1
|
Yang K, Zhang X, Long F, Dai J. AKR1B1 Inhibits Ferroptosis and Promotes Gastric Cancer Progression via Interacting With STAT3 to Activate SLC7A11. Cell Biol Int 2025; 49:374-383. [PMID: 39911124 DOI: 10.1002/cbin.12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Gastric cancer (GC) is a frequently diagnosed malignant tumor in clinical settings; however, the mechanisms underlying its tumorigenesis remain inadequately understood. In this study, we identified significantly elevated expression levels of AKR1B1 in GC tissues through quantitative polymerase chain reaction (qPCR) and western blotting assays. Furthermore, a negative correlation was established between patient survival probability and AKR1B1 expression levels. Functionally, our experiments, including colony formation, transwell migration, and xenograft assays, demonstrated that the depletion of AKR1B1 inhibited the proliferation and progression of GC cells both in vivo and in vitro. Additionally, the assessment of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and mitochondrial morphology confirmed that AKR1B1 depletion induces ferroptosis. Mechanistically, we found that AKR1B1 interacts with STAT3, which subsequently activates SLC7A11. Notably, the ferroptosis induced by AKR1B1 depletion could be reversed by the overexpression of SLC7A11, thereby substantiating these interactions. In conclusion, our findings identify AKR1B1 as a novel oncogene in GC and elucidate the mechanism involving the AKR1B1-STAT3-SLC7A11 pathway and ferroptosis, providing new insights for potential therapeutic strategies in the treatment of GC.
Collapse
Affiliation(s)
- Kaiyan Yang
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, China
| | - Jing Dai
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Xie J, Luo D, Xing P, Ding W. The Dual Roles of STAT3 in Ferroptosis: Mechanism, Regulation and Therapeutic Potential. J Inflamm Res 2025; 18:4251-4266. [PMID: 40144540 PMCID: PMC11938932 DOI: 10.2147/jir.s506964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Ferroptosis, an iron-dependent programmed mechanism of cell death that is driven by lipid peroxidation, is an important pathogenic factor in oncological and non-oncological disorders. Dysregulation of iron and lipid metabolism profoundly influences disease progression through ferroptosis modulation. Signal transducer and activator of transcription 3 (STAT3), a transcriptional regulator, regulates ferroptosis by binding to promoters of key molecules such as solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1). In this review, we described the role of STAT3 in supporting tumors survival by suppressing ferroptosis in malignancies, and bidirectionally regulating ferroptosis in non-tumors to regulate the development of the disease. We also reported emerging therapeutic strategies that target STAT3-mediated ferroptosis, including natural phytochemicals, inhibitors, and nanotechnology-enabled drug delivery systems. These advancements deepen the mechanistic understanding of ferroptosis regulation, and provide new theoretical bases and strategies to treat ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jinghui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dan Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Pengfei Xing
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Zhao C, Bao L, Shan R, Zhao Y, Wu K, Shang S, Li H, Liu Y, Chen K, Zhang N, Ye C, Hu X, Fu Y. Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411985. [PMID: 39808540 PMCID: PMC11884527 DOI: 10.1002/advs.202411985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands. MGI-induced changes in the gut microbiota of suckling pups lasted into adulthood, resulting in the exacerbation of acute liver failure (ALF) caused by acetaminophen (APAP) in offspring. Specifically, MGI reduced the abundance of Lactobacillus reuteri (L. reuteri) and its metabolite indole-3-acetic acid (IAA) level in adult offspring. L. reuteri and IAA alleviated ALF in mice by promoting intestinal IL-22 production. Mechanistically, IL-22 limits APAP-induced excessive oxidative stress and ferroptosis by activating STAT3. The intestinal abundances of L. reuteri and IAA are inversely associated with the progression of patients with ALF. Overall, the study reveals the role of MGI in mother-to-infant microbial transmission and disease development in offspring, highlighting potential strategies for intervention in ALF based on the IAA-IL-22-STAT3 axis.