1
|
Liao Z, Long R, Ding W, Yu Y, Naseer A, Li L, Ye H, Xu H, Li Y, Pan X, Wu R. Contribution of the type IV pili secretin tapQ to motility, growth, adhesion, stress tolerance and virulence of Aeromonas hydrophila. Int J Biol Macromol 2025; 307:142203. [PMID: 40107542 DOI: 10.1016/j.ijbiomac.2025.142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Aeromonas hydrophila (A. hydrophila) is a widely distributed opportunistic aquatic pathogen. Type IV pili (T4P) are regarded as key virulence factors of A. hydrophila that play a pivotal role in virulence, and tapQ is a component of T4P. However, the role and mechanism of tapQ in the pathogenicity of A. hydrophila are not clear. In this study, a stable genetically tapQ mutant strain of A. hydrophila (ΔtapQ-AH) was constructed. The median lethal dose value of ΔtapQ-AH in Carassius auratus was 0.82-fold that of wild-type strain of A. hydrophila (WT-AH), indicating that ΔtapQ-AH packs a stronger dose of virulence. The ΔtapQ-AH exhibited a significant increase in swimming, biofilm formation, adhesion, osmotic and oxidative stress resistance abilities compared with WT-AH. Twitching and growth abilities showed significant reductions. Exploring the molecular mechanism of the effect of tapQ gene deletion on virulence and biological properties, we found that tapQ gene mutation would affect gene expression of the phage shock protein (Psp) system, type II secretion system, flagellum, type IV pili, type VI secretion system and outer membrane protein. Taken together, this study initially reveals the role of the tapQ gene and offers novel insights into the mechanisms of virulence regulation in A. hydrophila.
Collapse
Affiliation(s)
- Ziyi Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Wan'e Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Adeeba Naseer
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaoyi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Sun J, Wen S, Wang Z, Liu W, Lin Y, Gu J, Mao W, Xu X, He Q, Cai X. Glaesserella parasuis QseBC two-component system senses epinephrine and regulates capD expression. Microbiol Spectr 2023; 11:e0150823. [PMID: 37882555 PMCID: PMC10714720 DOI: 10.1128/spectrum.01508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/16/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The key bacterial pathogen Glaesserella parasuis, which can cause Glässer's disease, has caused significant financial losses to the swine industry worldwide. Capsular polysaccharide (CPS) is an important virulence factor for bacteria, providing the ability to avoid recognition and killing by the host immune system. Exploring the alteration of CPS synthesis in G. parasuis in response to epinephrine stimulation can lay the groundwork for revealing the pathogenic mechanism of G. parasuis as well as providing ideas for Glässer's disease control.
Collapse
Affiliation(s)
- Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Siting Wen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhichao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiayun Gu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiting Mao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Hao K, Wang Y, Zhu B, Yu F, Zhao Z, Wang GX. Recombinant surface display vaccine enhances the immersion immune effect against grass carp reovirus in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109160. [PMID: 37858787 DOI: 10.1016/j.fsi.2023.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Grass carp (Ctenopharyngodon idella) is subject to a hemorrhagic disease caused by grass carp reovirus (GCRV), which can lead to mass mortality in grass carp culture, causing significant economic loss. Vaccination is the most promising strategy for the prevention of infectious diseases. Immersion vaccination is considered the most effective disease prevention method for juvenile fish because it can be implemented on many fish at once and administered without causing stress. However, immune responses by immersion vaccination are markedly less robust due to the skin barrier and insufficient antigen uptake. The display of heterologous proteins on the cell surface has been explored as a delivery system for viral antigens in veterinary and human vaccine studies. To improve the efficacy of the immersion vaccine, the major capsid protein (VP7) of GCRV was co-displayed with Aeromonas hydrophila outer membrane protein a (OmpA) and major adhesion protein (Mah) on the outer membrane surface of nonpathogenic Escherichia coli BL21 using the anchoring motif of ice-nucleation protein (Inp). The immune responses and protection efficiency against GCRV infection via both the injection and immersion routes were evaluated. The results indicated that the activities of anti-oxidant enzymes (ACP, AKP, SOD and T-AOC), as well as the expression of immune-related genes (TNF-α, IL-1β, MHCI and IgM) and specific VP7 antibody levels, were strongly increased in the grass carp from 7 to 21 days post-injection inoculation in a dose dependent manner. The cumulative mortality rates of injection-vaccinated groups were much lower than those of the control group after the GCRV challenge, and the relative percent survival (RPS) was greater than 80 %. Vitally, the surface co-display of vp7-Mah protein conferred marked protection to grass carp against GCRV infection after immersion administration (RPS >50 %); this was consistent with the production of high level of specific serum antibodies, non-specific immune responses, and the expression of immune-related genes. Moreover, the invasion analysis further showed that surface co-display of the vp7-Mah protein indeed significantly improved the invasion of E. coli BL21 (DE3) in vitro. Altogether, this study demonstrated that surface display GCRV core antigen vaccine system accompanied by invasion component from aquatic pathogenic microorganism is an effective prophylactic against GCRV viral diseases via the immersion administration approach.
Collapse
Affiliation(s)
- Kai Hao
- College of Oceanography, Hohai University, Nanjing, 210098, PR China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Yu Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Fei Yu
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
5
|
Harshitha M, Nayak A, Disha S, Akshath US, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Nanovaccines to Combat Aeromonas hydrophila Infections in Warm-Water Aquaculture: Opportunities and Challenges. Vaccines (Basel) 2023; 11:1555. [PMID: 37896958 PMCID: PMC10611256 DOI: 10.3390/vaccines11101555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The application of nanotechnology in aquaculture for developing efficient vaccines has shown great potential in recent years. Nanovaccination, which involves encapsulating antigens of fish pathogens in various polymeric materials and nanoparticles, can afford protection to the antigens and a sustained release of the molecule. Oral administration of nanoparticles would be a convenient and cost-effective method for delivering vaccines in aquaculture while eliminating the need for stressful, labour-intensive injectables. The small size of nanoparticles allows them to overcome the degradative digestive enzymes and help deliver antigens to the target site of the fish more effectively. This targeted-delivery approach would help trigger cellular and humoral immune responses more efficiently, thereby enhancing the protective efficacy of vaccines. This is particularly relevant for combating diseases caused by pathogens like Aeromonas hydrophila, a major fish pathogen responsible for significant morbidity and mortality in the aquaculture sector. While the use of nanoparticle-based vaccines in aquaculture has shown promise, concerns exist about the potential toxicity associated with certain types of nanoparticles. Some nanoparticles have been found to exhibit varying degrees of toxicity, and their safety profiles need to be thoroughly assessed before widespread application. The introduction of nanovaccines has opened new vistas for improving aquaculture healthcare, but must be evaluated for potential toxicity before aquaculture applications. Details of nanovaccines and their mode of action, with a focus on protecting fish from infections and outbreaks caused by the ubiquitous opportunistic pathogen A. hydrophila, are reviewed here.
