1
|
Zhang L, Wang S, Zhang Y, Zhang X, Xi J, Wu J, Fang J, Zhao H, Zhang B. Troglitazone as a Novel Nrf2 Activator to Attenuate Oxidative Stress and Exert Neuroprotection. ACS Chem Neurosci 2025; 16:1604-1616. [PMID: 40135498 DOI: 10.1021/acschemneuro.5c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) is closely associated with neurodegenerative diseases, and the Nrf2-mediated activation of antioxidant response elements (AREs) brings about validated strategies for treating neurodegenerative diseases. Here, we discovered that troglitazone, a clinical medication for diabetes mellitus, could serve as a Nrf2 activator to rescue neuronal damages both in vitro and in vivo. The mechanism of troglitazone action involves binding with kelch-like ECH-associated protein 1 (Keap1) and the activation of Nrf2. This process leads to the migration of Nrf2 to the cell nucleus and transactivates the AREs. Troglitazone exhibits significant alleviation of oxidative stress in PC12 cells induced by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). In vivo studies indicate that troglitazone could rescue the motor activity and neurodevelopmental deficiency in zebrafish induced by 6-OHDA. Additionally, mass spectrometry imaging demonstrates that troglitazone could cross the zebrafish blood-brain barrier, supporting the application of troglitazone in treating neurodegenerative diseases. Overall, this work reveals that the novel Nrf2 activator troglitazone has potential therapeutic value for neurodegeneration and provides a foundation for its repurposing.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanxia Zhang
- Center of Analysis and Testing, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaopeng Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Wang H, Xie Y. Advances in Ferroptosis Research: A Comprehensive Review of Mechanism Exploration, Drug Development, and Disease Treatment. Pharmaceuticals (Basel) 2025; 18:334. [PMID: 40143112 PMCID: PMC11944624 DOI: 10.3390/ph18030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, ferroptosis, as an emerging modality of programmed cell death, has captured significant attention within the scientific community. This comprehensive review meticulously canvasses the pertinent literature of the past few years, spanning multiple facets. It delves into the intricate mechanisms underpinning ferroptosis, tracks the evolution of its inducers and inhibitors, and dissects its roles in a diverse array of diseases, as well as the resultant therapeutic implications. A profound exploration is conducted of the functional mechanisms of ferroptosis-related molecules, intracellular pathways, metabolic cascades, and signaling transduction routes. Novel ferroptosis inducers and inhibitors are introduced in detail, covering their design blueprints, synthetic methodologies, and bioactivity profiles. Moreover, an exhaustive account is provided regarding the involvement of ferroptosis in malignancies, neurodegenerative disorders, cardiovascular ailments, and other pathologies. By highlighting the pivotal status and potential therapeutic regimens of ferroptosis in various diseases, this review aspires to furnish a thorough and profound reference framework for future investigations and clinical translations in the ferroptosis domain.
Collapse
Affiliation(s)
- Haojie Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Hangzhou 310014, China
| |
Collapse
|
6
|
Wang Y, Liao B, Shan X, Ye H, Wen Y, Guo H, Xiao F, Zhu H. Revealing rutaecarpine's promise: A pathway to parkinson's disease relief through PPAR modulation. Int Immunopharmacol 2025; 147:114076. [PMID: 39809102 DOI: 10.1016/j.intimp.2025.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed. Our findings demonstrated the efficacy of Rut in ameliorating PD symptoms. Network pharmacology analysis indicated that Rut exerts its therapeutic effects through the PPAR signaling pathway and the lipid pathway. Molecular docking results revealed that Rut forms stable protein-ligand complexes with PPARα and PPARγ. Animal experiments showed that Rut improved motor function in PD mice, protected dopaminergic neurons, ameliorated lipid metabolism disorders, and reduced neuroinflammation. This study identified the critical molecular mechanisms and therapeutic targets of Rut in the treatment of PD, providing a theoretical foundation for future investigations into the pharmacodynamics of Rut as a potential anti-PD agent.