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Lijuan Bao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Ruping Shan
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yihong Zhao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Keyi Wu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Shan Shang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Haiqi Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yi Liu
- Department of Orthopedic CenterThe First Hospital of Jilin UniversityChangchun130012China
| | - Ke Chen
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Cong Ye
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
4
|
Xie M, Jiang P, Yang X, Sun D, Zhu B, Zhu X, Ding S, Gao J, Yang X, Shi H. Astemizole Exacerbates 5-Fluorouracil-Triggered Cardiotoxicity by Enhancing Ptgs2. Cardiovasc Toxicol 2025; 25:205-215. [PMID: 39779614 DOI: 10.1007/s12012-024-09953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
5-fluorouracil (5-FU), a commonly utilized antitumor agent for the treatment of colon cancer, is linked to an increased risk of cardiovascular diseases. Antihistamines including astemizole (AST) have been reported to present cardiovascular toxicity; however, it remains unclear how 5-FU-mediated cardiotoxicity is affected by AST during the treatment of colon cancer. This study explored the role of AST in 5-FU-induced cardiotoxicity in colon cancer. 5-FU was used to induce cardiotoxicity in cardiomyocytes (HL-1 cells) and BALBc mice, creating in vitro and in vivo models of chemotherapeutic drug-induced cardiotoxicity. In the mice model, we found that the blocking of histamine signal by AST aggravated 5-FU-induced cardiac function injury and cardiac fibrosis. In HL-1 cardiomyocyte cells, the increases of apoptosis and generation of mitochondrial reactive oxygen species (mtROS) were evaluated after the combination treatment of AST and 5-FU. Proinflammatory M1-like-type macrophages were dominant in the AST and 5-FU combination group compared to control groups. The protein expression of prostaglandin-endoperoxide synthase 2 (Ptgs2) was assessed both in vitro and in vivo using Western blot analysis. Clinically, altered Ptgs2 was closely associated with adverse cardiovascular outcomes. Overall, the combination of AST and 5-FU significantly enhanced cardiotoxicity by inducing cardiomyocyte apoptosis, inflammation, and the expression of Ptgs2.
Collapse
MESH Headings
- Animals
- Fluorouracil/toxicity
- Cardiotoxicity
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Cyclooxygenase 2/metabolism
- Apoptosis/drug effects
- Mice, Inbred BALB C
- Disease Models, Animal
- Male
- Astemizole/toxicity
- Reactive Oxygen Species/metabolism
- Fibrosis
- Heart Diseases/chemically induced
- Heart Diseases/enzymology
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Signal Transduction
- Drug Synergism
- Ventricular Function, Left/drug effects
- Mice
- Antimetabolites, Antineoplastic/toxicity
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages/pathology
- Cell Line
Collapse
Affiliation(s)
- Mengshi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Nutrition, QingPu District Central Hospital, Shanghai, China
| | - Xiyang Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dili Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baoling Zhu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Cardiology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang Hunan, China.
