapse
|
4
|
Woźniak A, Burzyńska N, Zybała I, Empel J, Grinholc M. Priming effect with photoinactivation against extensively drug-resistant Enterobacter cloacae and Klebsiella pneumoniae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112554. [PMID: 36095975 DOI: 10.1016/j.jphotobiol.2022.112554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present antimicrobial blue light (aBL) and antimicrobial photoinactivation with green light in the presence of Rose Bengal (aPDI) to modulate the susceptibility of extensively drug-resistant (XDR) Enterobacter cloacae and Klebsiella pneumoniae clinical isolates to antimicrobials. This process can be considered a photodynamic priming tool that influences other therapeutic options, such as antibiotics. The current study evaluated the different environments to estimate the most effective priming conditions by testing a broad spectrum of antimicrobials (including antimicrobials with different targets and mechanisms of action). The susceptibility of the E. cloacae and K. pneumoniae clinical isolates to various antibiotics after aBL and green light (with rose bengal) as aPDI treatment was examined with multiple methods of synergy testing (e.g., diffusion methods, checkerboard assay, postantibiotic effect), and most effective photoinactivation conditions were implemented for each environment. When Enterobacteriaceae were exposed to aBL, the most efficient reduction in survival rate under TSB conditions was observed. Similar results were observed when rose bengal, as a photosensitizer, was present during the exposure to green light in PBS. aBL and aPDI led to an increased susceptibility of K. pneumoniae and E. cloacae isolates to chloramphenicol and colistin or fosfomycin and colistin antibiotics, respectively. However, among the 4 tested isolates, we observed synergies between different antimicrobial agents and photoinactivation conditions. Thus, it may suggest that the sensitization process may be considered a strain dependent priming tool.
Collapse
Affiliation(s)
- Agata Woźniak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Natalia Burzyńska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Izabela Zybała
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland.
| |
Collapse
|
5
|
Hou W, Shi G, Wu S, Mo J, Shen L, Zhang X, Zhu Y. Application of Fullerenes as Photosensitizers for Antimicrobial Photodynamic Inactivation: A Review. Front Microbiol 2022; 13:957698. [PMID: 35910649 PMCID: PMC9329950 DOI: 10.3389/fmicb.2022.957698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a newly emerged treatment approach that can effectively address the issue of multidrug resistance resulting from the overuse of antibiotics. Fullerenes can be used as promising photosensitizers (PSs) for aPDI due to the advantages of high triplet state yields, good photostability, wide antibacterial spectrum, and permissibility of versatile functionalization. This review introduces the photodynamic activities of fullerenes and the up-to-date understanding of the antibacterial mechanisms of fullerene-based aPDI. The most recent works on the functionalization of fullerenes and the application of fullerene derivatives as PSs for aPDI are also summarized. Finally, certain remaining challenges are emphasized to provide guidance on future research directions for achieving clinical application of fullerene-based aPDI.
Collapse
Affiliation(s)
- Wenjia Hou
- School of Medicine, Ningbo University, Ningbo, China
| | - Guorui Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Songze Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jiayi Mo
- School of Medicine, Ningbo University, Ningbo, China
| | - Lan Shen
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiuqiang Zhang
- Ningbo Key Laboratory of Hearing and Balance Medicine, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Michalska K, Rychłowski M, Krupińska M, Szewczyk G, Sarna T, Nakonieczna J. Gallium Mesoporphyrin IX-Mediated Photodestruction: A Pharmacological Trojan Horse Strategy To Eliminate Multidrug-Resistant Staphylococcus aureus. Mol Pharm 2022; 19:1434-1448. [PMID: 35416046 PMCID: PMC9066410 DOI: 10.1021/acs.molpharmaceut.1c00993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
One of the factors
determining efficient antimicrobial photodynamic
inactivation (aPDI) is the accumulation of a light-activated compound,
namely, a photosensitizer (PS). Targeted PS recognition is the approach
based on the interaction between the membrane receptor on the bacterial
surface and the PS, whereas the compound is efficiently accumulated
by the same mechanism as the natural ligand. In this study, we showed
that gallium mesoporphyrin IX (Ga3+MPIX) provided dual
functionality—iron metabolism disruption and PS properties
in aPDI. Ga3+MPIX induced efficient (>5log10 reduction in CFU/mL) bacterial photodestruction with excitation
in the area of Q band absorption with relatively low eukaryotic cytotoxicity
and phototoxicity. The Ga3+MPIX is recognized by the same
systems as haem by the iron-regulated surface determinant (Isd). However,
the impairment in the ATPase of the haem detoxification efflux pump
was the most sensitive to the Ga3+MPIX-mediated aPDI phenotype.