Collapse
Affiliation(s)
- Mave Harshitha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Somanath Disha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Uchangi Satyaprasad Akshath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Saurabh Dubey
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | | | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics & Cancer, Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| |
Collapse
|
6
|
Wang W, Cao Y, Li J, Lu S, Ge H, Pan S, Pan X, Wang L. The impact of osmotic stresses on the biofilm formation, immunodetection, and morphology of Aeromonas hydrophila. Microbiol Res 2023; 269:127301. [PMID: 36689842 DOI: 10.1016/j.micres.2023.127301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Aeromonas hydrophila (Ah) is a zoonotic pathogen of great importance to aquaculture and human health. This study systematically evaluated the impact of salinity, sugar, ammonia nitrogen, and nitric nitrogen levels on the fitness of Ah by using Luria-Bertani (LB) broth supplemented with different concentrations of NaCl, sucrose, NH4Cl, urea, NaNO2 or NaNO3. Results showed that the static biofilm formation of Ah was higher at 28 °C compared to 37 °C (P < 0.05). At 28 °C, as the NaCl (>1 %) and sucrose levels increased, the Ah biofilm formation and the binding between Ah cells and monoclonal antibodies (mAbs, for immunodetection) decreased. Elevated ammonia nitrogen and nitric nitrogen levels generated no significant impact on Ah biofilm formation or immunodetection (P > 0.05). The expression of mAbs-targeted Omp remained unchanged under high NaCl or sucrose conditions. Further analysis showed that high sucrose conditions led to the over-expression of the extracellular polysaccharides (PS) and promoted the formation of capsule-like structures. These over-expressed PS and capsule structures might be one reason explaining the inhibited immunodetection efficacy. Results generated from this study provide crucial insights for the design of recovery and detection protocols for Ah present in food or environmental samples.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Ye Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Shuaichen Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Hongxing Ge
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Xiaoyi Pan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Zhang M, Zhang T, He Y, Cui H, Li H, Xu Z, Wang X, Liu Y, Li H, Zhao X, Cheng H, Xu J, Chen X, Ding Z. Immunogenicity and protective efficacy of OmpA subunit vaccine against Aeromonas hydrophila infection in Megalobrama amblycephala: An effective alternative to the inactivated vaccine. Front Immunol 2023; 14:1133742. [PMID: 36969197 PMCID: PMC10034085 DOI: 10.3389/fimmu.2023.1133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Aeromonas hydrophila is a kind of zoonotic pathogen, which can cause bacterial septicemia in fish and bring huge economic losses to global aquaculture. Outer membrane proteins (Omps) are conserved antigens of Aeromonas hydrophila, which can be developed as subunit vaccines. To evaluate the protective efficacy of inactivated vaccine and recombinant outer membrane protein A (OmpA) subunit vaccine against A. hydrophila in juvenile Megalobrama amblycephala, the present study investigated the immunogenicity and protective effects of both vaccines, as well as the non-specific and specific immune response of M. amblycephala. Compared with the non-vaccinated group, both inactivated and OmpA subunit vaccines improved the survival rate of M. amblycephala upon infection. The protective effects of OmpA vaccine groups were better than that of the inactivated vaccine groups, which should be attributed to the reduced bacterial load and enhanced host immunity in the vaccinated fish. ELISA assay showed that the titer of serum immunoglobulin M (IgM) specific to A. hydrophila up-regulated significantly in the OmpA subunit vaccine groups at 14 d post infection (dpi), which should contribute to better immune protective effects. In addition, vaccination enhanced host bactericidal abilities might also attribute to the regulation of the activities of hepatic and serum antimicrobial enzymes. Moreover, the expression of immune-related genes (SAA, iNOS, IL-1 β, IL-6, IL-10, TNF α, C3, MHC I, MHC II, CD4, CD8, TCR α, IgM, IgD and IgZ) increased in all groups post infection, which was more significant in the vaccinated groups. Furthermore, the number of immunopositive cells exhibiting different epitopes (CD8, IgM, IgD and IgZ) that were detected by immunohistochemical assay had increased in the vaccinated groups post infection. These results show that vaccination effectively stimulated host immune response (especially OmpA vaccine groups). In conclusion, these results indicated that both the inactivated vaccine and OmpA subunit vaccine could protect juvenile M. amblycephala against A. hydrophila infection, of which OmpA subunit vaccine provided more effective immune protection and can be used as an ideal candidate for the A. hydrophila vaccine.
Collapse
Affiliation(s)
- Minying Zhang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Ting Zhang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Hujun Cui
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Hong Li
- Hunan Fisheries Science Institute, Changsha, China
| | - Zehua Xu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xu Wang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yunlong Liu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hongping Li
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoheng Zhao
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Hanliang Cheng
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Jianhe Xu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Xiangning Chen
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Zhujin Ding
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| |
Collapse
|
8
|
QseBC regulates in vitro and in vivo virulence of Aeromonas hydrophila in response to norepinephrine. Microb Pathog 2023; 174:105914. [PMID: 36455751 DOI: 10.1016/j.micpath.2022.105914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/08/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
The inter-kingdom communication between host and pathogenic bacteria mediated by the host hormones epinephrine (Epi)/norepinephrine (NE)/autoinducer-3 (AI-3) and transduced by the bacterial two-component signal transduction system QseBC has been well demonstrated in mammalian pathogens. Aeromonas hydrophila, a common opportunistic pathogen in freshwater aquaculture, responds to NE by increased bacterial growth and enhanced virulence. However, the underlying mechanisms remain poorly understood. Our study demonstrated that deletion of qseB and qseC significantly inhibited NE-promoted growth, biofilm formation, and hemolytic activity of A. hydrophila. The adhesion ability of ΔqseB and ΔqseC to J774a.1 cells was significantly decreased compared with the wild-type strain in the presence and absence of NE, whereas NE still enhanced the adhesion ability of the mutant and wild-type strains with a similar effect, suggesting that NE-enhanced cell adhesion was independent of QseBC. Moreover, QseBC did not affect the swimming and swarming motility of A. hydrophila with or without NE. Quantitative real-time PCR analyses revealed the down-regulated expression of some virulence-related genes (hly, ast, act, aerA) in each mutant compared with the wild-type strain in the presence of NE. Tilapia infection experiments indicated that deletion of qseB or qseC weakened NE-promoted virulence of A. hydrophila. In conclusion, our study suggests that NE stimulates the growth, biofilm formation, and hemolytic activity of A. hydrophila and enhances the virulence of the pathogen in fish via the QseBC system.
Collapse
|
9
|
Thomsson KA, Benktander J, Quintana-Hayashi MP, Sharba S, Lindén SK. Mucin O-glycosylation and pathogen binding ability differ between rainbow trout epithelial sites. FISH & SHELLFISH IMMUNOLOGY 2022; 131:349-357. [PMID: 36241003 DOI: 10.1016/j.fsi.2022.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mucins are highly glycosylated proteins that make up the mucus covering internal and external surfaces of fish. Mucin O-glycans regulate pathogen quorum sensing, growth, virulence and attachment to the host. Knowledge on this mucosal defense system can enable alternative treatments to diseases posing a threat to productivity and welfare in aquaculture. Here, we characterize the rainbow trout (Oncorhynchus mykiss) gill, skin, pyloric ceca and distal intestinal mucin O-glycosylation and compare it to known teleost O-glycomes. We identified 54 O-glycans, consisting of up to nine monosaccharide residues. Skin glycans were most acidic, shortest on average and consisted mainly of NeuAcα2-6GalNAc. Glycans from the gills were less acidic with predominantly core 1 and 2 glycans, whereas glycans from pyloric ceca and distal intestine expressed an increased number of core 5 glycans, distinctly decorated with NeuAcα2-8NeuAc- like epitopes. When compared to Atlantic salmon and Arctic charr, trends on the core distribution, average size and overall acidity remained similar, although the epitopes varied. Rainbow trout mucins from gill and intestine bound A. salmonicida and A. hydrophila more efficiently than skin mucins. This is in line with a model where skin mucins with small glycans limit bacterial adhesion to the fish surface whereas the complex intestinal mucin glycans aid in trapping and removing pathogens from the epithelial surface.
Collapse
Affiliation(s)
- Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Macarena P Quintana-Hayashi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sinan Sharba
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden.
| |
Collapse
|
10
|
Zhao Z, Wang H, Zhang D, Guan Y, Siddiqui SA, Feng-Shan X, Cong B. Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps. Virulence 2022; 13:794-807. [PMID: 35499101 PMCID: PMC9067532 DOI: 10.1080/21505594.2022.2063484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
The immunogenicity of Aha1, an OMP of Aeromonas hydrophila mediating the adhesion of bacteria onto the mucosal surface of hosts has been established. In this study, recombinant vectors, pPG1 and pPG2, carrying a 1366 bp DNA fragment that was responsible for encoding the 49 kDa Aha1 from A. hydrophila were constructed, respectively, then electroporated into a probiotic strain Lactobacillus casei CC16 separately to generate two types of recombinants, L. casei-pPG1-Aha1 (Lc-pPG1-Aha1) and L. casei-pPG2-Aha1 (Lc-pPG2-Aha1). Subsequently, these were orally administered into common carps to examine their immunogenicity. The expression and localization of the expressed Aha1 protein relative to the carrier L. casei was validated via Western blotting, flow cytometry, and immune fluorescence separately. The recombinant vaccines produced were shown high efficacies, stimulated higher level of antibodies and AKP, ACP, SOD, LZM, C3, C4 in serum in hosts. Immune-related gene expressions of cytokines including IL-10, IL-1β, TNF-α, IFN-γ in the livers, spleens, HK, and intestines were up-regulated significantly. Besides, a more potent phagocytosis response was observed in immunized fish, and higher survival rates were presented in common carps immunized with Lc-pPG1-Aha1 (60%) and Lc-pPG2-Aha1 (50%) after re-infection with virulent strain A. hydrophila. Moreover, the recombinant L. casei were shown a stronger propensity for survivability in the intestine in immunized fish. Taken together, the recombinant L. casei strains might be promising candidates for oral vaccination against A. hydrophila infections in common carps.