| | - Hongyu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhang X, Zhang L, Li B, Wang Q, Chen P, Shi R, Zhou X, Niu X, Zhai W, Wu Y, Shen W, Zhou X, Zhao W. Identification of Epinastine as CD96/PVR inhibitor for cancer immunotherapy. BMC Biol 2025; 23:27. [PMID: 39871281 PMCID: PMC11773930 DOI: 10.1186/s12915-025-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Poliovirus receptor (PVR) and its receptor system, including TIGIT, CD226, and CD96, play a pivotal role in orchestrating tumor immune evasion. Upon engagement with PVR on tumor cells, CD96 exerts inhibitory effects on the function of T cells and NK cells, thereby fostering tumor immune evasion. Therefore, screening of immune checkpoint inhibitors (ICIs) targeting the CD96/PVR pathway will provide promising candidates for tumor immunotherapy. RESULTS In this investigation, we employed MOE software to conduct virtual screening of small molecules from the FDA-approved drug library. Our results demonstrated that Epinastine exhibited high affinity for CD96, thereby effectively disrupting the interaction between CD96 and PVR. In vitro co-culture experiments further revealed that Epinastine effectively restored the ability of Jurkat cells to secrete IL-2. In the MC38 tumor-bearing model, Epinastine significantly enhanced the infiltration of T cells and NK cells into the tumor site and augmented their secretion of IFN-γ, leading to effective suppression of tumor growth. CONCLUSIONS Our results demonstrated that the development of small molecule inhibitor Epinastine targeting CD96/PVR pathway, which proposed a promising strategy and drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peixin Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe, 462000, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenhui Shen
- Department of Head Neck and Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Wang B, Wang J, Liu C, Li C, Meng T, Chen J, Liu Q, He W, Liu Z, Zhou Y. Ferroptosis: Latest evidence and perspectives on plant-derived natural active compounds mitigating doxorubicin-induced cardiotoxicity. J Appl Toxicol 2025; 45:135-158. [PMID: 39030835 DOI: 10.1002/jat.4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug widely used in clinical settings, acting as a first-line treatment for various malignant tumors. However, its use is greatly limited by the cardiotoxicity it induces, including doxorubicin-induced cardiomyopathy (DIC). The mechanisms behind DIC are not fully understood, but its potential biological mechanisms are thought to include oxidative stress, inflammation, energy metabolism disorders, mitochondrial damage, autophagy, apoptosis, and ferroptosis. Recent studies have shown that cardiac injury induced by DOX is closely related to ferroptosis. Due to their high efficacy, availability, and low side effects, natural medicine treatments hold strong clinical potential. Currently, natural medicines have been shown to mitigate DOX-induced ferroptosis and ease DIC through various functions such as antioxidation, iron ion homeostasis correction, lipid metabolism regulation, and mitochondrial function improvement. Therefore, this review summarizes the mechanisms of ferroptosis in DIC and the regulation by natural plant products, with the expectation of providing a reference for future research and development of inhibitors targeting ferroptosis in DIC. This review explores the mechanisms of ferroptosis in doxorubicin-induced cardiomyopathy (DIC) and summarizes how natural plant products can alleviate DIC by inhibiting ferroptosis through reducing oxidative stress, correcting iron ion homeostasis, regulating lipid metabolism, and improving mitochondrial function.
Collapse
Affiliation(s)
- Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wang He
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Liu F, Wang Q, Ye H, Du Y, Wang M, Guo Y, He S. Identification of STAT3 and MYC as critical ferroptosis-related biomarkers in septic cardiomyopathy: a bioinformatics and experimental study. J Mol Med (Berl) 2025; 103:87-100. [PMID: 39557695 DOI: 10.1007/s00109-024-02502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Ferroptosis is the well-known mechanism of septic cardiomyopathy (SCM). Bioinformatics analysis was employed to identify ferroptosis-related SCM differentially expressed genes (DEG). DEGs' functional enrichment was explored. Weighted gene co-expression network analysis (WGCNA) was employed to form gene clusters. The identified hub genes, signal transducer and activator of transcription 3 (STAT3) and myelocytomatosis (MYC) were further evaluated by generating receiver operator characteristic (ROC) curves and a nomogram prediction model. Additionally, survival rate, cardiac damage markers, and cardiac function and ferroptosis markers were evaluated in septic mouse model. STAT3 and MYC levels were measured in SCM heart tissue via immunohistochemical (IHC) staining, real-time polymerase chain reaction (qPCR) and western blot analysis. Analysis identified 225 DEGs and revealed 22 intersected genes. Of the 7 hub genes, STAT3 and MYC showed enrichment in septic heart tissue and a strong predicative ability based on AUC values. Cardiac damage, iron metabolism, and lipid peroxidation occurred in the SCM model. By experiments, STAT3 and MYC expression was increased in the SCM model. Impairment was reversed with a ferroptosis inhibitor, Fer-1. As conclusion, STAT3 and MYC are related with ferroptosis and may serve as potential SCM predictor indicators. KEY MESSAGES: Septic cardiomyopathy (SCM) often leads to high mortality in septic patients, and the diagnostic criteria still remains unclear. Ferroptosis as the pathogenic mechanism of SCM could help predict its progression and clinical outcomes. STAT3 and MYC are related with ferroptosis and may serve as potential SCM predictor biomarkers.
