1
|
Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, Haque S, Prieto MA, Ashraf GM. An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement. Appl Biochem Biotechnol 2025; 197:2799-2866. [PMID: 39907846 DOI: 10.1007/s12010-024-05098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites. Current estimates suggest there are approximately 1.20 million fungal endophytes globally, yet only around 16% (190,000) have been identified and studied in detail. This underscores the vast untapped potential of fungal endophytes in pharmaceutical research. Research has increasingly focused on the transformation of bioactive compounds by fungal endophytes through chemical and enzymatic processes. A notable example is the anthraquinone derivative 6-O-methylalaternin, whose cytotoxic potential is enhanced by the addition of a hydroxyl group, sharing structural similarities with its parent compound macrosporin. These structure-bioactivity studies open up new avenues for developing safer and more effective therapeutic agents by synthesizing targeted derivatives. Despite the immense promise, challenges remain, particularly in the large-scale cultivation of fungal endophytes and in understanding the complexities of their biosynthetic pathways. Additionally, the genetic manipulation of endophytes for optimized metabolite production is still in its infancy. Future research should aim to overcome these limitations by focusing on more efficient cultivation methods and deeper exploration of fungal endophytes' genetic and metabolic capabilities to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Chandrabhan Prajapati
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Yashveer Singh
- Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004, Ourense, Spain.
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai road, SIP, Jiangsu Province, Suzhou, 215123, P. R. China.
| |
Collapse
|
2
|
Pu Y, Kang H, Meyers PA, Zhang H, Yang M. Assessing the potential of n-alkyl amides and n-alkyl nitriles in the arid sedimentary strata of northwestern China as environmental indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175688. [PMID: 39173767 DOI: 10.1016/j.scitotenv.2024.175688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Recent advancements in the application of lipid biomarkers as paleoenvironmental indicators have provided invaluable insights into the dynamics of climatic variations, vegetative histories, and anthropogenic impacts. However, our current understanding of nitrogen-containing lipid biomarkers (NCLBs) in sedimentary deposits remains limited, notwithstanding their potential significance in global nitrogen cycling. To bridge this research gap, a comprehensive study was conducted to characterize the distribution patterns of n-alkyl amides (NAAs) and n-alkyl nitriles (NANs) in representative paleo-lake and loess sedimentary profiles from the arid region of northwestern China (NWC). The widespread occurrence of these NCLBs across late Quaternary strata, with distinct distribution patterns observed in various settings, suggests their formation under diverse environmental conditions. The prevalence of NAAs in arid sedimentary deposits can primarily be attributed to the diverse array of local biota, including vascular plants, algae, and fungi, rather than being solely associated with biomass burning, as commonly assumed. Furthermore, the distribution patterns of NANs closely align with those of NAAs, indicating their formation through thermally induced dehydration of precursor NAAs. Both groups of NCLBs exhibit significant preservation potential in sediments within NWC, which is believed to be intimately linked to the region's arid and cold climate as well as its neutral or weakly alkaline depositional setting. These findings underscore the prospective use of NAAs as indicators of environmental changes and NANs as potential markers of past fire-related activities, making them valuable tools for paleoenvironmental reconstructions of late Quaternary strata, especially in arid, cold, and weakly alkaline regions.
