1
|
Tian R, Yang YD, Lu N. Epigallocatechin-3-gallate as an effective inhibitor of vascular endothelial dysfunction induced by endothelial-localized myeloperoxidase. Food Chem Toxicol 2025; 200:115392. [PMID: 40086586 DOI: 10.1016/j.fct.2025.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
In inflammatory vasculature, the leukocyte-released myeloperoxidase (MPO) is internalized by endothelial cells and this enzyme promotes endothelial dysfunction by catalytically producing strong oxidant, hypochlorous acid (HOCl). Herein, we developed epigallocatechin-3-gallate (EGCG, the main polyphenolic flavonoid found in green tea) as a novel endothelial-targeted MPO inhibitor. It was shown that culture of MPO and EGCG with vascular endothelial cells could result in their transport into the sub-endothelial space. EGCG significantly suppressed the consumption of enzyme's substrate H2O2 and generation of HOCl catalyzed by endothelial-transcytosed MPO. The binding of EGCG to the hydrophobic domain near the distal active heme cavity of enzyme was proposed by molecular docking and was suggested for the inhibitive effect of flavonoid on MPO activity. In vivo, EGCG attenuated lipopolysaccharide (LPS)-induced endothelial dysfunction in mouse aortas, while it inhibited the infiltration of active MPO into vascular walls. Furthermore, MPO-deficient mice were resistant to the protective effects of EGCG on LPS-induced vascular dysfunction, as compared to wild-type mice. These studies showed that EGCG effectively inhibited local oxidative reactions and endothelial dysfunction catalyzed by vascular-bound MPO. EGCG represents a versatile class of natural antioxidant drugs applicable to target endothelial-transcytosed MPO in inflammatory vasculature.
Collapse
Affiliation(s)
- Rong Tian
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Ya-Di Yang
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Naihao Lu
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
2
|
Zhang Z, Hu K, Fang Z, Wang S, Chen J, Yin D, Zhang C, Ma G. Acacetin reduces endoplasmic reticulum stress through the P-eNOS/PERK signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. FEBS Open Bio 2025. [PMID: 39927486 DOI: 10.1002/2211-5463.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Diabetic macrovascular disease is one of the most morbid and deadly complications of diabetes. Endothelial dysfunction plays a key role in diabetic macrovascular complications and endothelial cell apoptosis is one of the key indicators of endothelial dysfunction. Methylglyoxal (MGO), a highly reactive dicarbonyl compound generated during glycolysis, is related to the pathogenesis of cardiovascular diseases and may also promote endothelial dysfunction. Acacetin (ACA) is a naturally occurring flavonoid that can inhibit apoptosis, oxidative stress and inflammation to slow the progression of coronary heart disease; however, its effects on endothelial dysfunction are unknown. The present study investigated whether ACA may ameliorate MGO-induced endothelial dysfunction in human umbilical vein endothelial cells. The results revealed that the viability and apoptosis of human umbilical vein endothelial cells induced by MGO decreased after ACA treatment, which was reflected in the expression levels of the apoptosis-related proteins b-cell lymphoma 2 (Bcl-2)-associated death, Bcl-2-associated x protein and Bcl-2. Additionally, ACA downregulated the expression of key protein markers of MGO-induced endoplasmic reticulum stress, physical evidence recovery kit, eukaryotic initiation factor 2 alpha, activating transcription factor 4 and C/EBP homologous protein, with which calcium inward currents may be closely related. ACA significantly downregulated the MGO-induced expression of the cytosolic calcium channel proteins stromal interaction molecule 1, transient receptor potential canonical 1, ORAI calcium release-activated calcium modulator 1, transient receptor potential vanilloid 1 and 4, and the trans-endoplasmic reticulum membrane protein, transmembrane and coiled-coil domains 1. Finally, ACA increased the expression of phosphorylated endothelial nitric oxide synthase (Ser1177), thus increasing the expression of nitric oxide in endothelial cells. Overall, acacetin could reduce endoplasmic reticulum stress through the phosphorylated-endothelial nitric oxide/physical evidence recovery kit signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. These findings may hold potential for the use of acacetin in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kaien Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Fang
- Department of Endocrine, The First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Sihai Wang
- Department of Endocrine, The First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Gefei Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Qimen Institute of Snakebite, Huangshan, China
| |
Collapse
|
3
|
Craige SM, Kaur G, Bond JM, Caliz AD, Kant S, Keaney JF. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid Redox Signal 2024. [PMID: 39213161 DOI: 10.1089/ars.2024.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
Collapse
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Gaganpreet Kaur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Bond