Collapse
Affiliation(s)
- Fangyu Liu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Capital Medical University, Beijing, China
| | - Yuan Du
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Capital Medical University, Beijing, China
| | - Mingjiao Wang
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuhong Guo
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Capital Medical University, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
- Beijing Institute of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Qian S, Yang Z, Zhang X, Li R, Sun Y, Zhang Z, He Y, Song Y, Tang Z, Ding J, Lu S, Yu L, Song X, Yin Z, Tian Z. Novel therapeutic approach for psoriasis: Upregulating FcRn to inhibit ferroptosis and alleviate lesional skin. Free Radic Biol Med 2024; 224:797-808. [PMID: 39270944 DOI: 10.1016/j.freeradbiomed.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Psoriasis, a chronic inflammatory skin disease, is characterized by complex immune dysregulation and oxidative stress responses. The neonatal Fc receptor (FcRn) plays a crucial role in the development of autoimmune diseases. Analysis of clinical psoriasis samples demonstrated a negative correlation between FcRn expression in skin lesions and disease severity. However, the role of FcRn in this process remains unclear. This study aimed to investigate the involvement of FcRn in the pathogenesis and progression of psoriasis. In an imiquimod (IMQ)-induced psoriasis-like mouse model, FcRn expression was significantly decreased in the lesional skin, and transcriptome sequencing of the skin revealed activation of the ferroptosis pathway in psoriasis. This led to the hypothesis that FcRn could potentially regulate ferroptosis via the signal transducer and activating transcription factor 3 (STAT3)/solute carrier family 7 member 11 (SLC7A11) axis. Further experiments showed exacerbated psoriasis-like lesional skin and ferroptosis in FcRn-knockout mice, whereas intervention with the ferroptosis inhibitor Fer-1 or STAT3 inhibitor Stattic alleviated these symptoms. Critical binding sites for the transcription factor STAT3 were identified in the SLC7A11 promoter region at positions -1185 and -564 using the luciferase reporter assays and chromatin immunoprecipitation. The administration of 1,4-naphthoquinone (NQ), an FcRn agonist, effectively alleviated psoriasis-like skin lesions by inhibiting ferroptosis. This study highlights the molecular mechanisms of action of FcRn in psoriasis and provides an experimental basis for the development of novel therapeutic strategies targeting FcRn.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Zishan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yujie Sun
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Zihan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yeqing He
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yihang Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhou Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Junrui Ding
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Shuao Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Xiangfeng Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
9
|
Yang F, Zhang G, An N, Dai Q, Cho W, Shang H, Xing Y. Interplay of ferroptosis, cuproptosis, and PANoptosis in cancer treatment-induced cardiotoxicity: Mechanisms and therapeutic implications. Semin Cancer Biol 2024; 106-107:106-122. [PMID: 39299410 DOI: 10.1016/j.semcancer.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
With the prolonged survival of individuals with cancer, the emergence of cardiovascular diseases (CVD) induced by cancer treatment has become a significant concern, ranking as the second leading cause of death among cancer survivors. This review explores three distinct types of programmed cell death (PCD): ferroptosis, cuproptosis, and PANoptosis, focusing on their roles in chemotherapy-induced cardiotoxicity. While ferroptosis and cuproptosis are triggered by excess iron and copper (Cu), PANoptosis is an inflammatory PCD with features of pyroptosis, apoptosis, and necroptosis. Recent studies reveal intricate connections among these PCD types, emphasizing the interplay between cuproptosis and ferroptosis. Notably, the role of intracellular Cu in promoting ferroptosis through GPX4 is highlighted. Additionally, ROS-induced PANoptosis is influenced by ferroptosis and cuproptosis, suggesting a complex interrelationship. This review provides insights into the molecular mechanisms of these PCD modalities and their distinct contributions to chemotherapy-induced cardiotoxicity. Furthermore, we discuss the potential application of cardioprotective drugs in managing these PCD types. This comprehensive analysis aims to advance the understanding, diagnosis, and therapeutic strategies for cardiotoxicity associated with cancer treatment.
