1
|
Fellows AL, Chen CN, Xie C, Iyer N, Schmidt L, Yin X, Yates LA, Mayr M, Cowburn A, Zhao L, Wojciak-Stothard B. ARF6 as a Novel Activator of HIF-2α in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2025; 72:380-392. [PMID: 39556110 PMCID: PMC12005040 DOI: 10.1165/rcmb.2024-0149oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024] Open
Abstract
ARF6 (ADP-ribosylation factor 6), a GTPase associated with cancer metastasis, is activated in the lung endothelium in pulmonary arterial hypertension (PAH). To identify ARF6-regulated pathways relevant to PAH, we performed a state-of-the-art proteomic analysis of human pulmonary artery endothelial cells (HPAECs) overexpressing the wild-type, constitutively active, fast-cycling, and dominant-negative mutants of ARF6. The analysis revealed a novel link of ARF6 with HIF (hypoxia-inducible factor), in addition to endocytotic vesicle trafficking, cell proliferation, angiogenesis, oxidative stress, and lipid metabolism. Active ARF6 markedly increased expression and activity of HIF-2, critical in PAH, with HIF-1 relatively unaffected. Hypoxic ARF6 activation was a prerequisite for HIF-2 activation and HIF-dependent gene expression in HPAECs, PAH blood-derived late-outgrowth endothelial colony-forming cells, and hypoxic mouse lungs in vivo. A novel ARF6 inhibitor, chlortetracycline (CTC), reduced hypoxia-induced HIF-2 activation, proliferation, and angiogenesis in HPAECs and reduced HIF-2 expression in lung and heart tissues of hypoxic mice. PAH endothelial colony-forming cells showed elevated expression and activity of ARF6 and HIF2, which was attenuated by CTC, and oral CTC attenuated development of pulmonary hypertension in chronically hypoxic mice. We identify EGFR (epidermal growth factor receptor) as a direct interactor of ARF6 and EGFR signaling as a crucial mechanism linking ARF6 and HIF activation. In conclusion, we are the first to demonstrate a key role of ARF6 in the regulation of HIF-2α activation in vitro and in vivo and show that HIF-2α, a master regulator of vascular remodeling in PAH, can be targeted by a clinically approved antibiotic CTC.
Collapse
Affiliation(s)
| | | | | | | | - Lukas Schmidt
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom; and
| | | | - Luke A. Yates
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | | | | | - Lan Zhao
- National Heart and Lung Institute and
| | | |
Collapse
|
2
|
Leblanc PO, Bourgoin SG, Poubelle PE, Tessier PA, Pelletier M. Metabolic regulation of neutrophil functions in homeostasis and diseases. J Leukoc Biol 2024; 116:456-468. [PMID: 38452242 DOI: 10.1093/jleuko/qiae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Patrice E Poubelle
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
3
|
Guan XY, Wei ZC, Wang YT, Li WL, Mu WL, Seyam A, Shi C, Hou TZ. Blocking Gremlin1 inhibits M1 macrophage polarization through Notch1/Hes1 signaling pathway in apical periodontitis. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39134472 DOI: 10.1080/08923973.2024.2392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Gremlin1 is a multifunctional protein whose expression is demonstrated to be involved in a series of physiology and pathological processes. The association between Gremlin1 and apcial periodontitis (AP) has been established. M1-polarized macrophages are crucial immune cells that exacerbate the progression of apical periodontal inflammatory response, but the function of Gremlin1 during macrophages activation in periapical lesions is still unclear. This study attempts to explore the regulatory effects of Gremlin1 on macrophage polarization on apical periodontitis microenviroment. METHODS Clinical specimens were used to determine the expression of Gremlin1 in periapical tissues by immunohistochemical (IHC) staining. Then, the disease models of periapical inflammation in rats were established, and adenovirus- associated virus (AAVs) was used to blockade Gremlin1 expression. Lentivirus carrying sh-Gremlin1 particles were used to transfect THP-1 induced M1-subtype macrophages. To assess the expression of associated molecules, Western blot, immunofluorescence staining were performed. RESULTS Gremlin1 was significantly up-regulated in the periapical tissues of subjects with AP as identified by IHC staining, and positively correlated with levels of M1 macrophage-associated genes. Rats AP model with inhibition of Gremlin1 in periapical lesions exhibited limited infiltration of macrophages and decreased expression of M1 macrophage-related genes in periapical lesions. Furthermore, Gremlin1 blockade substantially decreased the Notch1/Hes1 signaling pathway activation level. The in vitro experiments confirmed the above results. CONCLUSION Taken together, current study illustrated that the Gremlin1 suppression in periapical lesions inhibited M1 macrophage polarization through Notch1/Hes1 axis. Moreover, Gremlin1 may act as a potential candidate in the treatment of AP.