Collapse
Affiliation(s)
- Yeying Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Haonan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| |
Collapse
|
7
|
Yin X, Liu Z, Li C, Wang J. Hinokitiol ameliorates MASH in mice by therapeutic targeting of hepatic Nrf2 and inhibiting hepatocyte ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156472. [PMID: 39922149 DOI: 10.1016/j.phymed.2025.156472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH), an advanced stage of metabolic dysfunction-associated steatotic liver disease (MASLD), still lacks approved effective clinical drugs. Ferroptosis, a form of regulated cell death driven by excessive iron accumulation and uncontrollable lipid peroxidation, has been proven to be a trigger of inflammation and initiation of steatohepatitis. The pathogenic interplay is modulated by oxidative stress, while the Nrf2-mediated antioxidant response plays a regulatory role in ferroptosis. Phytochemical hinokitiol (Hino) has demonstrated positive efficacy in hepatocellular carcinoma (HCC) in the reported work, but it remains unknown whether its therapeutic effect attributes to delaying the progress of steatohepatitis to HCC. PURPOSE This work aimed to systemically investigate the significance of ferroptosis in the pathogenesis of MASH and to demonstrate that Hino, a bioactive monoterpene compound, attenuates the primary pathological characteristics of MASH via promotion of Nrf2/GPX4 signaling. METHODS In this work, a MASH model was established using the high-fat/high-cholesterol (HFHC) diet-fed in vivo and palmitic acid/oleic acid (PO)-stimulated hepatocytes in vitro. Biochemical indexes, pathological analysis, western blot, PCR assay, energy metabolic phenotype, molecular docking, and confirmatory assays were performed comprehensively to reveal the key link between the Nrf2/GPX4 axis and the treatment of MASH. RESULTS Under MASH conditions with increased oxidative stress, we show that Nrf2 was remarkable downregulated in HFHC diet-fed mice and PO-managed hepatocytes. Mechanistically, hepatic upregulation of Nrf2 through phytochemical Hino supplementation inhibited ferroptosis, enhanced lipid metabolism, and thereby alleviated hepatic steatosis, inflammation, and fibrosis. Conversely, silencing Nrf2 in hepatocytes further promoted the accumulation of key markers of ferroptosis and aggravated MASH phenotypes. CONCLUSION Increased ferroptosis promoted steatosis which further drove inflammation and hepatic fibrosis. Our results suggested the significance of Nrf2 in ameliorating MASH, which was regulated through Hino. Thus, targeted inhibition of ferroptosis through Hino administration is a feasible and effective approach for treating MASH.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China; Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China.
| | - Chang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, USA.
| |
Collapse
|
8
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
9
|
Ma M, Jing G, Tian Y, Yin R, Zhang M. Ferroptosis in Cognitive Impairment Associated with Diabetes and Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Mol Neurobiol 2025; 62:2435-2449. [PMID: 39112768 PMCID: PMC11772472 DOI: 10.1007/s12035-024-04417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/30/2024] [Indexed: 01/28/2025]
Abstract
Cognitive impairment associated with diabetes and Alzheimer's disease has become a major health issue affecting older individuals, with morbidity rates growing acutely each year. Ferroptosis is a novel form of cell death that is triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests a strong correlation between the progression of cognitive impairment and diabetes, Alzheimer's disease, and ferroptosis. The pharmacological modulation of ferroptosis could be a promising therapeutic intervention for cognitive impairment associated with diabetes and Alzheimer's disease. In this review, we summarize evidence on ferroptosis in the context of cognitive impairment associated with diabetes and Alzheimer's disease and provide detailed insights into the function and potential action pathways of ferroptosis. Furthermore, we discuss the therapeutic importance of natural ferroptosis products in improving the cognitive impairment associated with diabetes and Alzheimer's disease and provide new insights for clinical treatment.