Collapse
Affiliation(s)
- Zelin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Hong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yongchao Guan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Shahrood Ahmad Siddiqui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiao Feng-Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Bo Cong
- Institute of special animal and plant sciences of CAAS, Changchun, Jilin, China
| |
Collapse
|
11
|
Chen C, Zu S, Zhang D, Zhao Z, Ji Y, Xi H, Shan X, Qian A, Han W, Gu J. Oral vaccination with recombinant Lactobacillus casei expressing Aha1 fused with CTB as an adjuvant against Aeromonas veronii in common carp (Cyprinus carpio). Microb Cell Fact 2022; 21:114. [PMID: 35698139 PMCID: PMC9191526 DOI: 10.1186/s12934-022-01839-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022] Open
Abstract
Aeromonas veronii (A. veronii) is a pathogenic that can infect human, animal and aquatic organisms, in which poses a huge threat to the health of many aquatic organisms such as Cyprinus carpio. In this study, Lactobacillus casei (L. casei) strain CC16 was used as antigen deliver carrier and fused with cholera toxin B subunit (CTB) as an adjuvant to construct the recombinant L. casei pPG-Aha1/Lc CC16(surface-displayed) and pPG-Aha1-CTB/Lc CC16(surface-displayed) expressing Aha1 protein of A. veronii, respectively. And the immune responses in Cyprinus carpio by oral route was explored. Our results demonstrated that the recombinant strains could stimulate high serum specific antibody immunoglobulin M (IgM) and induce a stronger acid phosphatase (ACP), alkaline phosphatase (AKP), C3, C4, lysozyme (LZM), Lectin and superoxide dismutase (SOD) activity in Cyprinus carpio compared with control groups. Meanwhile, the expression of Interleukin-10 (IL-10), Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), immunoglobulin Z1 (IgZ1) and immunoglobulin Z2 (IgZ2) in the tissues were significantly upregulated compared with Lc-pPG or PBS groups, indicating that humoral and cell immune response were triggered. Additionally, recombinant L. casei could survive and colonize in fish intestine. Significantly, recombinant L. casei provides immune protection against A. veronii infection, which Cyprinus carpio received pPG-Aha1-CTB/Lc CC16 (64.29%) and pPG-Aha1/Lc CC16 (53.57%) had higher survival rates compared with the controls. Thus, we demonstrated that recombinant pPG-Aha1/Lc CC16 and pPG-Aha1-CTB/Lc CC16 may be the promising strategy for the development of an oral vaccine against A. veronii.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shuo Zu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, People's Republic of China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Zelin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Zhang J, Ming Z, Tong H, Wu J, Chen Q, Wang Y, Luo F, Wang Y, Feng T. As-Cathelicidin4 enhances the immune response and resistance against Aeromonas hydrophila in caridean shrimp. JOURNAL OF FISH DISEASES 2022; 45:743-754. [PMID: 35100453 DOI: 10.1111/jfd.13588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Zhiqiang Chen
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinyu Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Zhihao Ming
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jiahui Wu
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qiaoqiao Chen
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yintao Wang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fangmei Luo
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Sughra F, Rahman MHU, Abbas F, Altaf I. Evaluation of three alum-precipitated Aeromonas hydrophila vaccines administered to Labeo rohita, Cirrhinus mrigala and Ctenopharyngodon idella: immunokinetics, immersion challenge and histopathology. BRAZ J BIOL 2021; 83:e249913. [PMID: 34550293 DOI: 10.1590/1519-6984.249913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Aeromonas hydrophila is a cause of infectious disease outbreaks in carp species cultured in South Asian countries including Pakistan. This bacterium has gained resistance to a wide range of antibiotics and robust preventive measures are necessary to control its spread. No prior use of fish vaccines has been reported in Pakistan. The present study aims to develop and evaluate inactivated vaccines against local strain of A. hydrophila in Pakistan with alum-precipitate as adjuvant. The immunogenic potential of vaccine was evaluated in two Indian major carps (Rohu: Labeo rohita, Mori: Cirrhinus mrigala) and a Chinese carp (Grass carp: Ctenopharyngodon idella). Fish were vaccinated intraperitoneally followed by a challenge through immersion. Fish with an average age of 4-5 months were randomly distributed in three vaccinated groups with three vaccine concentrations of 108, 109 and 1010 colony forming unit (CFU)/ml and a control group. Fixed dose of 0.1ml was applied to each fish on 1st day and a booster dose at 15 days post-vaccination (DPV). Blood samples were collected on 14, 28, 35, 48 and 60 DPV to determine antibody titers in blood serum using compliment fixation test (CFT). Fish were challenged at 60 DPV with infectious A. hydrophila with 108 CFU/ml through immersion. Significantly higher levels of antibody titers were observed from 28 DPV in all vaccinated groups as compared to those in the control group. In challenge experiment the average RPS (relative percent survivability) was 71% for groups vaccinated with 109 and 1010 CFU/ml and 86% for 108 CFU/ml. Vaccine with 108 CFU/ml induced highest immune response followed by 109 and 1010 CFU/ml. The immune response of L. rohita and C. idella was better than that of C. mrigala. In general, normal histopathology was observed in different organs of vaccinated fish whereas minor deteriorative changes were found in fish vaccinated with higher concentrations of the vaccine.
Collapse
Affiliation(s)
- F Sughra
- University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Pakistan
| | - M Hafeez-Ur Rahman
- University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Pakistan
| | - F Abbas
- University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Pakistan
| | - I Altaf
- University of Veterinary and Animal Sciences, Quality Operations Laboratory, Lahore, Pakistan
| |
Collapse
|
15
|
Kaur B, Naveen Kumar BT, Tyagi A, Admane Holeyappa S, Singh NK. Identification of novel vaccine candidates in the whole-cell Aeromonas hydrophila biofilm vaccine through reverse vaccinology approach. FISH & SHELLFISH IMMUNOLOGY 2021; 114:132-141. [PMID: 33932598 DOI: 10.1016/j.fsi.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Biofilm vaccine has been recognised as one of the successful strategy to reduce the Aeromonas hydrophila infection in fish. But, the vaccine contains the protective and non-protective proteins, which may lead to show altered heterologous adaptive immunity response. Moreover, cross protection and effectiveness of previously developed biofilm vaccine was not tested against different geographical A. hydrophila isolates. Therefore, in the present study, whole-cell A. hydrophila biofilm vaccine was evaluated in rohu, vaccinated group showed increased antibody titer and protection against the different geographical A. hydrophila isolates namely KAH1 and AAH2 with 78.9% and 84.2% relative percentage survival, respectively. In addition, by using the immune sera of biofilm vaccinated group, a total of six protective proteins were detected using western blot assay. Further, the same proteins were identified by nano LC-MS/MS method, a total of fourteen candidate proteins showing the immunogenic property including highly expressed OMP's tolC, bamA, lamb, AH4AK4_2542, AHGSH82_029580 were identified as potential vaccine candidates. The STRING analysis revealed that, top candidate proteins identified may potentially interact with other intracellular proteins; involved in ribosomal and (tricarboxylic acid) TCA pathway. Importantly, all the selected vaccine candidate proteins contain the B-cell epitope region. Finally, the present study concludes that, whole-cell A. hydrophila biofilm vaccine able to protect the fish against the different geographical A. hydrophila isolates. Further, through reverse vaccinology approach, a total of fourteen proteins were identified as potential vaccine candidates against A. hydrophila pathogen.
Collapse
Affiliation(s)
- Basmeet Kaur
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | | | - Niraj Kumar Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Genomic Analysis of Pasteurella atlantica Provides Insight on Its Virulence Factors and Phylogeny and Highlights the Potential of Reverse Vaccinology in Aquaculture. Microorganisms 2021; 9:microorganisms9061215. [PMID: 34199775 PMCID: PMC8226905 DOI: 10.3390/microorganisms9061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Pasteurellosis in farmed lumpsuckers, Cyclopterus lumpus, has emerged as a serious disease in Norwegian aquaculture in recent years. Genomic characterization of the causative agent is essential in understanding the biology of the bacteria involved and in devising an efficient preventive strategy. The genomes of two clinical Pasteurella atlantica isolates were sequenced (≈2.3 Mbp), and phylogenetic analysis confirmed their position as a novel species within the Pasteurellaceae. In silico analyses revealed 11 genomic islands and 5 prophages, highlighting the potential of mobile elements as driving forces in the evolution of this species. The previously documented pathogenicity of P. atlantica is strongly supported by the current study, and 17 target genes were recognized as putative primary drivers of pathogenicity. The expression level of a predicted vaccine target, an uncharacterized adhesin protein, was significantly increased in both broth culture and following the exposure of P. atlantica to lumpsucker head kidney leucocytes. Based on in silico and functional analyses, the strongest gene target candidates will be prioritized in future vaccine development efforts to prevent future pasteurellosis outbreaks.