Collapse
Affiliation(s)
- Yang Pu
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hong Kang
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Philip A Meyers
- Department of Earth and Environmental Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Mingsheng Yang
- College of Resources, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Vishwakarma S, Chaudhry V, Chand S, Sagar K, Gupta KK, Bhardwaj N, Prasad R, Kumar P, Chandra H. The Potential of Fungal Endophytes in Plants: Sources of Bioactive Compounds. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
|
4
|
Chandra H, Yadav A, Prasad R, Kalra SJS, Singh A, Bhardwaj N, Gupta KK. Fungal endophytes from medicinal plants acting as natural therapeutic reservoir. THE MICROBE 2024; 3:100073. [DOI: 10.1016/j.microb.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
5
|
Sansenya S, Payaka A, Mansalai P. Inhibitory Efficacy of Cycloartenyl Ferulate against α-Glucosidase and α-Amylase and Its Increased Concentration in Gamma-Irradiated Rice (Germinated Rice). Prev Nutr Food Sci 2023; 28:170-177. [PMID: 37416788 PMCID: PMC10321442 DOI: 10.3746/pnf.2023.28.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 07/08/2023] Open
Abstract
Cycloartenyl ferulate is a derivative of γ-oryzanol with varied biological activity, including diabetes mellitus treatment. This research focused on improving the cycloartenyl ferulate accumulation in germinated rice by gamma irradiation under saline conditions. Moreover, the inhibitory potential of cycloartenyl ferulate against carbohydrate hydrolysis enzymes (α-glucosidase and α-amylase) was investigated through in vitro and in silico techniques. The results revealed that cycloartenyl ferulate increased in germinated rice under saline conditions upon gamma irradiation. A suitable condition for stimulating the highest cycloartenyl ferulate concentration (852.20±20.59 μg/g) in germinated rice was obtained from the gamma dose at 100 Gy and under 40 mM salt concentration. The inhibitory potential of cycloartenyl ferulate against α-glucosidase (31.31±1.43%) was higher than against α-amylase (12.72±1.11%). The inhibition mode of cycloartenyl ferulate against α-glucosidase was demonstrated as a mixed-type inhibition. A fluorescence study confirmed that the cycloartenyl ferulate interacted with the α-glucosidase's active site. A docking study revealed that cycloartenyl ferulate bound to seven amino acids of α-glucosidase with a binding energy of -8.8 kcal/mol and a higher binding potential than α-amylase (-8.2 kcal/mol). The results suggested that the gamma irradiation technique under saline conditions is suitable for stimulating γ-oryzanol, especially cycloartenyl ferulate. Furthermore, cycloartenyl ferulate demonstrated its potential as a candidate compound for blood glucose management in diabetes mellitus treatment.
Collapse
Affiliation(s)
- Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Preecha Mansalai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| |
Collapse
|
6
|
Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules 2023; 13:1038. [PMID: 37509074 PMCID: PMC10377637 DOI: 10.3390/biom13071038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.
Collapse
Affiliation(s)
- Aditi Gupta
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Vineet Meshram
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Soniya Goyal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kamlesh Kumar Shukla
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
7
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
8
|
A REVIEW ON THE TRENDS OF ENDOPHYTIC FUNGI BIOACTIVITIES. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
9
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
10
|
Han B, Sun H, Yang X, Wang T, He C, Zhao K, An S, Guo C, Niu D, Xue X, Kang J. Ultrasound-assisted enzymatic extraction of Corni Fructus alpha-glucosidase inhibitors improves insulin resistance in HepG2 cells. Food Funct 2021; 12:9808-9819. [PMID: 34664576 DOI: 10.1039/d1fo01002f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Corni Fructus (CF) is a traditional medicine and beneficial food with multifaceted protective effects against diabetes and its complications. Since alpha-glucosidase inhibitors (GIs) are promising first-choice oral antihyperglycemic drugs for diabetes, we examined whether GIs from CF (GICF) are useful for diabetes treatment. Therefore, GICF was extracted by ultrasound-assisted enzymatic extraction (UAEE) that is optimized by a three-level, four-factor Box-Behnken design and determined by ultra-performance liquid chromatography. Compared to 36.31 mg g-1 without enzyme treatment, the GICF yield increased to 70.44 mg g-1via UAEE under optimum conditions (0.5% compound enzyme extracted in 23 min at 46 °C and pH 4.8). The activity (91.99%) of GICF was as predicted (93.28%). When GICF was used in an insulin-resistant HepG2 cell model, it significantly ameliorated the glucose metabolism in a dose-dependent manner. Our findings indicate that UAEE may be an innovative method for functional food extraction and a potential strategy for high-quality food ingredient (such as GI) production with high efficiency and productivity.