Collapse
Affiliation(s)
- Xiao-Yue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi-Chen Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Ting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Lan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Li Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Abdelrahman Seyam
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Sichuan Hospital of Stomatology, Chengdu, Sichuan, China
| | - Tie-Zhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Zhang J, Dong Y, Yu S, Hu K, Zhang L, Xiong M, Liu M, Sun X, Li S, Yuan Y, Zhang C, Zhu M, Wei Y, Zhu Y, Yu Y, Zhang P, Liu T. IL-4/IL-4R axis signaling drives resistance to immunotherapy by inducing the upregulation of Fcγ receptor IIB in M2 macrophages. Cell Death Dis 2024; 15:500. [PMID: 39003253 PMCID: PMC11246528 DOI: 10.1038/s41419-024-06875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
In recent years, immunotherapy, particularly PD-1 antibodies, have significantly enhanced the outcome of gastric cancer patients. Despite these advances, some patients do not respond well to treatment, highlighting the need to understand resistance mechanisms and develop predictive markers of treatment effectiveness. This study retrospectively analyzed data from 106 patients with stage IV gastric cancer who were treated with first-line immunotherapy in combination with chemotherapy. By comparing plasma cytokine levels between patients resistant and sensitive to PD-1 antibody therapy, the researchers identified elevated IL-4 expression in the resistant patients. Mechanical investigations revealed that IL-4 induces metabolic changes in macrophages that activate the PI3K/AKT/mTOR pathway. This alteration promotes ATP production, enhances glycolysis, increases lactic acid production, and upregulates FcγRIIB expression in macrophages. Ultimately, these changes lead to CD8+ T cell dysfunction and resistance to PD-1 antibody therapy in gastric cancer. These findings highlight the role of IL-4-induced macrophage polarization and metabolic reprogramming in immune resistance and verify IL-4 as potential targets for improving treatment outcomes in gastric cancer patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyun Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chi Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichou Wei
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjing Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Tserga A, Saulnier-Blache JS, Palamaris K, Pouloudi D, Gakiopoulou H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Complement Cascade Proteins Correlate with Fibrosis and Inflammation in Early-Stage Type 1 Diabetic Kidney Disease in the Ins2Akita Mouse Model. Int J Mol Sci 2024; 25:1387. [PMID: 38338666 PMCID: PMC10855735 DOI: 10.3390/ijms25031387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Kostantinos Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Despoina Pouloudi
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
- Department of Biology, National and Kapodistrian University of Athens, 15701 Zografou, Greece
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| |
Collapse
|
6
|
Wang K, Wang S, Wang T, Xia Q, Xia S. The Sclerotinia sclerotiorum ADP-Ribosylation Factor 6 Plays an Essential Role in Abiotic Stress Response and Fungal Virulence to Host Plants. J Fungi (Basel) 2023; 10:12. [PMID: 38248922 PMCID: PMC10817261 DOI: 10.3390/jof10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
The ADP-ribosylation factor 6 (Arf6), as the only member of the Arf family III protein, has been extensively studied for its diverse biological functions in animals. Previously, the Arf6 protein in Magnaporthe oryzae was found to be crucial for endocytosis and polarity establishment during asexual development. However, its role remains unclear in S. sclerotiorum. Here, we identified and characterized SsArf6 in S. sclerotiorum using a reverse genetic approach. Deletion of SsArf6 impaired hyphal growth and development and produced more branches. Interestingly, knockout of SsArf6 resulted in an augmented tolerance of S. sclerotiorum towards oxidative stress, and increased its sensitivity towards osmotic stress, indicative of the different roles of SsArf6 in various stress responses. Simultaneously, SsArf6 deletion led to an elevation in melanin accumulation. Moreover, the appressorium formation was severely impaired, and fungal virulence to host plants was significantly reduced. Overall, our findings demonstrate the essential role of SsArf6 in hyphal development, stress responses, appressorium formation, and fungal virulence to host plants.