Collapse
|
17
|
Palanikani R, Chanthini KMP, Soranam R, Thanigaivel A, Karthi S, Senthil-Nathan S, Murugesan AG. Efficacy of Andrographis paniculata supplements induce a non-specific immune system against the pathogenicity of Aeromonas hydrophila infection in Indian major carp (Labeo rohita). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23420-23436. [PMID: 31363972 DOI: 10.1007/s11356-019-05957-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Aeromonas hydrophila, an opportunistic fish pathogen, which causes several major diseases including skin ulcer and haemorrhagic septicemia, contributes considerably to the lethality in aquaculture. Chemical and antibiotic treatment employed against A. hydrophila for disease management are expensive and consequently prompted the advent of drug resistance among the pathogens. To overcome these draw backs, alternative aquatic disease control methods using conventional plant-based medicines are focussed. Our present study aimed to augment the fish non-specific immune system with the implementation of methanolic crude extracts of Andrographis paniculata to Labeo rohita, for evaluating their efficacy against A. hydrophila. Histology of major organs of A. hydrophila-infected fish such as the gills and liver displayed severe tissue damage. A. paniculata extracts exhibited the strong antibacterial activity against A. hydrophila even at lower concentrations (50 μl). The extracts also altered the haematological profile of treated infected fishes by increasing the levels of haemoglobin and total erythrocyte-leucocyte counts, along with the phagocytic index. The extracts also had a significant impact on modifying the anatomy and swimming pattern of infected fish, post treatment with the extracts. Also, A. paniculata treated infected fishes in all the plant extract administration methods, viz. injection, oral feeding and diffusion, and reduced the cumulative mortality rate to less than 30%. Even lower concentrations of A. paniculata extracts (50 μl) resulted in maximum relative percentage survival of treated fishes. Therefore, our findings suggest that A. paniculata was effective against A. hydrophila infection in aquaculture, thereby maintaining a healthy status of these fishes in aquaculture.
Collapse
Affiliation(s)
- Radhakrishnan Palanikani
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ramaiah Soranam
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Annamalai Thanigaivel
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengodan Karthi
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil-Nathan
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Arunachalam Ganesan Murugesan
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| |
Collapse
|
18
|
Shirajum Monir M, Yusoff SM, Mohamad A, Ina-Salwany MY. Vaccination of Tilapia against Motile Aeromonas Septicemia: A Review. JOURNAL OF AQUATIC ANIMAL HEALTH 2020; 32:65-76. [PMID: 32331001 DOI: 10.1002/aah.10099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 05/27/2023]
Abstract
The production of tilapia Oreochromis spp. is rapidly growing throughout the world, but atypical motile aeromonad septicemia (MAS) is a current threat to the tilapia farming industry. The etiological agent of this disease is usually Aeromonas hydrophila. Mortality rates due to MAS are frequently high, resulting in a devastating negative impact on this industry worldwide; therefore, proper control measures regarding both prevention and treatment are necessary. Although vaccines against MAS for tilapia are available, their effectiveness is entirely dependent on the specific strain of problematic bacteria. Until now, whole-cell inactivated A. hydrophila vaccines for tilapia have exhibited the highest level of protection over live attenuated and recombinant vaccines. Among the various vaccine administration systems, only intraperitoneal (i.p.) injections of the A. hydrophila vaccine into tilapia were found to provide prominent immune protection. Vaccine efficacy was primarily measured by using the i.p. injection challenge model and estimating the relative percent survival of the immunized tilapia. Freund's incomplete adjuvant showed to be the most effective for tilapia MAS vaccines. In this review, multiple factors that directly or indirectly influence the efficacy of MAS vaccines for tilapia (adjuvants, challenge models, immunization doses and duration, and size of vaccinated fish) are discussed.
Collapse
Affiliation(s)
- Md Shirajum Monir
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sabri Mohd Yusoff
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M Y Ina-Salwany
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Chen Y, Hua X, Ren X, Duan K, Gao S, Sun J, Feng Y, Zhou Y, Guan X, Li D, Wang N, Li J, Yang J, Xia D, Shi W, Liu M. Oral immunization with recombinant Lactobacillus casei displayed AHA1-CK6 and VP2 induces protection against infectious pancreatic necrosis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2020; 100:18-26. [PMID: 32142871 DOI: 10.1016/j.fsi.2020.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) primarily infects larvae and young salmonid with serious economic losses, which causes haemorrhage and putrescence of hepatopancreas. To develop a more effective oral vaccine against IPNV infection, the aeromonas hydrophila adhesion (AHA1) gene was used as a targeting molecule for intestinal epithelial cells. A genetically engineered Lactobacillus casei (pPG-612-AHA1-CK6-VP2/L. casei 393) was constructed to express the AHA1-CK6-VP2 fusion protein. The expression of interest protein was confirmed by western blotting and the immunogenicity of pPG-612-AHA1-CK6-VP2/L. casei 393 was evaluated. And the results showed that more pPG-612-AHA1-CK6-VP2/L. casei 393 were found in the intestinal mucosal surface of the immunized group. The Lactobacillus-derived AHA1-CK6-VP2 fusion protein could induce the production of serum IgM and skin mucus IgT specific for IPNV with neutralizing activity in rainbow trouts. The levels of IL-1β, IL-8 and TNF-α isolated from the lymphocytes stimulated by AHA1-CK6-EGFP produced were significantly higher than EGFP group. For transcription levels of IL-1β, IL-8, CK6, MHC-II, Mx and TNF-1α in the spleen, the result indicated that the adhesion and target chemokine recruit more immune cells to induce cellular immunity. The level of IPNV in the immunized group of pPG-612-AHA1-CK6-VP2/L. casei 393 was significantly lower than that in the control groups. These data indicated that the adhesion and target chemokine could enhance antigen delivery efficiency, which provides a valuable strategy for the development of IPNV recombination Lactobacillus casei oral vaccine in the future.
Collapse
Affiliation(s)
- Yaping Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Hua
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuanyu Ren
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kexin Duan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinhui Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xin Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dechuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiahui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiawei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dong Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
20
|
Nayak SK. Current prospects and challenges in fish vaccine development in India with special reference to Aeromonas hydrophila vaccine. FISH & SHELLFISH IMMUNOLOGY 2020; 100:283-299. [PMID: 32088285 DOI: 10.1016/j.fsi.2020.01.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Infectious diseases are adversely affecting aquaculture practices throughout world and Asian countries are no exception. Indian aquaculture practices are facing serious setback due to a variety of infectious agent's which are responsible for severe mortality and morbidity of all the cultured freshwater fish species leading to severe economic losses. The emergence of antibiotic resistant pattern, residual effect and environmental degradation due to indiscriminate use of antibiotics has necessitates the development of suitable alternate prophylaxis measures for better protection. In this regard, vaccine(s) has proved to be an effective strategy against pathogens to improve the fish production. Over the years numerous studies have been conducted to develop vaccine(s) against different pathogens. While most of the efforts are made to develop vaccine against bacterial pathogens especially against Aeromoniasis and Edwardsiellosis, few attempts have also been made against certain other bacterial, parasitic and fungal pathogens as well. Despite various successful experimental attempts, till date no vaccines against any of the pathogens are commercially available for Indian aquaculture. This review principally focuses on the current state of art in the development of vaccine against different microbial pathogens in general and Aeromonas hydrophila in particular since the bacterium is a major pathogen which is involved in a number of disease conditions in all the cultured fish species in India. Herein in this review, details of various experimental approaches made to find out a potential vaccine candidate which in turn can induce protective immune responses in host alongwith the constraints associated with it in developing a suitable vaccine against this bacterium and its market potential have been illustrated from an Indian perspective.