Collapse
Affiliation(s)
- Binkai Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Haoqiang Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Xiaolin Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Ting Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Changfen He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Ke Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Shujing An
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Chen Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Dou Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Xiaochang Xue
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Jiefang Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| |
Collapse
|
11
|
Rai N, Kumari Keshri P, Verma A, Kamble SC, Mishra P, Barik S, Kumar Singh S, Gautam V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021; 12:139-159. [PMID: 34552808 PMCID: PMC8451683 DOI: 10.1080/21501203.2020.1870579] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Endophytes are a potent source of bioactive compounds that mimic plant-based metabolites. The relationship of host plant and endophyte is significantly associated with alteration in fungal colonisation and the extraction of endophyte-derived bioactive compounds. Screening of fungal endophytes and their relationship with host plants is essential for the isolation of bioactive compounds. Numerous bioactive compounds with antioxidant, antimicrobial, anticancer, and immunomodulatory properties are known to be derived from fungal endophytes. Bioinformatics tools along with the latest techniques such as metabolomics, next-generation sequencing, and metagenomics multilocus sequence typing can potentially fill the gaps in fungal endophyte research. The current review article focuses on bioactive compounds derived from plant-associated fungal endophytes and their pharmacological importance. We conclude with the challenges and opportunities in the research area of fungal endophytes.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyanka Kumari Keshri
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swapnil C Kamble
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Pradeep Mishra
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Suvakanta Barik
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Agrawal S, Samanta S, Deshmukh SK. The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnol Appl Biochem 2021; 69:1159-1165. [PMID: 33998044 DOI: 10.1002/bab.2192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus is one of the most common systemic diseases in the world, and it occurs when the body becomes resistant to insulin or does not make enough insulin. As described by the World Health Organization, diabetes mellitus of all types has exponentially grown in the past decades across the globe and it is estimated to be 629 million by 2045. Despite this alarming prevalence of diabetes mellitus, there is still the lack of harmless preventive medicines. Natural products and compounds obtained from plants, fungi, bacteria, and other living organisms have been used for many decades in folklore medicine to prepare a varied range of natural formulations to treat multiple diseases and illnesses. Endophytic fungi reside inside the plant while causing no harm to the host plant and are relatively less explored as the primary source for the bioactive metabolites such as anticancer, antioxidant, antimicrobial, antidiabetic, and industrial enzymes. This mini-review summarizes the potential of compounds and extracts from endophytic fungi against diabetes mellitus. Not much research has been dedicated in-depth understanding of the role of extracts of endophytic fungi and their effect on diabetes mellitus. Therefore, this article will focus on recent work and warrant further commentaries on the published articles.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research, IJMR Unit, Delhi, India.,TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| | - Sreeparna Samanta
- TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
13
|
Xie X, Chen C, Fu X. Screening α-glucosidase inhibitors from four edible brown seaweed extracts by ultra-filtration and molecular docking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Adeleke BS, Babalola OO. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J Fungi (Basel) 2021; 7:147. [PMID: 33671354 PMCID: PMC7922420 DOI: 10.3390/jof7020147] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Endophytic microbes are microorganisms that colonize the intracellular spaces within the plant tissues without exerting any adverse or pathological effects. Currently, the world population is facing devastating chronic diseases that affect humans. The resistance of pathogens to commercial antibiotics is increasing, thus limiting the therapeutic potential and effectiveness of antibiotics. Consequently, the need to search for novel, affordable and nontoxic natural bioactive compounds from endophytic fungi in developing new drugs with multifunction mechanisms to meet human needs is essential. Fungal endophytes produce invaluable bioactive metabolic compounds beneficial to humans with antimicrobial, anticancer, antidiabetic, anti-inflammatory, antitumor properties, etc. Some of these bioactive compounds include pestacin, taxol, camptothecin, ergoflavin, podophyllotoxin, benzopyran, isopestacin, phloroglucinol, tetrahydroxy-1-methylxanthone, salidroside, borneol, dibenzofurane, methyl peniphenone, lipopeptide, peniphenone etc. Despite the aforementioned importance of endophytic fungal metabolites, less information is available on their exploration and pharmacological importance. Therefore, in this review, we shall elucidate the fungal bioactive metabolites from medicinal plants and their pharmacological potential.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
15
|
