1
|
Maurer W, Zieseniss A, Priya VP, Chen Y, Bauer L, Hillemann A, Rehling P, Nanadikar MS, de Zélicourt D, Kurtcuoglu V, Katschinski DM. D-amino acid oxidase as a chemogenetic tool for spatiotemporally controlled hydrogen peroxide production: The oxygen connection. Br J Pharmacol 2025. [PMID: 40233824 DOI: 10.1111/bph.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND AND PURPOSE D-amino acid oxidase (DAO) has been developed as a chemogenetic tool, to precisely manipulate redox levels in tissues and cells by generating H2O2 in the presence of D-amino acids. The enzyme's significant oxygen consumption during H2O2 production may influence cellular oxygen levels. We set out to explore if DAO activation results in hypoxia, which in turn alters the activity of cellular oxygen sensors such as prolyl-4-hydroxylase domain enzymes, and thus the activation of the hypoxia-inducible factor (HIF) pathway. EXPERIMENTAL APPROACH We analysed oxygen the consumption rate (OCR), pericellular oxygen concentration and HIF-1α stabilisation in the cytoplasm or mitochondrial matrix of HEK293 cells stably overexpressing DAO. The obtained experimental data were used to test whether a simple mathematical model can be used to predict oxygen levels. KEY RESULTS For HEK293 cells expressing DAO in either the cytoplasm or mitochondrial matrix, we found a dose-dependent increase in OCR upon stimulating the DAO reaction, which resulted in a decreased pericellular oxygen concentration. Correspondingly, HIF-1α protein levels were stabilised over time, reflecting the biological cellular response to DAO-induced hypoxia. Furthermore, we provide a simplified diffusion model that allows users to input experimental parameters and assess the risk of hypoxic conditions in cell cultures. CONCLUSIONS AND IMPLICATIONS High DAO activity can induce hypoxia because of increased oxygen consumption. Caution should be taken to prevent hypoxic conditions in cell culture experiments when using DAO. A provided spreadsheet is intended to help estimate oxygen levels in combination with OCR measurements.
Collapse
Affiliation(s)
- Wiebke Maurer
- University Medical Center Göttingen, Göttingen, Germany
| | | | | | - Yamin Chen
- University Medical Center Göttingen, Göttingen, Germany
| | - Laura Bauer
- University Medical Center Göttingen, Göttingen, Germany
| | | | - Peter Rehling
- Institute for Cellular Biochemistry, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
- Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Diane de Zélicourt
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
2
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Gantner BN, Palma FR, Kayzuka C, Lacchini R, Foltz DR, Backman V, Kelleher N, Shilatifard A, Bonini MG. Histone oxidation as a new mechanism of metabolic control over gene expression. Trends Genet 2024; 40:739-746. [PMID: 38910033 PMCID: PMC11387142 DOI: 10.1016/j.tig.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vadim Backman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Bioengineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Neil Kelleher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcelo G Bonini
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Simon-Molas H, Montironi C, Kabanova A, Eldering E. Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Semin Hematol 2024; 61:155-162. [PMID: 38493076 DOI: 10.1053/j.seminhematol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Anna Kabanova
- Tumour Immunology Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Chen X, Tang Y, Zhang H, Zhang X, Sun X, Zang X, Xu N. Physiological, Transcriptome, and Metabolome Analyses Reveal the Tolerance to Cu Toxicity in Red Macroalgae Gracilariopsis lemaneiformis. Int J Mol Sci 2024; 25:4770. [PMID: 38731988 PMCID: PMC11083833 DOI: 10.3390/ijms25094770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 μM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Yueyao Tang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| |
Collapse
|
6
|
van Soest DMK, Polderman PE, den Toom WTF, Keijer JP, van Roosmalen MJ, Leyten TMF, Lehmann J, Zwakenberg S, De Henau S, van Boxtel R, Burgering BMT, Dansen TB. Mitochondrial H 2O 2 release does not directly cause damage to chromosomal DNA. Nat Commun 2024; 15:2725. [PMID: 38548751 PMCID: PMC10978998 DOI: 10.1038/s41467-024-47008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.
Collapse
Affiliation(s)
- Daan M K van Soest
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Paulien E Polderman
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Wytze T F den Toom
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Janneke P Keijer
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
| | - Tim M F Leyten
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Johannes Lehmann
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
7
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|