Collapse
Affiliation(s)
- Sukanta Kumar Nayak
- Department of Biotechnology, North Orissa University, Takatpur, Baripada, 757 003, Odisha, India.
| |
Collapse
|
21
|
Monir W, Abdel-Rahman MA, El-Din Hassan S, Mansour ES, Awad SMM. Pomegranate peel and moringa-based diets enhanced biochemical and immune parameters of Nile tilapia against bacterial infection by Aeromonas hydrophila. Microb Pathog 2020; 145:104202. [PMID: 32330516 DOI: 10.1016/j.micpath.2020.104202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
We previously reported that Aeromonas hydrophila exhibited the highest prevalence rate amongst 182 bacterial strains isolated from naturally diseased Nile tilapia (Oreochromis niloticus) collected from El-Abassa Fish Farm, Egypt (Hassan et al., Egypt. J. Aquac., 10, 23-43, 2020). The overuse of antibiotics for controlling diseases has led to acquired antibiotics resistance of aquatic bacteria, besides the developments of human, aquatic animal and environmental risks arising from residual antibiotics. Therefore, the evaluation of safe alternative phytotherapies is of great importance. This study was conducted to evaluate and compare growth performance and immune potentiating activities of moringa (Moringa oleifera) leaves extract (Moringa LE) and pomegranate (Punica granatum) peel extract (Pomegranate PE) on Nile tilapia against infection with a pathogenic bacterium, Aeromonas hydrophila. A total of 150 Oreochromis niloticus were randomly divided into 5 groups to be fed at 3% of body weight with isonitrogenous/isoenergetic diets supplemented with Moringa LE at 0.15 and 0.25% kg-1 or Pomegranate PE at of 0.3 and 0.5% kg-1, separately. Growth performance was significantly affected by Moringa LE as compared with the control group without supplementation of plant extract, while Pomegranate PE levels did not affect growth performance. Maximum average daily gains, specific growth rate, albumin, globulin, total protein, A/G ratio, alanine amino transaminase (ALT), aspartate amino transaminase (AST), cholesterol, triglyceride, creatinine, urea, and lysozyme were analyzed. Antioxidant enzymes of catalase and superoxide dismutase were also evaluated in liver tissues. After feeding experiment, the results indicated that the addition of Moringa LE and Pomegranate PE improved lipid profile, liver and kidney functions, immune response towards the emerging bacterial diseases. Besides this, feeding the fishes on diets supplemented with Moringa LE at concentration 0.25% kg-1 showed the best growth performance, and improved immunity. Moreover, it exhibited the highest protection against bacterial infection with Aeromonas hydrophila achieving the lowest mortality rate of 10% as compared to 80% of mortality rate at the control group.
Collapse
Affiliation(s)
- Walid Monir
- Botany and Microbiology Department, Faculty of Science (boys-branch), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science (boys-branch), Al-Azhar University, Cairo, Egypt.
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science (boys-branch), Al-Azhar University, Cairo, Egypt
| | - El Sayed Mansour
- Bacteriology Department, Animal Health Research Institute, Zagazig Branch, Egypt
| | - Somayah M M Awad
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
22
|
Kong Y, Li M, Tian J, Zhao L, Kang Y, Zhang L, Wang G, Shan X. Effects of recombinant Lactobacillus casei on growth performance, immune response and disease resistance in crucian carp, Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:73-85. [PMID: 32032762 DOI: 10.1016/j.fsi.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In the present study, we constructed two recombinant Lactobacillus casei (L. casei) Lc-pPG-1-AcrV (surface-displayed) and Lc-pPG-2-AcrV (secretory) constitutively expressing AcrV protein of Aeromonas veronii (A. veronii). Expression of recombinant AcrV protein was verified by western blot and immunofluorescence technique. Compared with PBS group, the final weight (FW), weight gain (WG) and specific growth rate (SGR) of fish fed Lc-pPG-1-AcrV, Lc-pPG-2-AcrV and Lc-pPG diets after 56 days observed significantly increase (p < 0.05), while the feed conversion ratio (FCR) showed a significantly decrease (p < 0.05). The recombinant L. casei strains were orally administrated to crucian carp, and significant increased (p < 0.05) the immunoglobulin M (IgM), elevated the acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM) and superoxide dismutase (SOD) activity in serum. Moreover, leukocytes phagocytosis percentage and index of the recombinant L. casei were both enhanced. The results demonstrated that the recombinant L. casei could elicit systemic immune responses and increase the serum immunological index. The Interleukin-10 (IL-10), Interleukin-1β (IL-1β), interferon-γ (IFN-γ) and Tumor Necrosis Factor-α (TNF-α) levels in liver, spleen, kidney and intestine have up regulated significantly in tissues (p < 0.05), suggesting that the recombinant L. casei has the ability to induce expression of cytokines and enhance the innate immune response. Higher survival rates were exhibited that crucian carp immunized with Lc-pPG-1-AcrV (67.5%) and Lc-pPG-2-AcrV (52.5%) after challenge with A. veronii. In conclusion, these two recombinant L. casei vaccine were effective in improving crucian carp growth, immunity response and disease resistance. The recombinant L. casei strains may be a promising candidate for the development of an oral vaccine against A. veronii.
Collapse
Affiliation(s)
- Yidi Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Linhui Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
23
|
Mao L, Qin Y, Kang J, Wu B, Huang L, Wang S, Zhang M, Zhang J, Zhang R, Yan Q. Role of LuxR-type regulators in fish pathogenic Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2020; 43:215-225. [PMID: 31770821 DOI: 10.1111/jfd.13114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
LuxR-type transcriptional factors are essential in many bacterial physiological processes. However, there have been no reports on their roles in Aeromonas hydrophila. In this study, six stable silent strains were constructed using shRNA. Significant decreases in the expression levels of luxR05 , luxR08 , luxR19 , luxR11 , luxR164 and luxR165 were shown in their respective strains by qRT-PCR. The luxR05 -RNAi and luxR164 -RNAi exhibit the most significant changes in sensitivity to kanamycin and gentamicin. The luxR05 -RNAi showed minimum biofilm formation and the least motility, while luxR164 -RNAi showed minimum biofilm formation, adhesion, growth and extracellular protease activity compared to the wild-type strain. In summary, the results of this paper suggest that all six luxR genes are involved in multiple physiological processes in A. hydrophila and that the roles of luxR05 and luxR164 are highly significant. The sensitivity of luxR05 -RNAi and luxR164 -RNAi to drugs may be closely related to biofilm formation. The luxR05 may play an important role in the pathogenicity of A. hydrophila by regulating the movement, adhesion and biofilm formation of bacteria, whereas luxR164 may be involved in similar functions by regulating bacterial adhesion, extracellular enzyme activity and growth. These results help further our understanding of the drug resistance and pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiahui Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ruixuan Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| |
Collapse
|
24
|
Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z. GWAS Analysis Indicated Importance of NF-κB Signaling Pathway in Host Resistance Against Motile Aeromonas Septicemia Disease in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:335-347. [PMID: 30895402 DOI: 10.1007/s10126-019-09883-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Motile Aeromonas septicemia (MAS) disease caused by a bacterial pathogen, Aeromonas hydrophila, is an emerging but severe disease of catfish. Genetic enhancement of disease resistance is considered to be effective to control the disease. To provide an insight into the genomic basis of MAS disease resistance, in this study, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL). A total of 1820 interspecific backcross catfish of 7 families were challenged with A. hydrophila, and 382 phenotypic extremes were selected for genotyping with the catfish 690 K SNP arrays. Three QTL on linkage group (LG) 2, 26 and 29 were identified to be significantly associated with MAS resistance. Within these regions, a total of 24 genes had known functions in immunity, 10 of which were involved in NF-κB signaling pathway, suggesting the importance of NF-κB signaling pathway in MAS resistance. In addition, three suggestively significant QTL were identified on LG 11, 17, and 20. The limited numbers of QTL involved in MAS resistance suggests that marker-assisted selection may be a viable approach for catfish breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jian Luo
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
25
|
Zhu Z, Dong C, Weng S, He J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). FISH & SHELLFISH IMMUNOLOGY 2019; 86:143-151. [PMID: 30453046 DOI: 10.1016/j.fsi.2018.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
Vibrio harveyi is a serious pathogen of scale drop and muscle necrosis disease in marine commercial fishes. Adhesion to and colonization of the host cells surfaces is the first and crucial step for pathogenic bacterial infection, which is usually mediated by outer membrane proteins (Omps). The objectives of this study were to identify the major adhesin in Omps that plays the essential role in adhesion of V. harveyi to the host cells, and to assess the potential of this adhesin as a vaccine candidate for V. harveyi infection. We observed that pathogenic V. harveyi adhered to the surface of grouper embryonic cells (GEM cells) and induced apoptosis of them. Native Omps were extracted from nine different V. harveyi strains, and five common Omp bands were isolated by SDS-PAGE analysis. Western blot analysis and an anti-native Omp antibodies blocking assay indicated that one strong and several weak immunoreactivity Omps bands presence. Next, a total of five Omps, including TolC, Agg (Agglutination protein), Omp47, Fla (Flagellin), and OmpW, were identified and their encoding genes were cloned, characterized, and expressed in E. coli. The purified recombinant TolC could competitively inhibit the invasion of V. harveyi to GEM cells in vitro, and anti-TolC antibody also could significantly block the adhesion of V. harveyi to GEM cells. When used to immunize hybrid groupers, the recombinant TolC could confer significant protection to fish against experimental V. harveyi challenge. These data suggested that outer membrane protein TolC functions as a major adhesin in V. harveyi and could be a potential vaccine candidate for V. harveyi infection.