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, Virginia, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhang H, Wang X, Liu J, Zhang Y, Ka M, Ma Y, Xu J, Zhang W. Role of neutrophil myeloperoxidase in the development and progression of high-altitude pulmonary edema. Biochem Biophys Res Commun 2024; 703:149681. [PMID: 38382360 DOI: 10.1016/j.bbrc.2024.149681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Neutrophil infiltration and hypoxic pulmonary vasoconstriction induced by hypobaric hypoxic stress are vital in high-altitude pulmonary edema (HAPE). Myeloperoxidase (MPO), an important enzyme in neutrophils, is associated with inflammation and oxidative stress and is also involved in the regulation of nitric oxide synthase (NOS), an enzyme that catalyzes the production of the vasodilatory factor nitric oxide (NO). However, the role of neutrophil MPO in HAPE's progression is still uncertain. Therefore, we hypothesize that MPO is involved in the development of HAPE via NOS. METHODS In Xining, China (altitude: 2260 m), C57BL/6 N wild-type and mpo-/- mice served as normoxic controls, while a hypobaric chamber simulated 7000 m altitude for hypoxia. L-NAME, a nitric oxide synthase (NOS) inhibitor to inhibit NO production, was the experimental drug, and D-NAME, without NOS inhibitory effects, was the control. After measuring pulmonary artery pressure (PAP), samples were collected and analyzed for blood neutrophils, oxidative stress, inflammation, vasoactive substances, pulmonary alveolar-capillary barrier permeability, and lung tissue morphology. RESULTS Wild-type mice's lung injury scores, permeability, and neutrophil counts rose at 24 and 48 h of hypoxia exposure. Under hypoxia, PAP increased from 12.89 ± 1.51 mmHg under normoxia to 20.62 ± 3.33 mmHg significantly in wild-type mice and from 13.24 ± 0.79 mmHg to 16.50 ± 2.07 mmHg in mpo-/- mice. Consistent with PAP, inducible NOS activity, lung permeability, lung injury scores, oxidative stress response, and inflammation showed more significant increases in wild-type mice than in mpo-/- mice. Additionally, endothelial NOS activity and NO levels decreased more pronouncedly in wild-type mice than in mpo-/- mice. NOS inhibition during hypoxia led to more significant increases in PAP, permeability, and lung injury scores compared to the drug control group, especially in wild-type mice. CONCLUSION MPO knockout reduces oxidative stress and inflammation to preserve alveolar-capillary barrier permeability and limits the decline in endothelial NOS activity to reduce PAP elevation during hypoxia. MPO inhibition emerges as a prospective therapeutic strategy for HAPE, offering avenues for precise interventions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, China.
| | - Xiaojun Wang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Jie Liu
- Department of Pathology, Xi'an Chest Hospital, Xian, Shaanxi, 710000, China.
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Maojia Ka
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Yi Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Jiaolong Xu
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China; Linyi Central Hospital, Linyi, Shandong, 276400, China.
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| |
Collapse
|
5
|
Chen S, Pan J, Gong Z, Wu M, Zhang X, Chen H, Yang D, Qi S, Peng Y, Shen J. Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia-reperfusion injury. J Neuroinflammation 2024; 21:70. [PMID: 38515139 PMCID: PMC10958922 DOI: 10.1186/s12974-023-02991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 03/23/2024] Open
Abstract
Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jingrui Pan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhe Gong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dan Yang
- Department of Chemistry, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Suhua Qi
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Yang X, Ma Y, Chen X, Zhu J, Xue W, Ning K. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci 2023:121867. [PMID: 37348812 DOI: 10.1016/j.lfs.2023.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xin Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jingjing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Huang JB, Chen ZR, Yang SL, Hong FF. Nitric Oxide Synthases in Rheumatoid Arthritis. Molecules 2023; 28:molecules28114414. [PMID: 37298893 DOI: 10.3390/molecules28114414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe joint damage and disability. However, the specific mechanism of RA has not been thoroughly clarified over the past decade. Nitric oxide (NO), a kind of gas messenger molecule with many molecular targets, is demonstrated to have significant roles in histopathology and homeostasis. Three nitric oxide synthases (NOS) are related to producing NO and regulating the generation of NO. Based on the latest studies, NOS/NO signaling pathways play a key role in the pathogenesis of RA. Overproduction of NO can induce the generation and release of inflammatory cytokines and act as free radical gas to accumulate and trigger oxidative stress, which can involve in the pathogenesis of RA. Therefore, targeting NOS and its upstream and downstream signaling pathways may be an effective approach to managing RA. This review clearly summarizes the NOS/NO signaling pathway, the pathological changes of RA, the involvement of NOS/NO in RA pathogenesis and the conventional and novel drugs based on NOS/NO signaling pathways that are still in clinical trials and have good therapeutic potential in recent years, with an aim to provide a theoretical basis for further exploration of the role of NOS/NO in the pathogenesis, prevention and treatment of RA.