Collapse
Affiliation(s)
- Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100053, China; Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Dai
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - William Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
10
|
Wang J, Yi H, Li J, Yang Y, Sun G, Xue Y, He L. P62-autophagic pathway degrades SLC7A11 to regulate ferroptosis in doxorubicin-induced cardiotoxicity. Life Sci 2024; 356:122981. [PMID: 39147314 DOI: 10.1016/j.lfs.2024.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Doxorubicin-induced cardiotoxicity (DIC) poses a significant challenge, impeding its widespread application. Emerging evidence suggests the involvement of ferroptosis in the DIC. While the downregulation of SLC7A11 expression has been linked to the promotion of ferroptosis, the precise regulatory mechanism remains unclear. Recent studies, including our own, have highlighted abnormal levels of autophagy adapter protein P62 and autophagy in DIC development. Thus, our study aimed to further investigate the role of autophagy and ferroptosis in DIC, elucidating underlying molecular mechanisms across molecular, cellular, and whole-organ levels utilizing gene knockdown, immunoprecipitation, and mass spectrometry techniques. The results of our findings unveiled cardiomyocyte damage, heightened autophagy levels, and ferroptosis in DOX-treated mouse hearts. Notably, inhibition of autophagy levels attenuated DOX-induced ferroptosis. Mechanistically, we discovered that the autophagy adaptor protein P62 mediates the entry of SLC7A11 into the autophagic pathway for degradation. Furthermore, the addition of autophagy inhibitors (CQ or BAF) could elevate SLC7A11 and GPX4 protein expression, reduce the accumulation of Fe2+ and ROS in cardiomyocytes, and thus mitigate DOX-induced ferroptosis. In summary, our findings underscore the pivotal role of the P62-autophagy pathway in SLC7A11 degradation, modulating ferroptosis to exacerbate DIC. This finding offers significant insights into the underlying molecular mechanisms of DOX-induced ferroptosis and identifies new targets for reversing DIC.
Collapse
Affiliation(s)
- Jihong Wang
- The Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hong Yi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 519041, Guangdong, China
| | - Juxiang Li
- The Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yuting Yang
- The Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Guofang Sun
- The Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 519041, Guangdong, China.
| | - Ling He
- The Department of Geriatrics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
11
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
12
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
13
|
Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci 2024; 9:811-826. [PMID: 39070280 PMCID: PMC11282888 DOI: 10.1016/j.jacbts.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 07/30/2024]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has received increasing attention for its pathophysiologic contribution to the onset and development of doxorubicin-induced cardiotoxicity. Moreover, modulation of ferroptosis with specific inhibitors may provide new therapeutic opportunities for doxorubicin-induced cardiotoxicity. Here, we will review the molecular mechanisms and therapeutic promise of targeting ferroptosis in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Guizhen Wang
- Department of Emergency, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
14
|
Qiu H, Huang S, Liu Y, Liu L, Guo F, Guo Y, Li D, Cen X, Chen Y, Zhang M, Che Y, Xu M, Tang Q. Idebenone alleviates doxorubicin-induced cardiotoxicity by stabilizing FSP1 to inhibit ferroptosis. Acta Pharm Sin B 2024; 14:2581-2597. [PMID: 38828159 PMCID: PMC11143507 DOI: 10.1016/j.apsb.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
Doxorubicin (DOX)-mediated cardiotoxicity can exacerbate mortality in oncology patients, but related pharmacotherapeutic measures are relatively limited. Ferroptosis was recently identified as a major mechanism of DOX-induced cardiotoxicity. Idebenone, a novel ferroptosis inhibitor, is a well-described clinical drug widely used. However, its role and pathological mechanism in DOX-induced cardiotoxicity are still unclear. In this study, we demonstrated the effects of idebenone on DOX-induced cardiotoxicity and elucidated its underlying mechanism. A single intraperitoneal injection of DOX (15 mg/kg) was administrated to establish DOX-induced cardiotoxicity. The results showed that idebenone significantly attenuated DOX-induced cardiac dysfunction due to its ability to regulate acute DOX-induced Fe2+ and ROS overload, which resulted in ferroptosis. CESTA and BLI further revealed that idebenone's anti-ferroptosis effect was mediated by FSP1. Interestingly, idebenone increased FSP1 protein levels but did not affect Fsp1 mRNA levels in the presence of DOX. Idebenone could form stable hydrogen bonds with FSP1 protein at K355, which may influence its association with ubiquitin. The results confirmed that idebenone stabilized FSP1 protein levels by inhibiting its ubiquitination degradation. In conclusion, this study demonstrates idebenone attenuated DOX-induced cardiotoxicity by inhibiting ferroptosis via regulation of FSP1, making it a potential clinical drug for patients receiving DOX treatment.