Collapse
Affiliation(s)
- Zhiming Zhu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shaoping Weng
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
26
|
Xu W, Jiao C, Bao P, Liu Q, Wang P, Zhang R, Liu X, Zhang Y. Efficacy of Montanide™ ISA 763 A VG as aquatic adjuvant administrated with an inactivated Vibrio harveyi vaccine in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:56-61. [PMID: 30201447 DOI: 10.1016/j.fsi.2018.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Turbot (Scophthalmus maximus L.) is a commercially important fish species in China. Despite of its great economic potential, fish farms often suffer severe economic losses due to certain fish diseases. Vaccination has become a common strategy to prevent diseases caused by pathogens in aquaculture industry. However, no inactivated vaccine against Vibrio harveyi of turbot has been reported so far. In this study, we developed an inactivated vaccine using formalin-killed cells of V. harveyi and the efficacy of a commercial adjuvant Montanide™ ISA 763 A VG on the inactivated vaccine was evaluated. We found that with an optimum vaccine dosage at 1.0 × 108 CFU/fish, a high relative percent survival (RPS) more than 75% was observed at 4 weeks post vaccination (w.p.v.). Moreover, enhanced antibody titer, lysozyme activity, total serum protein and antibacterial property in sera of vaccinated fish were observed at 4, 8, 12 and 16 w.p.v. In conclusion, we developed an efficient inactivated vaccine against V. harveyi in turbot, which not only induced humoral immunity, but also enhanced initial innate immune response for long-term protection.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Chenglong Jiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Pengcheng Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Pengbo Wang
- Shanghai Wei Sheng Marine Biotechnology Co., Ltd., Shanghai, 200237, China
| | - Ruilin Zhang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| |
Collapse
|
27
|
Zhang M, Yan Q, Mao L, Wang S, Huang L, Xu X, Qin Y. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection. Gene 2018; 672:156-164. [DOI: 10.1016/j.gene.2018.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
|
28
|
Gao J, Xi B, Chen K, Song R, Qin T, Xie J, Pan L. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen 2018; 8:e00664. [PMID: 29897673 PMCID: PMC6460269 DOI: 10.1002/mbo3.664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Stress is an important contributing factor in the outbreak of infectious fish diseases. To comprehensively understand the impact of catecholamine stress hormone norepinephrine (NE) on the pathogenicity of Aeromonas hydrophila, we assessed variations in bacterial growth, virulence‐related genes expression and virulence factors activity after NE addition in serum‐SAPI medium. Further, we assessed the effects of NE on A. hydrophila virulence in vivo by challenging fish with pathogenic strain AH196 and following with or without NE injection. The NE‐associated stimulation of A. hydrophila strain growth was not linear‐dose‐dependent, and only 100 μM, or higher concentrations, could stimulate growth. Real‐time PCR analyses revealed that NE notably changed 13 out of the 16 virulence‐associated genes (e.g. ompW, ahp, aha, ela, ahyR, ompA, and fur) expression, which were all significantly upregulated in A. hydrophila AH196 (p < 0.01). NE could enhance the protease activity, but not affect the lipase activity, hemolysis, and motility. Further, the mortality of crucian carp challenged with A. hydrophila AH196 was significantly higher in the group treated with NE (p < 0.01). Collectively, our results showed that NE enhanced the growth and virulence of pathogenic bacterium A. hydrophila.
Collapse
Affiliation(s)
- Jinwei Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Hunan Fisheries Science Institute, Changsha, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Ting Qin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
29
|
Dang Y, Meng X, Wang S, Li L, Zhang M, Hu M, Xu X, Shen Y, Lv L, Wang R, Li J. Mannose-binding lectin and its roles in immune responses in grass carp (Ctenopharyngodon idella) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 72:367-376. [PMID: 29129586 DOI: 10.1016/j.fsi.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The complement system is a crucial component of the innate immune system that links innate and adaptive immunity via four pathways. Mannose-binding lectin (MBL), the initiating molecule of the lectin pathway, plays a significant role in the innate immune system in mammals and fish. Herein, we identified an MBL homolog (gcMBL) in grass carp (Ctenopharyngodon idella). The full-length 948 bp gcMBL cDNA includes a 741 bp open reading frame encoding a 246 amino acid protein with a signal peptide, collagen triple helix repeat domain, and a C-type lectin-like/link domain. The gcMBL protein shares low similarity with MBL counterparts in other species, and is most closely related to Cyprinus carpio MBL. Transcription of gcMBL was widely distributed in different tissues, and was induced by Aeromonas hydrophila in vivo and in vitro. Expression of gcMBL was also affected by LPS and flagellin stimulation in vitro. In cells over-expressing gcMBL, transcripts of almost all components except gcC5 were up-regulated, and gcMBL, gcIL1β, gcTNF-α, gcIFN, gcCD59, gcC5aR and gcITGβ-2 were significantly up-regulated following exposure to A. hydrophila or stimulation by bacterial PAMPs. Meanwhile, gcMBL deficiency achieved by RNAi down-regulated transcript levels following A. hydrophila challenge, and gcMBL induced NF-κB signalling. These findings indicate a vital role of gcMBL in innate immunity in grass carp.
Collapse
Affiliation(s)
- Yunfei Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, PR China
| | - Xinzhan Meng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Shentong Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lisen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Meng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Moyan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Xiaoyan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lv
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Rongquan Wang
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
30
|
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16:895-906. [DOI: 10.1080/14760584.2017.1355733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yahua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| |
Collapse
|
31
|
Di G, Li H, Zhang C, Zhao Y, Zhou C, Naeem S, Li L, Kong X. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2017; 66:11-25. [PMID: 28476666 DOI: 10.1016/j.fsi.2017.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 108 CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanjing Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Sajid Naeem
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
32
|
Ibrahim El M. Serum Biochemical and Histopathological Changes Associated with Aeromonas hydrophila Isolated from Oreochromis niloticus and Sparus aurata with Multiple Antibiotic Resistance Index. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jbs.2017.222.234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Feng J, Lin P, Guo S, Jia Y, Wang Y, Zadlock F, Zhang Z. Identification and characterization of a novel conserved 46 kD maltoporin of Aeromonas hydrophila as a versatile vaccine candidate in European eel (Anguilla anguilla). FISH & SHELLFISH IMMUNOLOGY 2017; 64:93-103. [PMID: 28279793 DOI: 10.1016/j.fsi.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
European eel (Anguilla anguilla) is a crucial economic fish that has been plagued by Aeromonas hydrophila infections for many years. Vaccines that are cross-protective against multiple serotypes could provide an effective control against A. hydrophila-mediated diseases. The outer membrane proteins (OMPs) are highly immunogenic and capable of eliciting protective immune responses. This study reports the identification of a novel 46 kD maltoporin that is a conserved protective antigen for different serotypes of A. hydrophila. First, this study purified OMPs from the strains of A. hydrophila B10, B11, B12, B15, B19, and B20. Western blot analysis revealed that the 46 kD maltoporin of B11 could be strongly reacted with all the specific European eel antisera against the above OMPs from different serotypes A. hydrophila. Cloning and sequencing of the maltoporin revealed that it contains an open reading frame (ORF) of 1281 nucleotides encoding 426 amino acids. Further sequence alignment analysis using the NCBI Conserved Domain Database (CDD) along with performing three-dimensional structure analysis showed that this protein belongs to maltoporin family. Three different study groups of European eels were intraperitoneal injected with one of the following conditions: phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila (FKC group) or with the recombinant maltoporin (OMP group) to analyze the immunogenicity of the recombinant maltoporin purified by nickel chelate affinity chromatography. On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody, and lysozyme activities of experimental eels were detected. On 28d post-vaccination, eels from the three groups were challenged by intraperitoneal injection with five different live strains of A. hydrophila (B10, B11, B15, B19, and B20). The results showed that the proliferation of whole blood cells in the OMP group was significantly enhanced on 14d and the serum antibody titers of vaccinated European eels in FKC and OMP group were significantly increased on 28d and 42d. Lysozyme activities in serum were significantly up-regulated in FKC and OMP groups on 21d. The relative percent survival (RPS) of OMP group challenged by A. hydrophila B10, B11, and B20 was 75%, 62.5%, and 88%. This was higher than the corresponding RPS of FKC group with 50%, 37.5%, and 66%, respectively. The RPS was up to 100% in both OMP and FKC group when challenged by A. hydrophila B15 and B19. These results indicate that the 46 kD maltoporin is an effective potent vaccine candidate against different serotypes of A. hydrophila.