Collapse
Affiliation(s)
- Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
10
|
Bhuia MS, Chowdhury R, Afroz M, Akbor MS, Al Hasan MS, Ferdous J, Hasan R, de Alencar MVOB, Mubarak MS, Islam MT. Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chem Biodivers 2025:e202401904. [PMID: 39776341 DOI: 10.1002/cbdv.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication. The assessment is based on the most recent information available from various databases. Findings demonstrate that HK possesses substantial therapeutic advantages against diverse types of cancer (colon, cervical, breast, bone, endometrial, liver, prostate, oral, and skin) through various molecular mechanisms. HK induces oxidative stress, cytotoxicity, apoptosis, cell-cycle arrest at the G and S phases, and autophagy through modulation of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), p38/ERK/MAPK, nuclear factor kappa B, and c-Jun N-terminal kinase signaling pathways. Furthermore, this compound exhibits good oral bioavailability with excellent plasma clearance. Clinical uses of HK demonstrate therapeutic advantages without any significant negative effects. A thorough study of the pertinent data suggests that HK may serve as a viable candidate for developing novel cancer therapies. Consequently, more extensive studies are necessary to evaluate its cancer treatment efficacy, safety, and possible long-term hazards.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Dhaka, Bangladesh
| |
Collapse
|
11
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
12
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
13
|
Liang Y, Qiu S, Zou Y, Leung ELH, Luo L. Ferroptosis-Modulating Natural Products for Targeting Inflammation-Related Diseases: Challenges and Opportunities in Manipulating Redox Signaling. Antioxid Redox Signal 2024; 41:976-991. [PMID: 39001833 DOI: 10.1089/ars.2024.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Significance: Numerous disorders are linked to ferroptosis, a form of programmed cell death triggered by lipid peroxidation accumulation rather than apoptosis. Inflammation is the body's defensive response to stimuli and is also caused by inflammatory chemicals that can harm the body. The treatment of inflammatory diseases by focusing on the signaling pathways and mechanisms of ferroptosis has emerged as a new area worthy of extensive research. Recent Advances: Studies in cellular and animal models of inflammatory diseases have shown that ferroptosis markers are activated and lipid peroxidation levels are increased. Natural products (NPs) are gaining importance due to their ability to target ferroptosis pathways, particularly the Nuclear factor E2-related factor 2 signaling pathway, thereby suppressing inflammation and the release of pro-inflammatory cytokines. Critical Issues: This article provides an overview of ferroptosis, focusing on the signaling pathways and mechanisms connecting it to inflammation. It also explores the potential use of NPs as a treatment for inflammatory diseases and ferroptosis. Future Directions: NPs offer unique advantages, including multicomponent properties, multi-bio-targeting capabilities, and minimal side effects. Further research may facilitate the early clinical application of NPs to develop innovative treatment strategies. Antioxid. Redox Signal. 41, 976-991.