Collapse
Affiliation(s)
- Hongliang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Sihui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yuting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Libo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Fengming Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yingying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xianfeng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yajie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Meng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
15
|
Liu Y, Hu N, Ai B, Xia H, Li W. MiR-31-5p alleviates septic cardiomyopathy by targeting BAP1 to inhibit SLC7A11 deubiquitination and ferroptosis. BMC Cardiovasc Disord 2024; 24:286. [PMID: 38816686 PMCID: PMC11137958 DOI: 10.1186/s12872-024-03954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Septic cardiomyopathy is one of the most severe and common complications in patients with sepsis and poses a great threat to their prognosis. However, the potential mechanisms and effective therapeutic drugs need to be explored. The control of cardiac cell death by miRNAs has emerged as a prominent area of scientific interest in the diagnosis and treatment of heart disorders in recent times. In the present investigation, we discovered that overexpression of miR-31-5p prevented LPS-induced damage to H9C2 cells and that miR-31-5p could inhibit BAP1 production by binding to its 3'-UTR. BRCA1-Associated Protein 1 (BAP1) is a ubiquitin carboxy-terminal hydrolase. BAP1 upregulation blocked effect of miR-31-5p on H9C2 cell injury. Moreover, BAP1 inhibited the expression of solute carrier family 7 member 11 (SLC7A11) by deubiquitinating histone 2 A (H2Aub) on the promoter of SLC7A11. Furthermore, overexpression of miR-31-5p and downregulation of BAP1 inhibited SLC7A11 mediated ferroptosis. In addition, the downregulation of SLC7A11 reversed the inhibitory effect of miR-31-5p on the expression of myocardial injury and inflammatory factors, and cell apoptosis was reversed. In conclusion, these results indicate that miR-31-5p alleviates malignant development of LPS-induced H9C2 cell injury by targeting BAP1 and regulating SLC7A11 deubiquitination-mediated ferroptosis, which confirmed the protective effect of miR-31-5p on H9C2 cell injury and revealed potential mechanisms that may provide new targets for treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Niandan Hu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Ai
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
16
|
Ma X, Xu S, Pan Y, Jiang C, Wang Z. Construction of SERS output-signal aptasensor using MOF/noble metal nanoparticles based nanozyme for sensitive histamine detection. Food Chem 2024; 440:138227. [PMID: 38142555 DOI: 10.1016/j.foodchem.2023.138227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Herein, a signal output SERS aptasensor for Histamine (HA) detection is designed. MIL-100(Fe) was loaded with gold nanoparticles (AuNPs) to form composite nanozyme MIL-100(Fe)@AuNPs, which was used in the reaction system TMB/H2O2. Silver nanoparticles (AgNPs) were synthesized as "amplifier" for the SERS signal of ox TMB. After nucleic acid functionalization, the two parts were assembled to form the multifunctional substrate with both high catalytic and SERS efficiency. In the detection system, the specific binding effect of HA aptamer toward HA induced a decrease in the assembly of AgNPs on MIL-100(Fe)@AuNPs which caused a decrease in ox TMB SERS signals. The linear relation of HA ranged from 10-11 M to 5 × 10-3 M with LOD as low as 3.9 × 10-12 M. Recovery ratio in fermented soybean products (94.42-105.75 %) proved the real sample applicability. The fabricated SERS aptasensor will provide technical support for the safety during food processing and storage.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Shan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Caiyun Jiang