Collapse
Affiliation(s)
- Jianjun Feng
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China.
| | - Peng Lin
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Yuanyuan Jia
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Frank Zadlock
- Department of Biological Science, Seton Hall University, South Orange, NJ, USA
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
34
|
Abdelhamed H, Nho SW, Turaga G, Banes MM, Karsi A, Lawrence ML. Protective efficacy of four recombinant fimbrial proteins of virulent Aeromonas hydrophila strain ML09-119 in channel catfish. Vet Microbiol 2016; 197:8-14. [DOI: 10.1016/j.vetmic.2016.10.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 11/26/2022]
|
35
|
Liu L, Gong YX, Liu GL, Zhu B, Wang GX. Protective immunity of grass carp immunized with DNA vaccine against Aeromonas hydrophila by using carbon nanotubes as a carrier molecule. FISH & SHELLFISH IMMUNOLOGY 2016; 55:516-522. [PMID: 27343373 DOI: 10.1016/j.fsi.2016.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
To reduce the economic losses caused by diseases in aquaculture industry, more efficient and economic prophylactic measures should be urgently investigated. In this research, the effects of a novel functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for DNA vaccine administration in juvenile grass carp against Aeromonas hydrophila were studied. Our results showed that SWCNTs loaded with DNA vaccine induced a better protection to juvenile grass carp against A. hydrophila. Moreover, SWCNTs conjugated with DNA vaccine provided significantly protective immunity compared with free DNA vaccine. Thereby, SWCNTs may be considered as a potential efficient DNA vaccine carrier to enhance the immunological activity.
Collapse
Affiliation(s)
- Lei Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yu-Xin Gong
- College of Veterinary Medicine, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Guang-Lu Liu
- College of Science, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
36
|
Hu R, Du N, Chen N, Lin L, Zhai Y, Gu Z. Molecular analysis of type II topoisomerases of Aeromonas hydrophila isolated from fish and levofloxacin-induced resistant isolates in vitro. Folia Microbiol (Praha) 2015; 61:249-53. [DOI: 10.1007/s12223-015-0432-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
37
|
Izabela PDSL, Yasmin SG, Samira TLDO, Fabio ND, Cristina DCK, Gisele VG, Wagner PF, Mateus MC. Efficacy of Aeromonas hydrophila S-layer bacterins with different protein profiles as a vaccine in Nile tilapia (Oreochromis niloticus). ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Rivas-Aravena A, Fuentes Y, Cartagena J, Brito T, Poggio V, La Torre J, Mendoza H, Gonzalez-Nilo F, Sandino AM, Spencer E. Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. FISH & SHELLFISH IMMUNOLOGY 2015; 45:157-66. [PMID: 25862072 DOI: 10.1016/j.fsi.2015.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 05/19/2023]
Abstract
Adjuvants used in vaccine aquaculture are frequently harmful for the fish, causing melanosis, granulomas and kidney damage. Along with that, vaccines are mostly administered by injection, causing pain and stress to the fish. We used the DNA coding for the replicase of alphavirus as adjuvant (Ad) of a vaccine against ISAV. The Ad and an inactivated ISAV (V) were loaded in chitosan nanoparticles (NPs) to be administered orally to Atlantic salmon. NP-Ad was able to deliver the DNA ex vivo and in vivo. Oral administration of the NPs stimulated the expression of immune molecules, but did not stimulate the humoral response. Although the vaccination with NP-V results in a modest protection of fish against ISAV, NP-V administered together with NP-Ad caused a protection of 77%. Therefore, the DNA coding for the replicase of alphavirus could be administered orally and can potentiate the immuneprotection of a virine against infection.
Collapse
Affiliation(s)
- Andrea Rivas-Aravena
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile; Comisión Chilena de Energía Nuclear, Departamento de Aplicaciones Nucleares, Santiago, Chile.
| | - Yazmin Fuentes
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Julio Cartagena
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Tania Brito
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Verónica Poggio
- Centro Milstein, Buenos Aires, Argentina; Tecnovax, Buenos Aires, Argentina
| | - José La Torre
- Centro Milstein, Buenos Aires, Argentina; Tecnovax, Buenos Aires, Argentina
| | - Hegaly Mendoza
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology (CBIB), Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology (CBIB), Santiago, Chile
| | - Ana María Sandino
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Eugenio Spencer
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| |
Collapse
|
39
|
Dash P, Sahoo PK, Gupta PK, Garg LC, Dixit A. Immune responses and protective efficacy of recombinant outer membrane protein R (rOmpR)-based vaccine of Aeromonas hydrophila with a modified adjuvant formulation in rohu (Labeo rohita). FISH & SHELLFISH IMMUNOLOGY 2014; 39:512-523. [PMID: 24937805 DOI: 10.1016/j.fsi.2014.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
Despite the importance and success of developing a candidate vaccine against Aeromonas hydrophila infection in fish, little is known about the molecular mechanisms of the vaccine-induced immunoprotection in Indian major carp, Labeo rohita, primarily due to lack of information on most of the immune related genes of the species. In this study, a novel candidate antigen recombinant outer membrane protein R (rOmpR) of A. hydrophila was evaluated as a vaccine candidate along with a modified adjuvant formulation. Protective efficacy of the rOmpR immunization was assessed in terms of survival against A. hydrophila challenge as well as modulation of immune response in vaccinated fish after 1, 3, 6, 12, 24, 72 h and 10 days post-injection (using immune gene expression analysis) and 10, 28, 56 and 140 days post-injection (serum immune parameter analysis). The generated immune response was compared with a formalin-killed A. hydrophila antigen preparation using mineral oil only and modified adjuvant alone. We report a variable up-regulation of the immune-related genes viz., lysozyme G, complement factor 4, immunoglobulin M, β2-microglobulin, major histocompatibility complex I and II, and interleukin-1β in anterior kidney and spleen tissues at early time points post-immunization in all the groups, when compared to the control fish. The vaccinated fish also showed an increase in serum natural hemolysin titer, lysozyme and myeloperoxidase activities, and antibody titer irrespective of vaccine formulations as compared to control fish on days 10, 28 and 56. However, the increase in the serum parameters was more pronounced on day 140 in rOmpR-modified adjuvant injected group, indicating the modulatory role of this new vaccine formulation. Upon challenge with live A. hydrophila on days 56 and 140 post-immunization, significantly reduced percent mortality was noted in the group immunized with modified adjuvant based rOmpR vaccine formulation. Taken together, our results suggest that rOmpR along with modified adjuvant could potentially be used as a vaccine formulation to handle A. hydrophila infection on a long-term basis.
Collapse
Affiliation(s)
- P Dash
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India
| | - P K Sahoo
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India.
| | - P K Gupta
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India
| | - L C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - A Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
40
|
A multi-approach study of influence of growth temperature and nutrient deprivation in a strain of Aeromonas hydrophila. Int J Food Microbiol 2014; 188:1-10. [PMID: 25064811 DOI: 10.1016/j.ijfoodmicro.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/29/2023]
Abstract
In the present study we investigated the behavior of an Aeromonas hydrophila strain in prolonged nutrient deprivation condition analyzing the possible link among survival, cell morphology and adhesive characteristics and correlating them with the expression of the 43kDa outer membrane protein (OMP). The strain was inoculated in mineral and drinking chlorinated water, and in Nutrient Broth as a control with incubation at 4 and 24°C for 176days. Specimens were analyzed at different times during starvation stress. Viability was assessed by flow cytometry and growth by plate count technique; morphology and adhesivity were detected by optical and electron microscopy. The 43kDa OMP expression at different times was determined after immunoblotting assay using a polyclonal antibody produced in rabbit. The results showed a long-term viability as evidenced by cytofluorimetric analysis; however, the prolonged starvation led to the shift from the normal rod shaped cells to spherical forms in the last phases of incubation especially at 24°C. Concomitantly with the appearance of spherical cells we noted a reduction of the 43kDa OMP content and adhesive ability. Therefore, our results suggest a role of the 43kDa OMP as adhesin in A. hydrophila. In conclusion, we demonstrated that the bacterium can long survive under stress conditions, however adopting strategies which can lead to a loss of some cell surface components involved in the interactions with eukaryotic cells, therefore modifying its virulence properties.