Collapse
Affiliation(s)
- Yongyi Liang
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Shaojun Qiu
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Youwen Zou
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Elaine Lai-Han Leung
- Faculty of Health Sciences, Cancer Centre, University of Macau, Zhuhai, Macao Special Administrative Region of China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Zhuhai, Macao Special Administrative Region of China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Zhuhai, Macao Special Administrative Region of China
| | - Lianxiang Luo
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Deng JL, Wang GY, Zhai YJ, Feng XY, Deng L, Han WB, Tang JJ. Herpotrichone A Exerts Neuroprotective Effects by Relieving Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17356-17367. [PMID: 39042602 DOI: 10.1021/acs.jafc.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inhibition of oxidative stress and ferroptosis is currently considered to be a promising therapeutic approach for neurodegenerative diseases. Herpotrichones, a class of compounds derived from insect symbionts, have shown potential for neuroprotective activity with low toxicity. However, the specific mechanisms through which herpotrichones exert their neuroprotective effects remain to be fully elucidated. In this study, the natural [4 + 2] adducts herpotrichone A (He-A) and its new analogues were isolated from the isopod-associated fungus Herpotrichia sp. SF09 and exhibited significantly protective effects in H2O2-, 6-OHDA-, and RSL3-stimulated PC12 cells and LPS-stimulated BV-2 cells. Moreover, He-A was able to relieve ferroptotic cell death in RSL3-stimulated PC12 cells and 6-OHDA-induced zebrafish larvae. Interestingly, He-A can activate antioxidant elements and modulate the SLC7A11 pathway without capturing oxidic free radical and chelating iron. These findings highlight He-A as a novel hit that protects against ferroptosis-like neuronal damage in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Guo-Yan Wang
- College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen Virtual University Park Building, High-Tech Industrial Park, Shenzhen, Guangdong 518000, China
| |
Collapse
|
15
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
16
|
Yu ZQ, Ren H, Guo XW, Yang GG, Wu J, Xi JM, Xiang XY, Fang J, Wu QX. Targeted isolation, identification, and antioxidant evaluation of aromatic polyketides from a plant-derived fungus Ophiobolus cirsii LZU-1509. Fitoterapia 2024; 175:105884. [PMID: 38460855 DOI: 10.1016/j.fitote.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
There are >350 species of the Ophiobolus genus, which is not yet very well-known and lacks research reports on secondary metabolites. Three new 3,4-benzofuran polyketides 1-3, a new 3,4-benzofuran polyketide racemate 4, two new pairs of polyketide enantiomers (±)-5 and (±)-7, two new acetophenone derivatives 6 and 8, and three novel 1,4-dioxane aromatic polyketides 9-11, were isolated from a fungus Ophiobolus cirsii LZU-1509 derived from an important medicinal and economic crop Anaphalis lactea. The isolation was guided by LC-MS/MS-based GNPS molecular networking analysis. The planar structures and relative configurations were mainly elucidated by NMR and HR-ESI-MS data. Their absolute configurations were determined by using X-ray diffraction analysis and via comparing computational and experimental ECD, NMR, and specific optical rotation data. 9 possesses an unreported 5/6/6/6/5 five-ring framework with a 1,4-dioxane, and 10 and 11 feature unprecedented 6/6/6/5 and 6/6/5/6 four-ring frames containing a 1,4-dioxane. The biosynthetic pathways of 9-11 were proposed. 1-11 were nontoxic in HT-1080 and HepG2 tumor cells at a concentration of 20 μM, whereas 3 and 5 exerted higher antioxidant properties in the hydrogen peroxide-stimulated model in the neuron-like PC12 cells. They could be potential antioxidant agents for neuroprotection.
Collapse
Affiliation(s)
- Zhen-Qing Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hao Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Wei Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ge-Ge Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jun-Min Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xin-Yu Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Li Z, Cao L, Han K, Fan L, Zhao C, Yin S, Hu H. Non-cytotoxic nanomolar concentration of arctigenin protects neuronal cells from chemotherapy-induced ferroptosis by regulating SLC7A11-cystine-cysteine axis. Biochem Biophys Res Commun 2024; 710:149895. [PMID: 38593620 DOI: 10.1016/j.bbrc.2024.149895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Neurotoxicity is a common side effect of certain types of therapeutic drugs, posing a major hurdle for their clinical application. Accumulating evidence suggests that ferroptosis is involved in the neurotoxicity induced by these drugs. Therefore, targeting ferroptosis is considered to be a reasonable approach to prevent such side effect. Arctigenin (ATG) is a major bioactive ingredient of Arctium lappa L., a popular medicinal plant in Asia, and has been reported to have multiple bioactivities including neuroprotection. However, the mechanisms underlying the neuroprotection of ATG has not been well elucidated. The purpose of this study was to investigate whether the neuroprotection of ATG was associated with its ability to protect neuronal cells from ferroptosis. Using neuronal cell ferroptosis model induced by either classic ferroptosis induces or therapeutic drugs, we demonstrated for the first time that ATG in the nanomolar concentration range effectively prevented neuronal cell ferroptosis induced by classic ferroptosis inducer sulfasalazine (SAS) and erastin (Era), or therapeutic drug oxaliplatin (OXA) and 5-fluorouracil (5-FU). Mechanistically, we uncovered that the anti-ferroptotic effect of ATG was attributed to its ability to activate SLC7A11-cystine-cysteine axis. The findings of the present study implicate that ATG holds great potential to be developed as a novel agent for preventing SLC7A11 inhibition-mediated neurotoxicity.