This indicates that changes within the metalloporphyrin structure
(vinyl vs ethyl groups) did not significantly alter the properties
of recognition of the compound but influenced its biophysical properties.
Collapse
Affiliation(s)
- Klaudia Michalska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Martyna Krupińska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Joanna Nakonieczna
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| |
Collapse
|
7
|
The oxidative stress and metabolic response of Acinetobacter baumannii for aPDT multiple photosensitization. Sci Rep 2022; 12:1913. [PMID: 35115588 PMCID: PMC8814140 DOI: 10.1038/s41598-022-05650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
The use of antimicrobial photodynamic inactivation as a non-antibiotic alternative method to inactivate Acinetobacter baumannii was described in response to the ever-growing problem of antibiotic resistance. It was found that irradiation of the bacterial suspension for 10 min reduced the number of viable cells by approximately 99% and this energy fluence was considered to be sub-lethal phototherapy. The lethal dose of laser light (cell mortality about 99.9%) was 9.54 J cm−2, which corresponds to 30 min of irradiation. After a 15-fold phototherapy cycle, the tolerance to aPDT decreased, resulting in a decrease in the number of viable cells by 2.15 and 3.23 log10 CFU/ml units with the use of sub-lethal and lethal light doses, respectively. Multiple photosensitizations decreased the biofilm formation efficiency by 25 ± 1% and 35 ± 1%, respectively. No changes in antibiotic resistance were observed, whereas the cells were more sensitive to hydrogen peroxide. Metabolomic changes after multiple photosensitization were studied and 1H NMR measurements were used in statistical and multivariate data analysis. Many significant changes in the levels of the metabolites were detected demonstrating the response of A. baumannii to oxidative stress.
Collapse
|
8
|
Songsantiphap C, Vanichanan J, Chatsuwan T, Asawanonda P, Boontaveeyuwat E. Methylene Blue-Mediated Antimicrobial Photodynamic Therapy Against Clinical Isolates of Extensively Drug Resistant Gram-Negative Bacteria Causing Nosocomial Infections in Thailand, An In Vitro Study. Front Cell Infect Microbiol 2022; 12:929242. [PMID: 35846758 PMCID: PMC9283779 DOI: 10.3389/fcimb.2022.929242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/PURPOSE Some multidrug-resistant gram-negative bacteria as a global threat have been recently prioritized for research and development of new treatments. We studied the efficacy of methylene blue-mediated antimicrobial photodynamic therapy (MB-aPDT) for the reduction of extensively drug-resistant Acinetobacter baumannii (XDR-AB) and Pseudomonas aeruginosa (XDR-PS) and multidrug-resistant Klebsiella pneumoniae (MDR-KP) isolated in a university hospital setting in Thailand. METHOD Two isolates of each selected bacterium were collected, XDR-AB1 and AB2, XDR- PS1 and PS2, and MDR-KP1 and KP2. Three triplicate experiments using various MB concentrations alone, various red light fluences alone, as well as the selected non-toxic doses of MB and fluences of red light combined as MB-aPDT were applied on each selected isolate. The colonies were counted [colony forming units (CFU)/ml]. Estimation of the lethal treatment dose defined as reduction of > 2 log10 in CFU/ml compared with untreated bacteria. RESULT There were generally negligible changes in the viable counts of the bacterial suspensions treated with all the MB concentrations (p > 0.05). In the second experiment with the only red light treatments, at fluences higher than 2 J/cm, reduction trend in viable counts across all the isolates was observed. Only for MDR-KP1, however, the lethal dose was achieved with the highest fluence of red light (80 J/cm). With the concentration of MB, 50 and 150 mg/L in the third experiment (MB-aPDT), the greater bacterial reduction was observed in all clinical isolates leading to their lethal viable cell reduction when escalating the light fluence to 80 J/cm. CONCLUSIONS MB-aPDT evidently killed the selected XDR and MDR-gram negative bacteria. In highly drug-resistant crisis era, MB-aPDT could be a promising option, particularly for local infections and infection complicating chronic wounds.