Fadiji AE, Babalola OO. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Front Bioeng Biotechnol 2020; 8:467. [PMID: 32500068 PMCID: PMC7242734 DOI: 10.3389/fbioe.2020.00467] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Endophytes are abundant in plants and studies are continuously emanating on their ability to protect plants from pathogens that cause diseases especially in the field of agriculture. The advantage that endophytes have over other biocontrol agents is the ability to colonize plant's internal tissues. Despite this attributes, a deep understanding of the mechanism employed by endophytes in protecting the plant from diseases is still required for both effectiveness and commercialization. Also, there are increasing cases of antibiotics resistance among most causative agents of diseases in human beings, which calls for an alternative drug discovery using natural sources. Endophytes present themselves as a storehouse of many bioactive metabolites such as phenolic acids, alkaloids, quinones, steroids, saponins, tannins, and terpenoids which makes them a promising candidate for anticancer, antimalarial, antituberculosis, antiviral, antidiabetic, anti-inflammatory, antiarthritis, and immunosuppressive properties among many others, even though the primary function of bioactive compounds from endophytes is to make the host plants resistant to both abiotic and biotic stresses. Endophytes still present themselves as a peculiar source of possible drugs. This study elucidates the mechanisms employed by endophytes in protecting the plant from diseases and different bioactivities of importance to humans with a focus on endophytic bacteria and fungi.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
16
|
Makinde EA, Radenahmad N, Adekoya AE, Olatunji OJ. Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin-induced diabetes in rats. J Food Biochem 2020; 44:e13239. [PMID: 32281660 DOI: 10.1111/jfbc.13239] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 02/04/2023]
Abstract
The antidiabetic properties of Tiliacora triandra ethanol extract in diabetic rats induced with high-fat diet (HFD)/streptozotocin (STZ) was investigated. Rats were fed with HFD for 4 weeks to induced insulin resistance, and thereafter administered with 35 mg/kg of STZ to induce diabetes. Diabetic rats received 100 and 400 mg/kg of T. triandra daily for 30 days. The body weight, blood glucose level, food and fluid intake were monitored. Furthermore, biochemical and histological assessment was performed to evaluate the hypoglycemic effect of the extract in the treated rats. T. triandra significantly decreased the blood glucose level, increased the body weight and insulin secretion. Furthermore, T. triandra attenuated hyperlipidemia, improved liver and kidney functions of treated diabetic rats. Thus, T. triandra could effectively attenuate diabetes and it complications. PRACTICAL APPLICATIONS: Tiliacora triandra is a common vegetable consumed in Thailand and Laos. It is traditionally employed in the treatment of fever, cancer, malaria, and diabetes. The extract from the aerial part was investigated for its antidiabetic properties. The results obtained provides important pharmacological information that supports the use of T. triandra in management of diabetes.
Collapse
Affiliation(s)
| | - Nisaudah Radenahmad
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | | | |
Collapse
|
17
|
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 2020; 39:107462. [DOI: 10.1016/j.biotechadv.2019.107462] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
|
18
|
Investigation of α-Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC-MS Metabolite Profiling and Docking Studies. Biomolecules 2020; 10:biom10020287. [PMID: 32059529 PMCID: PMC7072363 DOI: 10.3390/biom10020287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
Collapse
|
19
|
Noor AO, Almasri DM, Bagalagel AA, Abdallah HM, Mohamed SGA, Mohamed GA, Ibrahim SRM. Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities. Molecules 2020; 25:molecules25020395. [PMID: 31963586 PMCID: PMC7024277 DOI: 10.3390/molecules25020395] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, the metabolites separated from endophytes have attracted significant attention, as many of them have a unique structure and appealing pharmacological and biological potentials. Isocoumarins represent one of the most interesting classes of metabolites, which are coumarins isomers with a reversed lactone moiety. They are produced by plants, microbes, marine organisms, bacteria, insects, liverworts, and fungi and possessed a wide array of bioactivities. This review gives an overview of isocoumarins derivatives from endophytic fungi and their source, isolation, structural characterization, biosynthesis, and bioactivities, concentrating on the period from 2000 to 2019. Overall, 307 metabolites and more than 120 references are conferred. This is the first review on these multi-facetted metabolites from endophytic fungi.
Collapse
Affiliation(s)
- Ahmad Omar Noor
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Diena Mohammedallam Almasri
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Alaa Abdullah Bagalagel
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Hossam Mohamed Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Gamal Abdallah Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (G.A.M.)
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sabrin Ragab Mohamed Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581183034
| |
Collapse
|
20
|
The potential of Endophytic Fungal Extract Isolated from Cinnamon (Cinnamomum burmannii) as Antidiabetic and Antioxidant. JURNAL KIMIA SAINS DAN APLIKASI 2019. [DOI: 10.14710/jksa.22.6.275-282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An increase in blood glucose levels in people with diabetes can cause an increase in free radicals, which can worsen the disease. Thus, drugs that have antidiabetic and antioxidant activities are needed. The cinnamon plant is high in antioxidants and has long been used as a source for a diabetes drug. The utilization of endophytic fungi isolated from cinnamon plants as antidiabetic and antioxidant has never been reported. This study aims to investigate the antidiabetic as well as antioxidant activity from the extract of endophytic fungi from the cinnamon plant. The antidiabetic activity was tested using the α-glucosidase enzyme inhibition method, while antioxidant activity was tested using the DPPH free radical scavenging method. Total phenol content was measured based on the Follin-Ciocalteu reagent reaction. All endophytic fungal extracts from the cinnamon leaves, twigs, flowers, and fruit have antidiabetic and antioxidant activity as well as high total phenol content. The three parameters measured showed a positive correlation. Endophytic fungal extract of Cb.D6 isolate derived from the leaf had the highest antidiabetic and antioxidant activity among the other isolates amounting to 92.41% and 90.28%, respectively. In addition, the total phenol content of Cb.D6 isolates was also the highest with 357.83 mg equivalent to gallic acid/g extract. Therefore, the endophytic fungal extract of Cb.D6 isolate has the potential to be developed as a source of the antidiabetic and antioxidant ingredients.