Collapse
Affiliation(s)
- Zhuoqun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
18
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
19
|
Kim TY, Kim EN, Jeong GS. Therapeutic Effects of Hinokitiol through Regulating the SIRT1/NOX4 against Ligature-Induced Experimental Periodontitis. Antioxidants (Basel) 2024; 13:550. [PMID: 38790655 PMCID: PMC11118509 DOI: 10.3390/antiox13050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Hinokitiol (HKT) is one of the essential oil components found in the heartwood of Cupressaceae plants, and has been reported to have various bioactive effects, including anti-inflammatory effects. However, the improving effect of HKT on periodontitis, which is characterized by periodontal tissue inflammation and alveolar bone loss, has not been clearly revealed. Therefore, we investigated the periodontitis-alleviating effect of HKT and the related molecular mechanisms in human periodontal ligament cells. According to the study results, HKT downregulated SIRT1 and NOX4, which were increased by Porphyromonas gingivalis Lipopolysaccharide (PG-LPS) stimulation and were found to regulate pro-inflammatory mediators and oxidative stress through SIRT1/NOX4 signals. Additionally, by increasing the expression of osteogenic makers such as alkaline phosphatase, osteogenic induction of human periodontal ligament (HPDL) cells, which had been reduced by PG-LPS, was restored. Furthermore, we confirmed that NOX4 expression was regulated through regulation of SIRT1 expression with HKT. The in vitro effect of HKT on improving periodontitis was proven using the periodontal inflammation model, which induces periodontal inflammation using ligature, a representative in vivo model. According to in vivo results, HKT alleviated periodontal inflammation and restored damaged alveolar bone in a concentration-dependent manner in the periodontal inflammation model. Through this experiment, the positive effects of HKT on relieving periodontal tissue inflammation and recovering damaged alveolar bone, which are important treatment strategies for periodontitis, were confirmed. Therefore, these results suggest that HKT has potential in the treatment of periodontitis.
Collapse
Affiliation(s)
| | | | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (T.-Y.K.); (E.-N.K.)
| |
Collapse
|
20
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
22
|
Wang B, Zhu S, Guo M, Ma RD, Tang YL, Nie YX, Gu HF. Artemisinin ameliorates cognitive decline by inhibiting hippocampal neuronal ferroptosis via Nrf2 activation in T2DM mice. Mol Med 2024; 30:35. [PMID: 38454322 PMCID: PMC10921734 DOI: 10.1186/s10020-024-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sheng Zhu
- Department of Nuclear Medicine, Affiliated Hospital of Xiangnan University, No. 25 Renmin West Road, Beihu District, Chenzhou, 423001, Hunan, China
| | - Miao Guo
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Run-Dong Ma
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Ling Tang
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Xiong Nie
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong-Feng Gu
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
23
|
Zhao M, Qiao C, Yang S, Tang Y, Sun W, Sun S, Guo Q, Du F, Zhang N, Ning T, Wu J, Xu J, Li P. Hinokitiol protects gastric injury from ethanol exposure via its iron sequestration capacity. Eur J Pharmacol 2024; 966:176340. [PMID: 38244759 DOI: 10.1016/j.ejphar.2024.176340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Hinokitiol is a natural bioactive tropolone derivative isolated from Chamaecyparis obtusa and Thuja plicata, which exhibits promising potential in terms of antioxidant and anti-inflammatory properties and possesses potent iron-binding capacity. In this study, we aimed to investigate the potential role of hinokitiol in protecting against ethanol-induced gastric injury and elucidate the underlying mechanism. Our results demonstrated that hinokitiol effectively attenuated hemorrhagic gastric lesions, epithelial cell loss, and inflammatory response in mice with ethanol-induced gastric injury. Intriguingly, we found that ethanol exposure affects iron levels both in vivo and in vitro. Moreover, the disturbed iron homeostasis was involved in the development of ethanol-induced injury. Iron depletion was found to enhance defense against ethanol-induced damage, while iron repletion showed the opposite effect. To further explore the role of iron sequestration in the protective effects of hinokitiol, we synthesized methylhinokitiol, a compound that shields the iron binding capacity of hinokitiol with a methyl group. Interestingly, this compound significantly diminishes the protective effect against ethanol-induced injury. These findings collectively demonstrated that hinokitiol could potentially be used to prevent or improve gastric injury induced by ethanol through regulating cellular iron homeostasis.