Collapse
Affiliation(s)
- Chankiat Songsantiphap
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Einapak Boontaveeyuwat
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Einapak Boontaveeyuwat,
| |
Collapse
|
9
|
Andrade GC, Brancini GTP, Abe FR, de Oliveira DP, Nicolella HD, Tavares DC, Micas AFD, Savazzi EA, Silva-Junior GJ, Wainwright M, Braga GÚL. Phenothiazinium dyes for photodynamic treatment present lower environmental risk compared to a formulation of trifloxystrobin and tebuconazole. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112365. [PMID: 34823208 DOI: 10.1016/j.jphotobiol.2021.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of conventional chemical antifungal agents has led to worldwide concern regarding the selection of resistant isolates. In this scenario, antimicrobial photodynamic treatment (APDT) has emerged as a promising alternative to overcome this issue. The technique is based on the use of a photosensitizer (PS) and light in the presence of molecular oxygen. Under these conditions, the PS generates reactive oxygen species which damage the biomolecules of the target organism leading to cell death. The great potential of APDT against plant-pathogenic fungi has already been reported both in vitro and in planta, indicating this control measure has the potential to be widely used in crop plants. However, there is a lack of studies on environmental risk with ecotoxicological assessment of PSs used in APDT. Therefore, this study aimed to evaluate the environmental toxicity of four phenothiazinium PSs: i) methylene blue (MB), ii) new methylene blue N (NMBN), iii) toluidine blue O (TBO), and iv) dimethylmethylene blue (DMMB) and also of the commercial antifungal NATIVO®, a mixture of trifloxystrobin and tebuconazole. The experiments were performed with Daphnia similis neonates and zebrafish embryos. Our results showed that the PSs tested had different levels of toxicity, with MB being the less toxic and DMMB being the most. Nonetheless, the environmental toxicity of these PSs were lower when compared to that of NATIVO®. Furthermore, estimates of bioconcentration and of biotransformation half-life indicated that the PSs are environmentally safer than NATIVO®. Taken together, our results show that the toxicity associated with phenothiazinium PSs would not constitute an impediment to their use in APDT. Therefore, APDT is a promising approach to control plant-pathogenic fungi with reduced risk for selecting resistant isolates and lower environmental impacts when compared to commonly used antifungal agents.
Collapse
Affiliation(s)
- Gabriela Carvalho Andrade
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Flávia Renata Abe
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil
| | - Danielle Palma de Oliveira
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | | | | | - André Fernando Ditondo Micas
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, 14096-350 Ribeirão Preto, SP, Brazil
| | - Eduardo Angelino Savazzi
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, 14096-350 Ribeirão Preto, SP, Brazil
| | | | - Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Gilberto Úbida Leite Braga
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Rapacka-Zdonczyk A, Wozniak A, Kruszewska B, Waleron K, Grinholc M. Can Gram-Negative Bacteria Develop Resistance to Antimicrobial Blue Light Treatment? Int J Mol Sci 2021; 22:ijms222111579. [PMID: 34769009 PMCID: PMC8583887 DOI: 10.3390/ijms222111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial blue light (aBL) treatment is considered low risk for the development of bacterial resistance and tolerance due to its multitarget mode of action. The aim of the current study was to demonstrate whether tolerance development occurs in Gram-negative bacteria. We evaluated the potential of tolerance/resistance development in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and demonstrated that representative Gram-negative bacteria may develop tolerance to aBL. The observed adaption was a stable feature. Assays involving E. coli K-12 tolC-, tolA-, umuD-, and recA-deficient mutants revealed some possible mechanisms for aBL tolerance development.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (B.K.); (K.W.)