Collapse
|
21
|
Supaphon P, Preedanon S. Evaluation of in vitro alpha-glucosidase inhibitory, antimicrobial, and cytotoxic activities of secondary metabolites from the endophytic fungus, Nigrospora sphaerica, isolated from Helianthus annuus. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Purpose
This study aimed to evaluate alpha-glucosidase inhibition and antimicrobial activity as well as cytotoxic activity of extracts from the endophytic fungus, Nigrospora sp., isolated from leaves of Helianthus annuus, which is widely cultivated for food and used as a medicinal plant.
Methods
The fungus (TSU-CS003) was identified based on internal transcribed spacer ribosomal DNA sequences and fungal biomass, and fermentation broth was subjected to extraction by solvents (hexane and ethyl acetate). All extracts were tested for their antimicrobial activity, alpha-glucosidase inhibition, and cytotoxicity activity. In addition, the active extract was analyzed by using gas chromatography mass spectrometry (GC-MS)
Results
TSU-CS003 was identified as Nigrospora sphaerica. The fermentation broth extract (BE) showed strong antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus (Gram-positive bacteria) with minimum inhibitory concentration (MIC) values in the range of 16–32 μg/mL and a few yeasts with MIC values ranging from 64 to 128 μg/mL, especially Talaromyces marneffei with an MIC value of 4 μg/mL. The effects of BE were observed by SEM. The results showed that this extract affected the cell morphology of T. marneffei. The half-maximal inhibitory concentration (IC50) of BE from alpha-glucosidase inhibition was recorded as 17.25 μg/mL and also showed significant cytotoxicity against A549 human cancer cell lines with an IC50 value of 22.41 μg/mL. Furthermore, BE was analyzed by using GC-MS and divided into three main compounds, including 5-pentyldihydrofuran-2(3H)-one, (Z)-methyl 4-(isobutyryloxy)but-3-enoate, and 2-phenylacetic acid.
Conclusion
This was the first report of the endophytic fungus N. sphaerica from H. annuus. It is a potential source of active metabolites, which gave the strong antifungal activity, antioxidant activity, and cytotoxicity to A549 cancer cell lines.
Collapse
|
22
|
Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101284] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Qiu P, Liu Z, Chen Y, Cai R, Chen G, She Z. Secondary Metabolites with α-Glucosidase Inhibitory Activity from the Mangrove Fungus Mycosphaerella sp. SYSU-DZG01. Mar Drugs 2019; 17:md17080483. [PMID: 31434338 PMCID: PMC6723402 DOI: 10.3390/md17080483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 12/23/2022] Open
Abstract
Four new metabolites, asperchalasine I (1), dibefurin B (2) and two epicoccine derivatives (3 and 4), together with seven known compounds (5-11) were isolated from a mangrove fungus Mycosphaerella sp. SYSU-DZG01. The structures of compounds 1-4 were established from extensive spectroscopic data and HRESIMS analysis. The absolute configuration of 1 was deduced by comparison of ECD data with that of a known structure. The stereostructures of 2-4 were further confirmed by single-crystal X-ray diffraction. Compounds 1, 8 and 9 exhibited significant α-glucosidase inhibitory activity with IC50 values of 17.1, 26.7 and 15.7 μM, respectively. Compounds 1, 4, 6 and 8 showed antioxidant activity by scavenging DPPH· with EC50 values ranging from 16.3 to 85.8 μM.
Collapse
Affiliation(s)
- Pei Qiu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yan Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China.