Collapse
Affiliation(s)
- Mengran Zhao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Chen Qiao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shuyue Yang
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Wenjing Sun
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shanshan Sun
- National Institute of Food and Drug Control (NIFDC), Beijing, 100050, China
| | - Qingdong Guo
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Feng Du
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Nan Zhang
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - TingTing Ning
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Jing Wu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Junxuan Xu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| | - Peng Li
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| |
Collapse
|
24
|
Nie A, Shen C, Zhou Z, Wang J, Sun B, Zhu C. Ferroptosis: Potential opportunities for natural products in cancer therapy. Phytother Res 2024; 38:1173-1190. [PMID: 38116870 DOI: 10.1002/ptr.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cancer cells often exhibit defects in the execution of cell death, resulting in poor clinical outcomes for patients with many cancer types. Ferroptosis is a newly discovered form of programmed cell death characterized by intracellular iron overload and lipid peroxidation in the cell membrane. Increasing evidence suggests that ferroptosis is closely associated with a wide variety of physiological and pathological processes, particularly in cancer. Notably, various bioactive natural products have been shown to induce the initiation and execution of ferroptosis in cancer cells, thereby exerting anticancer effects. In this review, we summarize the core regulatory mechanisms of ferroptosis and the multifaceted roles of ferroptosis in cancer. Importantly, we focus on natural products that regulate ferroptosis in cancer cells, such as terpenoids, polyphenols, alkaloids, steroids, quinones, and polysaccharides. The clinical efficacy, adverse effects, and drug-drug interactions of these natural products need to be evaluated in further high-quality studies to accelerate their application in cancer treatment.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Chen YL, Xiong LA, Ma LF, Fang L, Zhan ZJ. Natural product-derived ferroptosis mediators. PHYTOCHEMISTRY 2024; 219:114002. [PMID: 38286199 DOI: 10.1016/j.phytochem.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.
Collapse
Affiliation(s)
- Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
26
|
Wang J, Zhao J, Zhao K, Wu S, Chen X, Hu W. The Role of Calcium and Iron Homeostasis in Parkinson's Disease. Brain Sci 2024; 14:88. [PMID: 38248303 PMCID: PMC10813814 DOI: 10.3390/brainsci14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Calcium and iron are essential elements that regulate many important processes of eukaryotic cells. Failure to maintain homeostasis of calcium and iron causes cell dysfunction or even death. PD (Parkinson's disease) is the second most common neurological disorder in humans, for which there are currently no viable treatment options or effective strategies to cure and delay progression. Pathological hallmarks of PD, such as dopaminergic neuronal death and intracellular α-synuclein deposition, are closely involved in perturbations of iron and calcium homeostasis and accumulation. Here, we summarize the mechanisms by which Ca2+ signaling influences or promotes PD progression and the main mechanisms involved in ferroptosis in Parkinson's disease. Understanding the mechanisms by which calcium and iron imbalances contribute to the progression of this disease is critical to developing effective treatments to combat this devastating neurological disorder.