Collapse
Affiliation(s)
| | | | | | | | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.W.); (S.W.); (T.W.)
| |
Collapse
|
7
|
Li S, Sampson C, Liu C, Piao HL, Liu HX. Integrin signaling in cancer: bidirectional mechanisms and therapeutic opportunities. Cell Commun Signal 2023; 21:266. [PMID: 37770930 PMCID: PMC10537162 DOI: 10.1186/s12964-023-01264-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Integrins are transmembrane receptors that possess distinct ligand-binding specificities in the extracellular domain and signaling properties in the cytoplasmic domain. While most integrins have a short cytoplasmic tail, integrin β4 has a long cytoplasmic tail that can indirectly interact with the actin cytoskeleton. Additionally, 'inside-out' signals can induce integrins to adopt a high-affinity extended conformation for their appropriate ligands. These properties enable integrins to transmit bidirectional cellular signals, making it a critical regulator of various biological processes.Integrin expression and function are tightly linked to various aspects of tumor progression, including initiation, angiogenesis, cell motility, invasion, and metastasis. Certain integrins have been shown to drive tumorigenesis or amplify oncogenic signals by interacting with corresponding receptors, while others have marginal or even suppressive effects. Additionally, different α/β subtypes of integrins can exhibit opposite effects. Integrin-mediated signaling pathways including Ras- and Rho-GTPase, TGFβ, Hippo, Wnt, Notch, and sonic hedgehog (Shh) are involved in various stages of tumorigenesis. Therefore, understanding the complex regulatory mechanisms and molecular specificities of integrins are crucial to delaying cancer progression and suppressing tumorigenesis. Furthermore, the development of integrin-based therapeutics for cancer are of great importance.This review provides an overview of integrin-dependent bidirectional signaling mechanisms in cancer that can either support or oppose tumorigenesis by interacting with various signaling pathways. Finally, we focus on the future opportunities for emergent therapeutics based on integrin agonists. Video Abstract.
Collapse
Affiliation(s)
- Siyi Li
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chibuzo Sampson
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changhao Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Hai-Long Piao
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
8
|
Zhang E, Li Z, Lv T, Fu J, Dong L, Feng Y, Sun G, Xu X, Cui C, Wang W, Yang J. Transcriptome profiling explores the immune defence mechanism of triploid Pacific oyster (Crassostrea gigas) blood against Vibrio alginolyticus based on protein interaction networks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104677. [PMID: 36870582 DOI: 10.1016/j.dci.2023.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Triploid oysters have provided the oyster industry with many benefits, such as fast growth rates, meat quality improvement, and increased oyster production and economic benefits, since the first report on triploid oysters was published. The development of polyploid technology has remarkably increased the output of triploid oysters to meet the increasing demand of consumers for Crassostrea gigas in the past decades. At present, research on triploid oyster has mainly focused on breeding and growth, but studies on the immunity of triploid oysters are limited. According to recent reports, Vibrio alginolyticus is a highly virulent strain that can cause disease and death in shellfish, shrimp, as well as serious economic losses. V. alginolyticus may be a reason why oysters die during summer. Therefore, using V. alginolyticus to explore the resistance and immune defense mechanisms of triploid oysters against pathogens presents practical significance. Transcriptome analysis of gene expression was performed in triploid C. gigas at 12 and 48 h after infection with V. alginolyticus, and the respective 2257 and 191 differentially expressed genes (DEGs) were identified. The results of GO and KEGG enrichment analyses showed that multiple significantly enriched GO terms and KEGG signaling pathways are associated with immunity. A protein-protein interaction network was constructed to investigate the interaction relationship of immune-related genes. Finally, we verified the expression situation of 16 key genes using quantitative RT-PCR. This study is the first to use the PPI network in exploring the immune defense mechanism of triploid C. gigas blood to fill the gap in the immune mechanism of triploid oysters and other mollusks, and provide valuable reference for future triploid farming and pathogen prevention and control.