- Correspondence:
| | - Agata Wozniak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Beata Kruszewska
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (B.K.); (K.W.)
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (B.K.); (K.W.)
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| |
Collapse
|
11
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
12
|
Pieranski MK, Rychlowski M, Grinholc M. Optimization of Streptococcus agalactiae Biofilm Culture in a Continuous Flow System for Photoinactivation Studies. Pathogens 2021; 10:1212. [PMID: 34578244 PMCID: PMC8465167 DOI: 10.3390/pathogens10091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus agalactiae is a relevant cause of neonatal mortality. It can be transferred to infants via the vaginal tract and cause meningitis, pneumonia, arthritis, or sepsis, among other diseases. The cause of therapy ineffectiveness and infection recurrence is the growth of bacteria as biofilms. To date, several research teams have attempted to find a suitable medium for the cultivation of S. agalactiae biofilms. Among others, simulated vaginal fluid has been used; however, biofilm production in this medium has been found to be lower than that in tryptic soy broth. We have previously shown that S. agalactiae can be successfully eradicated by photoinactivation in planktonic culture, but there have been no studies on biofilms. The aim of this study was to optimize S. agalactiae biofilm culture conditions to be used in photoinactivation studies. We compared biofilm production by four strains representing the most common serotypes in four different broth media with crystal violet staining. Then, we evaluated stationary biofilm culture in microtiter plates and biofilm growth in a CDC Biofilm Reactor® (BioSurface Technologies, Bozeman, MT, USA) under continuous flow conditions. Subsequently, we applied Rose Bengal-mediated photoinactivation to both biofilm models. We have shown that photoinactivation is efficient in biofilm eradication and is not cyto/phototoxic to human keratinocytes. We found conditions allowing for stable and repetitive S. agalactiae biofilm growth in continuous flow conditions, which can be successfully utilized in photoinactivation assays and potentially in all other antibacterial studies.
Collapse
Affiliation(s)
- Michal K. Pieranski
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| |
Collapse
|
13
|
Marasini S, Leanse LG, Dai T. Can microorganisms develop resistance against light based anti-infective agents? Adv Drug Deliv Rev 2021; 175:113822. [PMID: 34089778 DOI: 10.1016/j.addr.2021.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Recently, there have been increasing numbers of publications illustrating the potential of light-based antimicrobial therapies to combat antimicrobial resistance. Several modalities, in particular, which have proven antimicrobial efficacy against a wide range of pathogenic microbes include: photodynamic therapy (PDT), ultraviolet light (UVA, UVB and UVC), and antimicrobial blue light (aBL). Using these techniques, microbial cells can be inactivated rapidly, either by inducing reactive oxygen species that are deleterious to the microbial cells (PDT, aBL and UVA) or by causing irreversible DNA damage via direct absorption (UVB and UVC). Given the multi-targeted nature of light-based antimicrobial modalities, it has been hypothesised that resistance development to these approaches is highly unlikely. Furthermore, with the exception of a small number of studies, it has been found that resistance to light based anti-infective agents appears unlikely, irrespective of the modality in question. The concurrent literature however stipulates, that further studies should incorporate standardised microbial tolerance assessments for light-based therapies to better assess the reproducibility of these observations.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand.