Collapse
Affiliation(s)
- Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Jindong Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Kunying Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Xinglong Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| |
Collapse
|
27
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
28
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
29
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
30
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
31
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
32
|
Abstract
The total syntheses of tropolone-containing natural products malettinins C and E were accomplished. A nitro compound and a chiral enone were prepared by using palladium-mediated nitromethylation and an organocatalyst-mediated asymmetric aldol reaction, respectively, and were connected via a Michael reaction. Oxidative dearomatization of a phenol having a cyclic acetal moiety produced a spirocyclic dienone, which could be converted into a tropolone via a base-mediated ring-expansion reaction, with elimination of the nitro group, providing entry to malettinins C and E.
Collapse
Affiliation(s)
- Nariyoshi Umekubo
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
34
|
Costa I, Barbosa DJ, Silva V, Benfeito S, Borges F, Remião F, Silva R. Research Models to Study Ferroptosis's Impact in Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15051369. [PMID: 37242612 DOI: 10.3390/pharmaceutics15051369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a type of regulated cell death promoted by the appearance of oxidative perturbations in the intracellular microenvironment constitutively controlled by glutathione peroxidase 4 (GPX4). It is characterized by increased production of reactive oxygen species, intracellular iron accumulation, lipid peroxidation, inhibition of system Xc-, glutathione depletion, and decreased GPX4 activity. Several pieces of evidence support the involvement of ferroptosis in distinct neurodegenerative diseases. In vitro and in vivo models allow a reliable transition to clinical studies. Several in vitro models, including differentiated SH-SY5Y and PC12 cells, among others, have been used to investigate the pathophysiological mechanisms of distinct neurodegenerative diseases, including ferroptosis. In addition, they can be useful in the development of potential ferroptosis inhibitors that can be used as disease-modifying drugs for the treatment of such diseases. On the other hand, in vivo models based on the manipulation of rodents and invertebrate animals, such as Drosophila melanogaster, Caenorhabditis elegans, and zebrafish, have been increasingly used for research in neurodegeneration. This work provides an up-to-date review of the main in vitro and in vivo models that can be used to evaluate ferroptosis in the most prevalent neurodegenerative diseases, and to explore potential new drug targets and novel drug candidates for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
Guo F, Ma J, Li C, Liu S, Wu W, Li C, Wang J, Wang J, Li Z, Zhai J, Sun F, Zhou Y, Guo C, Qian H, Xu B. PRR15 deficiency facilitates malignant progression by mediating PI3K/Akt signaling and predicts clinical prognosis in triple-negative rather than non-triple-negative breast cancer. Cell Death Dis 2023; 14:272. [PMID: 37072408 PMCID: PMC10113191 DOI: 10.1038/s41419-023-05746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast neoplasms with a higher risk of recurrence and metastasis than non-TNBC. Nevertheless, the factors responsible for the differences in the malignant behavior between TNBC and non-TNBC are not fully explored. Proline rich 15 (PRR15) is a protein involved in the progression of several tumor types, but its mechanisms are still controversial. Therefore, this study aimed to investigate the biological role and clinical applications of PRR15 on TNBC. PRR15 gene was differentially expressed between TNBC and non-TNBC patients, previously described as an oncogenic factor in breast cancer. However, our results showed a decreased expression of PRR15 that portended a favorable prognosis in TNBC rather than non-TNBC. PRR15 knockdown facilitated the proliferation, migration, and invasive ability of TNBC cells in vitro and in vivo, which was abolished by PRR15 restoration, without remarkable effects on non-TNBC. High-throughput drug sensitivity revealed that PI3K/Akt signaling was involved in the aggressive properties of PRR15 silencing, which was confirmed by the PI3K/Akt signaling activation in the tumors of PRR15Low patients, and PI3K inhibitor reversed the metastatic capacity of TNBC in mice. The reduced PRR15 expression in TNBC patients was positively correlated with more aggressive clinicopathological characteristics, enhanced metastasis, and poor disease-free survival. Collectively, PRR15 down-regulation promotes malignant progression through the PI3K/Akt signaling in TNBC rather than in non-TNBC, affects the response of TNBC cells to antitumor agents, and is a promising indicator of disease outcomes in TNBC.