- Department of Health, Jiangsu Engineering and Research Center of Food Safety, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Ryabov VV, Maslov LN, Vyshlov EV, Mukhomedzyanov AV, Kilin M, Gusakova SV, Gombozhapova AE, Panteleev OO. Ferroptosis, a Regulated Form of Cell Death, as a Target for the Development of Novel Drugs Preventing Ischemia/Reperfusion of Cardiac Injury, Cardiomyopathy and Stress-Induced Cardiac Injury. Int J Mol Sci 2024; 25:897. [PMID: 38255971 PMCID: PMC10815150 DOI: 10.3390/ijms25020897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is about 6% and has not decreased in recent years. The leading cause of death of these patients is ischemia/reperfusion (I/R) cardiac injury. It is quite obvious that there is an urgent need to create new drugs for the treatment of STEMI based on knowledge about the pathogenesis of I/R cardiac injury, in particular, based on knowledge about the molecular mechanism of ferroptosis. In this study, it was demonstrated that ferroptosis is involved in the development of I/R cardiac injury, antitumor drug-induced cardiomyopathy, diabetic cardiomyopathy, septic cardiomyopathy, and inflammation. There is indirect evidence that ferroptosis participates in stress-induced cardiac injury. The activation of AMPK, PKC, ERK1/2, PI3K, and Akt prevents myocardial ferroptosis. The inhibition of HO-1 alleviates myocardial ferroptosis. The roles of GSK-3β and NOS in the regulation of ferroptosis require further study. The stimulation of Nrf2, STAT3 prevents ferroptosis. The activation of TLR4 and NF-κB promotes ferroptosis of cardiomyocytes. MiR-450b-5p and miR-210-3p can increase the tolerance of cardiomyocytes to hypoxia/reoxygenation through the inhibition of ferroptosis. Circ_0091761 RNA, miR-214-3p, miR-199a-5p, miR-208a/b, miR-375-3p, miR-26b-5p and miR-15a-5p can aggravate myocardial ferroptosis.
Collapse
Affiliation(s)
- Vyacheslav V. Ryabov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Evgeniy V. Vyshlov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Mikhail Kilin
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Svetlana V. Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk 634050, Russia;
| | - Alexandra E. Gombozhapova
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Oleg O. Panteleev
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| |
Collapse
|
18
|
Beretta GL. Ferroptosis-induced Cardiotoxicity and Antitumor Drugs. Curr Med Chem 2024; 31:4935-4957. [PMID: 37469161 DOI: 10.2174/0929867331666230719124453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
The induction of regulated cell death ferroptosis in tumors is emerging as an intriguing strategy for cancer treatment. Numerous antitumor drugs (e.g., doxorubicin, etoposide, tyrosine kinase inhibitors, trastuzumab, arsenic trioxide, 5-fluorouracil) induce ferroptosis. Although this mechanism of action is interesting for fighting tumors, the clinical use of drugs that induce ferroptosis is hampered by cardiotoxicity. Besides in cancer cells, ferroptosis induced by chemotherapeutics can occur in cardiomyocytes, and this feature represents an important drawback of antitumor therapy. This inconvenience has been tackled by developing less or no cardiotoxic antitumor drugs or by discovering cardioprotective agents (e.g., berberine, propofol, fisetin, salidroside, melatonin, epigallocatechin- 3gallate, resveratrol) to use in combination with conventional chemotherapeutics. This review briefly summarizes the molecular mechanisms of ferroptosis and describes the ferroptosis dependent mechanisms responsible for cardiac toxicity developed by cancer- suffering patients following the administration of some chemotherapeutics. Additionally, the pharmacological strategies very recently proposed for potentially preventing this inconvenience are considered.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| |
Collapse
|
19
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|
20
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
21
|