Collapse
Affiliation(s)
- Enshuo Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Tingjin Lv
- Yantai Institute of Marine Economy, Yantai, 264003, China
| | - Jingjing Fu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Luyao Dong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
9
|
Chouinard FC, Davis L, Gilbert C, Bourgoin SG. Functional Role of AGAP2/PIKE-A in Fcγ Receptor-Mediated Phagocytosis. Cells 2022; 12:cells12010072. [PMID: 36611866 PMCID: PMC9818964 DOI: 10.3390/cells12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In phagocytes, cytoskeletal and membrane remodeling is finely regulated at the phagocytic cup. Various smaFll G proteins, including those of the Arf family, control these dynamic processes. Human neutrophils express AGAP2, an Arf GTPase activating protein (ArfGAP) that regulates endosomal trafficking and focal adhesion remodeling. We first examined the impact of AGAP2 on phagocytosis in CHO cells stably expressing the FcγRIIA receptor (CHO-IIA). In unstimulated CHO-IIA cells, AGAP2 only partially co-localized with cytoskeletal elements and intracellular compartments. In CHO-IIA cells, AGAP2 transiently accumulated at actin-rich phagocytic cups and increased Fcγ receptor-mediated phagocytosis. Enhanced phagocytosis was not dependent on the N-terminal GTP-binding protein-like (GLD) domain of AGAP2. AGAP2 deleted of its GTPase-activating protein (GAP) domain was not recruited to phagocytic cups and did not enhance the engulfment of IgG-opsonized beads. However, the GAP-deficient [R618K]AGAP2 transiently localized at the phagocytic cups and enhanced phagocytosis. In PLB-985 cells differentiated towards a neutrophil-like phenotype, silencing of AGAP2 reduced phagocytosis of opsonized zymosan. In human neutrophils, opsonized zymosan or monosodium urate crystals induced AGAP2 phosphorylation. The data indicate that particulate agonists induce AGAP2 phosphorylation in neutrophils. This study highlights the role of AGAP2 and its GAP domain but not GAP activity in FcγR-dependent uptake of opsonized particles.
Collapse
Affiliation(s)
- François C. Chouinard
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada
| | - Lynn Davis
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada
| | - Caroline Gilbert
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et D’immunologie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain G. Bourgoin
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et D’immunologie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre ARThrite de L’université Laval, Québec City, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
10
|
Lyu T, Yang X, Zhao C, Wang L, Zhou S, Shi L, Dong Y, Dou H, Zhang H. Comparative transcriptomics of high-altitude Vulpes and their low-altitude relatives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The harsh environment of Qinghai-Tibet Plateau (QTP) imposes strong selective stresses (e.g., hypoxia, high UV-radiation, and extreme temperature) to the native species, which have driven striking phenotypic and genetic adaptations. Although the mechanisms of high-altitude adaptation have been explored for many plateau species, how the phylogenetic background contributes to genetic adaption to high-altitude of Vulpes is largely unknown. In this study, we sequenced transcriptomic data across multiple tissues of two high-altitude Vulpes (Vulpes vulpes montana and Vulpes ferrilata) and their low-altitude relatives (Vulpes corsac and Vulpes lagopus) to search the genetic and gene expression changes caused by high-altitude environment. The results indicated that the positive selection genes (PSGs) identified by both high-altitude Vulpes are related to angiogenesis, suggesting that angiogenesis may be the result of convergent evolution of Vulpes in the face of hypoxic selection pressure. In addition, more PSGs were detected in V. ferrilata than in V. v. montana, which may be related to the longer adaptation time of V. ferrilata to plateau environment and thus more genetic changes. Besides, more PSGs associated with high-altitude adaptation were identified in V. ferrilata compared with V. v. montana, indicating that the longer the adaptation time to the high-altitude environment, the more genetic alterations of the species. Furthermore, the result of expression profiles revealed a tissue-specific pattern between Vulpes. We also observed that differential expressed genes in the high-altitude group exhibited species-specific expression patterns, revealed a convergent expression pattern of Vulpes in high-altitude environment. In general, our research provides a valuable transcriptomic resource for further studies, and expands our understanding of high-altitude adaptation within a phylogenetic context.
Collapse
|