Collapse
Affiliation(s)
- Fengzhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jialu Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Graduate School, Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuning Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chunxiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangzhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
36
|
Mallais M, Hanson CS, Giray M, Pratt DA. General Approach to Identify, Assess, and Characterize Inhibitors of Lipid Peroxidation and Associated Cell Death. ACS Chem Biol 2023; 18:561-571. [PMID: 36854078 DOI: 10.1021/acschembio.2c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Lipid peroxidation (LPO) is associated with a variety of pathologies and drives a form of regulated necrosis called ferroptosis. There is much interest in small-molecule inhibitors of LPO as potential leads for therapeutic development for neurodegeneration, stroke, and acute organ failure, but this has been hampered by the lack of a universal high-throughput assay that can identify and assess candidates. Herein, we describe the development and validation of such an approach. Phosphatidylcholine liposomes loaded with ∼10% phospholipid hydroperoxide and STY-BODIPY, a fluorescent signal carrier that co-autoxidizes with polyunsaturated phospholipids, are shown to autoxidize at convenient and constant rates when subjected to an optimized Fe2+-based initiation cocktail. The use of this initiation system enables the identification of each of the various classes of LPO inhibitors which have been shown to rescue from cell death in ferroptosis: radical-trapping antioxidants (RTAs), peroxidase mimics, and iron chelators. Furthermore, a limited dose-response profile of inhibitors enables the resolution of RTA and non-RTA inhibitors─thereby providing not only relative efficacy but mechanistic information in the same microplate-based experiment. Despite this versatility, the approach can still be used to estimate rate constants for the reaction of RTAs with chain-propagating peroxyl radicals, as demonstrated for a representative panel of RTAs. To illustrate the utility of this assay, we carried out a preliminary investigation of the 'off-target' activity of several ferroptosis suppressors that have been proposed to act independently of inhibition of LPO, including lipoxygenase inhibitors, cannabinoids, and necrostatins, the archetype inhibitors of necroptosis.
Collapse
Affiliation(s)
- Melodie Mallais
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa ON K1N 6N5, Canada
| | - Carly S Hanson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa ON K1N 6N5, Canada
| | - Melanie Giray
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa ON K1N 6N5, Canada
| |
Collapse
|
37
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
38
|
Zhou LP, Zhang RJ, Jia CY, Kang L, Zhang ZG, Zhang HQ, Wang JQ, Zhang B, Shen CL. Ferroptosis: A potential target for the intervention of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1042060. [PMID: 36339421 PMCID: PMC9630850 DOI: 10.3389/fendo.2022.1042060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death marked by phospholipid peroxidation, is regulated by complex cellular metabolic pathways including lipid metabolism, iron balance, redox homeostasis, and mitochondrial activity. Initial research regarding the mechanism of ferroptosis mainly focused on the solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 (GPX4) signal pathway. Recently, novel mechanisms of ferroptosis, independent of GPX4, have been discovered. Numerous pathologies associated with extensive lipid peroxidation, such as drug-resistant cancers, ischemic organ injuries, and neurodegenerative diseases, are driven by ferroptosis. Ferroptosis is a new therapeutic target for the intervention of IVDD. The role of ferroptosis in the modulation of intervertebral disc degeneration (IVDD) is a significant topic of interest. This is a novel research topic, and research on the mechanisms of IVDD and ferroptosis is ongoing. Herein, we aim to review and discuss the literature to explore the mechanisms of ferroptosis, the relationship between IVDD and ferroptosis, and the regulatory networks in the cells of the nucleus pulposus, annulus fibrosus, and cartilage endplate to provide references for future basic research and clinical translation for IVDD treatment.
Collapse
|