Tai P, Chen X, Jia G, Chen G, Gong L, Cheng Y, Li Z, Wang H, Chen A, Zhang G, Zhu Y, Xiao M, Wang Z, Liu Y, Shan D, He D, Li M, Zhan T, Khan A, Li X, Zeng X, Li C, Ouyang D, Ai K, Chen X, Liu D, Liu Z, Wei D, Cao K. WGX50 mitigates doxorubicin-induced cardiotoxicity through inhibition of mitochondrial ROS and ferroptosis. J Transl Med 2023; 21:823. [PMID: 37978379 PMCID: PMC10655295 DOI: 10.1186/s12967-023-04715-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear. METHODS We established DOX-induced cardiotoxicity models both in vitro and in vivo. Echocardiography and histological analyses were used to determine the severity of cardiac injury in mice. The myocardial damage markers cTnT, CK-MB, ANP, BNP, and ferroptosis associated indicators Fe2+, MDA, and GPX4 were measured using ELISA, RT-qPCR, and western blot assays. The morphology of mitochondria was investigated with a transmission electron microscope. The levels of mitochondrial membrane potential, mitochondrial ROS, and lipid ROS were detected using JC-1, MitoSOX™, and C11-BODIPY 581/591 probes. RESULTS Our findings demonstrate that WGX50 protects DOX-induced cardiotoxicity via restraining mitochondrial ROS and ferroptosis. In vivo, WGX50 effectively relieves doxorubicin-induced cardiac dysfunction, cardiac injury, fibrosis, mitochondrial damage, and redox imbalance. In vitro, WGX50 preserves mitochondrial function by reducing the level of mitochondrial membrane potential and increasing mitochondrial ATP production. Furthermore, WGX50 reduces iron accumulation and mitochondrial ROS, increases GPX4 expression, and regulates lipid metabolism to inhibit DOX-induced ferroptosis. CONCLUSION Taken together, WGX50 protects DOX-induced cardiotoxicity via mitochondrial ROS and the ferroptosis pathway, which provides novel insights for WGX50 as a promising drug candidate for cardioprotection.
Collapse
Affiliation(s)
- Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guihua Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuan Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Heng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunqing Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongyong Shan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Staff Hospital of Central South University, Central South University, Changsha, China
| | - Moying Li
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Abbas Khan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Dongsheng Ouyang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuan Chen
- College of Horticulture, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
- National Research Center of Engineering Technology for Utilization Ingredients From Botanicals, Changsha, China
| | - Dongbo Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
- National Research Center of Engineering Technology for Utilization Ingredients From Botanicals, Changsha, China
| | - Zhonghua Liu
- National Research Center of Engineering Technology for Utilization Ingredients From Botanicals, Changsha, China
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Zhang J, Guo C. Current progress of ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1259219. [PMID: 37942067 PMCID: PMC10628442 DOI: 10.3389/fcvm.2023.1259219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Ferroptosis, a newly recognized form of nonapoptotic regulated cell death, is characterized by iron-dependent lipid peroxidation. Biological processes, such as iron metabolism, lipid peroxidation, and amino acid metabolism, are involved in the process of ferroptosis. However, the related molecular mechanism of ferroptosis has not yet been completely clarified, and specific and sensitive biomarkers for ferroptosis need to be explored. Recently, studies have revealed that ferroptosis probably causes or exacerbates the progress of cardiovascular diseases, and could be the potential therapeutic target for cardiovascular diseases. In this review, we summarize the molecular mechanisms regulating ferroptosis, inducers or inhibitors of ferroptosis, and the current progresses of ferroptosis in cardiovascular diseases. Furthermore, we discuss the emerging challenges and future perspectives, which may provide novel insights into the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
24
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
25
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
26
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
27
|
Ajoolabady A, Pratico D, Henninger N, Tuomilehto J, Klionsky DJ, Ren J. Ferroptosis: A Promising Therapeutic Target for Cardiovascular Diseases. FERROPTOSIS IN HEALTH AND DISEASE 2023:291-308. [DOI: 10.1007/978-3-031-39171-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|