Collapse
Affiliation(s)
- Jia-Bao Huang
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Zhi-Ru Chen
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shu-Long Yang
- School of Basic Medical Sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Luo H, Guo H, Zhou Y, Fang R, Zhang W, Mei Z. Neutrophil Extracellular Traps in Cerebral Ischemia/Reperfusion Injury: Friend and Foe. Curr Neuropharmacol 2023; 21:2079-2096. [PMID: 36892020 PMCID: PMC10556361 DOI: 10.2174/1570159x21666230308090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 03/10/2023] Open
Abstract
Cerebral ischemic injury, one of the leading causes of morbidity and mortality worldwide, triggers various central nervous system (CNS) diseases, including acute ischemic stroke (AIS) and chronic ischemia-induced Alzheimer's disease (AD). Currently, targeted therapies are urgently needed to address neurological disorders caused by cerebral ischemia/reperfusion injury (CI/RI), and the emergence of neutrophil extracellular traps (NETs) may be able to relieve the pressure. Neutrophils are precursors to brain injury following ischemic stroke and exert complicated functions. NETs extracellularly release reticular complexes of neutrophils, i.e., double-stranded DNA (dsDNA), histones, and granulins. Paradoxically, NETs play a dual role, friend and foe, under different conditions, for example, physiological circumstances, infection, neurodegeneration, and ischemia/reperfusion. Increasing evidence indicates that NETs exert anti-inflammatory effects by degrading cytokines and chemokines through protease at a relatively stable and moderate level under physiological conditions, while excessive amounts of NETs release (NETosis) irritated by CI/RI exacerbate the inflammatory response and aggravate thrombosis, disrupt the blood-brain barrier (BBB), and initiates sequential neuron injury and tissue damage. This review provides a comprehensive overview of the machinery of NETs formation and the role of an abnormal cascade of NETs in CI/RI, as well as other ischemia-induced neurological diseases. Herein, we highlight the potential of NETs as a therapeutic target against ischemic stroke that may inspire translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Rui Fang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
9
|
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21:1903-1911. [PMID: 36065330 PMCID: PMC9430013 DOI: 10.1007/s40200-022-01088-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/05/2021] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Current advances in molecular pathobiology of endotheliocytes dysfunctions are promising in finding the pathogenetic links to the emergence of insulin resistance syndrome. Physiologically, human organism homeostasis is strictly controlled to maintain metabolic processes at the acquainted level. Many factors are involved in maintaining these physiological processes in the organism and any deviation is undoubtedly accompanied by specific pathologies related to the affected process. Fortunately, the body's defense system can solve and compensate for the impaired function through its multi-level defense mechanisms. The endothelium is essential in maintaining this homeostasis through its ability to modulate the metabolic processes of the organism. Pathological activity or impairment of physiological endothelium function seems directly correlated to the emergence of metabolic syndrome. The most accepted hypothesis is that endothelium distribution is due to endoplasmic reticulum stress and unfolded protein response development, which includes inhibition of long non-coding RNAs expression, cytokines disbalance, Apelin dysregulation, glycocalyx degradation, and specific microparticles. Clinically, the enhancement or restoration of normal endothelial cells can be a target for novel therapeutic strategies since the distribution of its physiological activity impairs homeostasis and results in the progression of metabolic syndrome, and induction of its physiological activity can ameliorate insulin resistance syndrome. Novel insights on the molecular mechanisms of endothelial cell dysfunction are concisely represented in this paper to enhance the present therapeutic tactics and advance the research forward to find new therapeutic targets.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Medical school student at National Research, Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, Mordovia republic, Bolshevitskaya Street, 31, 430005 Saransk, Russia
| |
Collapse
|
10
|
Chan GHH, Chan E, Kwok CTK, Leung GPH, Lee SMY, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol 2022; 13:981152. [PMID: 36147350 PMCID: PMC9485942 DOI: 10.3389/fphar.2022.981152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is a risk factor for many degenerative diseases. Cardiovascular diseases (CVDs) are usually big burdens for elderly, caregivers and the health system. During the aging process, normal functions of vascular cells and tissue progressively lost and eventually develop vascular diseases. Endothelial dysfunction, reduced bioavailability of endothelium-derived nitric oxide are usual phenomena observed in patients with cardiovascular diseases. Myriad of studies have been done to investigate to delay the vascular dysfunction or improve the vascular function to prolong the aging process. Tumor suppressor gene p53, also a transcription factor, act as a gatekeeper to regulate a number of genes to maintain normal cell function including but not limited to cell proliferation, cell apoptosis. p53 also crosstalk with other key transcription factors like hypoxia-inducible factor 1 alpha that contribute to the progression of cardiovascular diseases. Therefore, in recent three decades, p53 has drawn scientists’ attention on its effects in vascular function. Though the role of tumor suppressor gene p53 is still not clear in vascular function, it is found to play regulatory roles and may involve in vascular remodeling, atherosclerosis or pulmonary hypertension. p53 may have a divergent role in endothelial and vascular muscle cells in those conditions. In this review, we describe the different effects of p53 in cardiovascular physiology. Further studies on the effects of endothelial cell-specific p53 deficiency on atherosclerotic plaque formation in common animal models are required before the therapeutic potential can be realized.
Collapse
Affiliation(s)
- Gabriel Hoi-Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Enoch Chan
- School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Carsten Tsun-Ka Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Sai-Wang Seto,
| |
Collapse
|