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China.
| |
Collapse
|
24
|
Sritharan T, Savitri Kumar N, Jayasinghe L, Araya H, Fujimoto Y. Isocoumarins and Dihydroisocoumarins From the Endophytic Fungus Biscogniauxia capnodes Isolated From the Fruits of Averrhoa carambola. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19851969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An endophytic fungus Biscogniauxia capnodes was isolated from a popular edible fruit Averrhoa carambola. The fungus was fermented in potato dextrose broth for 3 weeks, and then the culture broth and mycelium were extracted with ethyl acetate. Chromatographic separation of this extract furnished 2 isocoumarins, reticulol (1) and 6- O-methyl-reticulol (2), and 2 dihydroisocoumarins, 5-methylmellein (3) and 7-hydroxy-5-methylmellein (4). Compound 1 showed moderate antioxidant activity against 2,2′-diphenyl-1-picrylhydrazyl radicals (IC50 value, 58 μg/mL). This is the first report of the isolation of B. capnodes as an endophyte, as well as the compounds 1 to 4 from B. capnodes.
Collapse
Affiliation(s)
| | | | | | - Hiroshi Araya
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshinori Fujimoto
- National Institute of Fundamental Studies, Kandy, Sri Lanka
- School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
25
|
De Long Q, Liu LL, Zhang X, Wen TC, Kang JC, Hyde KD, Shen XC, Li QR. Contributions to species of Xylariales in China-1. Durotheca species. Mycol Prog 2019; 18:495-510. [DOI: 10.1007/s11557-018-1458-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
26
|
Chandrasekhar C, Rajpurohit H, Javaji K, Kuncha M, Setti A, Ali AZ, Tiwari AK, Misra S, Kumar CG. Anti-hyperglycemic and genotoxic studies of 1- O-methyl chrysophanol, a new anthraquinone isolated from Amycolatopsis thermoflava strain SFMA-103. Drug Chem Toxicol 2019; 44:148-160. [PMID: 30614298 DOI: 10.1080/01480545.2018.1551406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The compound 1-O-methyl chrysophanol (OMC) which belongs to a class of hydroxyanthraquinones was isolated from Amycolatopsis thermoflava strain SFMA-103 and studied for their anti-diabetic properties. OMC was evaluated as an anti-diabetic agent based on in silico studies which initially predicted the binding energy with α-amylase (-188.81 KJ mol-1) and with α-glucosidase (70.53 KJ mol-1). Further, these results were validated based on enzyme inhibition assays where OMC demonstrated enzyme inhibitory activity towards α-amylase (IC50 3.4 mg mL-1) and α-glucosidase (IC50 38.49 μg mL-1). To confirm the anti-diabetic activity, in vivo studies (oral dose in Wistar rats) revealed that OMC inhibited significantly the increase in glucose concentration at 100 mg/kg as compared to starch control (p < 0.05). Further, to understand the safety of OMC as a therapeutic agent, the genotoxic analysis was performed in both in vitro Chinese Hamster Ovary cells (250, 500, and 1000 µM/mL) and in vivo Swiss albino mice (250, 500, and 1000 mg/kg). In vitro results showed that OMC concentration of up to 250 µM/mL did not elicit significant changes in CAs, MI, and MN counts in CHO cells. Similarly, in mice experiments (i.p. injection), no significant changes in CAs, MI, and MN induction were observed till 500 mg/kg of OMC when compared with chrysophanic acid (Cy) (200 mg/kg). In addition, mice that received the lowest dose of OMC (250 mg/kg) did not show any histological changes in liver, kidney, and heart. The study concluded that five times higher therapeutic dose (100 mg/kg) of OMC can be utilized against hyperglycemia with no genotoxic effects.
Collapse
Affiliation(s)
- Cheemalamarri Chandrasekhar
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Hyderabad, India
| | - Hemshikha Rajpurohit
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Kalpana Javaji
- Toxicology and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Madhusudana Kuncha
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Aravind Setti
- Department of Genetics, Osmania University, Hyderabad, India
| | - A Zehra Ali
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashok K Tiwari
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sunil Misra
- Toxicology and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
27
|
Tanvir R, Javeed A, Rehman Y. Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source. FEMS Microbiol Lett 2018; 365:4992302. [DOI: 10.1093/femsle/fny114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rabia Tanvir
- University Diagnostic Lab (UDL), Department of Microbiology, University of Veterinary and Animal Sciences (UVAS), 54000 Lahore, Punjab, Pakistan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Punjab, Pakistan
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences (UVAS), 54000 Lahore, Punjab, Pakistan
| | - Yasir Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Punjab, Pakistan
| |
Collapse
|