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
15
|
Woźniak A, Kruszewska B, Pierański MK, Rychłowski M, Grinholc M. Antimicrobial Photodynamic Inactivation Affects the Antibiotic Susceptibility of Enterococcus spp. Clinical Isolates in Biofilm and Planktonic Cultures. Biomolecules 2021; 11:693. [PMID: 34063146 PMCID: PMC8148121 DOI: 10.3390/biom11050693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/30/2022] Open
Abstract
Enterococcus faecium and Enterococcus faecalis are opportunistic pathogens that can cause a vast variety of nosocomial infections. Moreover, E. faecium belongs to the group of ESKAPE microbes, which are the main cause of hospital-acquired infections and are especially difficult to treat because of their resistance to many antibiotics. Antimicrobial photodynamic inactivation (aPDI) represents an alternative to overcome multidrug resistance problems. This process requires the simultaneous presence of oxygen, visible light, and photosensitizing compounds. In this work, aPDI was used to resensitize Enterococcus spp. isolates to antibiotics. Antibiotic susceptibility testing according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations was combined with synergy testing methods recommended by the American Society for Microbiology. Two clinical isolates, E. faecalis and E. faecium, were treated with a combination of aPDI utilizing rose bengal (RB) or fullerene (FL) derivative as photosensitizers, antimicrobial blue light (aBL), and 10 recommended antibiotics. aPDI appeared to significantly impact the survival rate of both isolates, while aBL had no significant effect. The synergy testing results differed between strains and utilized methods. Synergy was observed for RB aPDI in combination with gentamycin, ciprofloxacin and daptomycin against E. faecalis. For E. faecium, synergy was observed between RB aPDI and gentamycin or ciprofloxacin, while for RB aPDI with vancomycin or daptomycin, antagonism was observed. A combination of FL aPDI gives a synergistic effect against E. faecalis only with imipenem. Postantibiotic effect tests for E. faecium demonstrated that this isolate exposed to aPDI in combination with gentamycin, streptomycin, tigecycline, doxycycline, or daptomycin exhibits delayed growth in comparison to untreated bacteria. The results of synergy testing confirmed the effectiveness of aPDI in resensitization of the bacteria to antibiotics, which presents great potential in the treatment of infections caused by multidrug-resistant strains.
Collapse
Affiliation(s)
- Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| | - Beata Kruszewska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| | - Michał Karol Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| |
Collapse
|
16
|
Rapacka-Zdonczyk A, Wozniak A, Nakonieczna J, Grinholc M. Development of Antimicrobial Phototreatment Tolerance: Why the Methodology Matters. Int J Mol Sci 2021; 22:2224. [PMID: 33672375 PMCID: PMC7926562 DOI: 10.3390/ijms22042224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Due to rapidly growing antimicrobial resistance, there is an urgent need to develop alternative, non-antibiotic strategies. Recently, numerous light-based approaches, demonstrating killing efficacy regardless of microbial drug resistance, have gained wide attention and are considered some of the most promising antimicrobial modalities. These light-based therapies include five treatments for which high bactericidal activity was demonstrated using numerous in vitro and in vivo studies: antimicrobial blue light (aBL), antimicrobial photodynamic inactivation (aPDI), pulsed light (PL), cold atmospheric plasma (CAP), and ultraviolet (UV) light. Based on their multitarget activity leading to deleterious effects to numerous cell structures-i.e., cell envelopes, proteins, lipids, and genetic material-light-based treatments are considered to have a low risk for the development of tolerance and/or resistance. Nevertheless, the most recent studies indicate that repetitive sublethal phototreatment may provoke tolerance development, but there is no standard methodology for the proper evaluation of this phenomenon. The statement concerning the lack of development of resistance to these modalities seem to be justified; however, the most significant motivation for this review paper was to critically discuss existing dogma concerning the lack of tolerance development, indicating that its assessment is more complex and requires better terminology and methodology.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Agata Wozniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| |
Collapse
|