Collapse
|
41
|
Zhang D, Pridgeon JW, Klesius PH. Vaccination of channel catfish with extracellular products of Aeromonas hydrophila provides protection against infection by the pathogen. FISH & SHELLFISH IMMUNOLOGY 2014; 36:270-275. [PMID: 24321514 DOI: 10.1016/j.fsi.2013.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, is one of the economically-important pathogens in modern aquaculture. Among various traits, extracellular products (ECP) secreted by the bacterium are considered to be essential factors for virulence. Whether vaccination with the ECP could produce immune protection in catfish against the pathogen was determined in this study. The results showed that fish vaccinated with ECP had 100% of relative percent survival (RPS) when challenged with the pathogen two weeks post vaccination. The anti-ECP serum from vaccinated fish could aggregate cells of homogeneous bacteria as well as other virulent strains (isolates) of A. hydrophila but not an A. veronii isolate and a low virulent field isolate. The agglutination titers increased from two weeks to four weeks post immunization and sustained a high level at week seven when the RPS remained at 100%. The anti-ECP serum could also provide naïve fish with immediate protection against A. hydrophila as evidenced by passive immunization. Immunoblotting analysis showed that the anti-ECP serum contained antibodies that bound to specific targets, including protein and lipopolysaccharide-like molecules, in the ECP. Mass spectrometric analysis identified following putative proteins that may serve as important immunogens: chitinase, chitodextrinase, outer membrane protein85, putative metalloprotease, extracellular lipase, hemolysin and elastase. Findings revealed in this study suggest that, while ECP prepared in a conventional and convenient way could be a vaccine candidate, further characterization of antibody-mediated targets in the ECP would uncover quintessential antigens for the future development of highly efficacious vaccines.
Collapse
Affiliation(s)
- Dunhua Zhang
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | - Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| | - Phillip H Klesius
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| |
Collapse
|
42
|
Tafalla C, Bøgwald J, Dalmo RA. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1740-1750. [PMID: 23507338 DOI: 10.1016/j.fsi.2013.02.029] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Vaccination is the most adequate method to control infectious diseases that threaten the aquaculture industry worldwide. Unfortunately, vaccines are usually not able to confer protection on their own; especially those vaccines based on recombinant antigens or inactivated pathogens. Therefore, the use of adjuvants or immunostimulants is often necessary to increase the vaccine efficacy. Traditional adjuvants such as mineral oils are routinely used in different commercial bacterial vaccines available for fish; however, important side effects may occur with this type of adjuvants. A search for alternative molecules or certain combinations of them as adjuvants is desirable in order to increase animal welfare without reducing protection levels. Especially, combinations that may target specific cell responses and thus a specific pathogen, with no or minor side effects, should be explored. Despite this, the oil adjuvants currently used are quite friendlier with respect to side effects compared with the oil adjuvants previously used. The great lack of fish antiviral vaccines also evidences the importance of identifying optimal combinations of a vaccination strategy with the use of a targeting adjuvant, especially for the promising fish antiviral DNA vaccines. In this review, we summarise previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll receptors or different cytokines, focussing mostly on their protective efficacies, and also on what is known concerning their effects on the fish immune system when delivered in vivo.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | |
Collapse
|
43
|
Mu X, Pridgeon JW, Klesius PH. Comparative transcriptional analysis reveals distinct expression patterns of channel catfish genes after the first infection and re-infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1566-76. [PMID: 24036330 PMCID: PMC7111657 DOI: 10.1016/j.fsi.2013.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 05/04/2023]
Abstract
To determine whether transcriptional levels of channel catfish (Ictalurus punctatus) genes are differentially regulated between a first infection with Aeromonas hydrophila and a re-infection, suppression subtractive hybridization (SSH) was performed in this study using anterior kidney cDNA after the re-infection as tester. Of the 96 clones isolated from the SSH library, 28 unique expressed sequence tags (ESTs) were obtained, of which eight were confirmed to be slightly but significantly (P < 0.05) more up-regulated by the re-infection at 6 h post infection (hpi). Expression kinetics studies at 3, 6, 12, 24, and 48 hpi revealed that the eight ESTs were significantly (P = 0.016) more up-regulated by the first infection, with a major peak at 3 hpi. A total of 96 genes reported in literature to be up-regulated by bacterial infections were selected and subjected to expression analysis at 3 hpi. Of the 96 selected genes, 19 were found to be significantly (P < 0.05) induced by A. hydrophila after the first infection and the re-infection. The 19 genes belonged to the following five main categories: 1) toll-like receptor (TLR2, TLR3, TLR5, TLR21); 2) antimicrobial peptide (NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, cathepsin D, transferrin, hepcidin); 3) cytokine or chemokine (interleukin-1β, interleukin-10, tumor necrosis factor α, chemokine CXCL-10); 4) signaling proteins (cadherin EGF LAG seven-pass G-type receptor 1, very large inducible GTPase 1, arginine deiminase type 2, lymphokine-activated killer T-cell originated protein kinase); 5) lysozyme (lysozyme c). Overall, the total 27 genes (8 ESTs plus the 19 selected genes) were significantly (P < 0.001) more induced by the first infection. Peaked expression of lysozyme c and serum lysozyme activity after the first infection were seen at 24 hpi, whereas that after the re-infection were seen at 12 hpi, suggesting that both innate and adaptive immunity were involved in the defense against the re-infection of A. hydrophila.
Collapse
|
44
|
Behera T, Swain P. Alginate-chitosan-PLGA composite microspheres induce both innate and adaptive immune response through parenteral immunization in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:785-791. [PMID: 23823131 DOI: 10.1016/j.fsi.2013.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Alginate-chitosan-PLGA composite microspheres encapsulating outer membrane protein antigen of Aeromonas hydrophila as an antigen carrier was explored for the first time in a fish model. This composite microsphere showed distinct advantages over the conventional PLGA microparticles in aspects of the high encapsulation efficiency due to the protein-friendly microenvironment created by the hydrophilic alginate-chitosan cores of the composite microspheres, preventing initial burst release and the elimination of lyophilizing process. The antibody responses significantly increased and persist up to 9 weeks in composite microspheres unlike that PLGA microsphere, native OMP and FIA adjuvant. Moreover, several innate immune parameters as respiratory burst, lysozyme and complement activity were significantly increased in both composite and PLGA microspheres up to 9 weeks than other treated groups. It also gives protection from A. hydrophila infection and brought some hope, for its application in replacement with conventional PLGA microparticle for antigen delivery in fish.
Collapse
Affiliation(s)
- Truptimayee Behera
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, Orissa, India
| | | |
Collapse
|
45
|
Singh V, Chaudhary DK, Mani I, Jain R, Mishra BN. Development of diagnostic and vaccine markers through cloning, expression, and regulation of putative virulence-protein-encoding genes of Aeromonas hydrophila. J Microbiol 2013; 51:275-82. [DOI: 10.1007/s12275-013-2437-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/14/2012] [Indexed: 10/26/2022]
|
46
|
Wang N, Yang Z, Zang M, Liu Y, Lu C. Identification of Omp38 by immunoproteomic analysis and evaluation as a potential vaccine antigen against Aeromonas hydrophila in Chinese breams. FISH & SHELLFISH IMMUNOLOGY 2013; 34:74-81. [PMID: 23063539 DOI: 10.1016/j.fsi.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
Aeromonas hydrophila is a fish pathogen causing systemic infections in aquatic environments, and determining its antigenic proteins is important for vaccine development to reduce economic losses in aquaculture worldwide. Here, an immunoproteomic approach was used to identify immunogenic outer membrane proteins (OMPs) of the Chinese vaccine strain J-1 using convalescent sera from Chinese breams. Seven unique immunogenic proteins were identified by two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF-MS). One protein of interest, Omp38, was expressed, and its immunogenicity and protective efficacy were evaluated in Chinese breams. The two groups of fish immunized with the inactivated vaccine and recombinant Omp38 protein showed significant serum IgM antibody levels after vaccination, compared with the fish injected with PBS buffer. In addition, the superoxide dismutase (SOD) activity, lysozyme (LSZ) activity and phagocytosis activity of head kidney lymphocytes of immunized groups were significantly higher than those of the control. The fish receiving inactivated vaccine and recombinant Omp38 protein developed a protective response to a live A. hydrophila challenge 45 days post-immunization, as demonstrated by increased survival of vaccinated fish over the control and by decreased histological alterations in vaccinated fish. Furthermore, protective effect was better in Omp38 group than in the inactivated vaccine group. These results suggest that the recombinant Omp38 protein could effectively stimulate both specific and non-specific immune responses and protect against A. hydrophila infection. Therefore, Omp38 may be developed as a potential vaccine candidate against A. hydrophila infection.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
47
|
Wu L, Jiang YN, Tang Q, Lin HX, Lu CP, Yao HC. Development of an Aeromonas hydrophila recombinant extracellular protease vaccine. Microb Pathog 2012; 53:183-8. [DOI: 10.1016/j.micpath.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
48
|
Maiti B, Shetty M, Shekar M, Karunasagar I, Karunasagar I. Evaluation of two outer membrane proteins, Aha1 and OmpW of Aeromonas hydrophila as vaccine candidate for common carp. Vet Immunol Immunopathol 2012; 149:298-301. [PMID: 22917476 DOI: 10.1016/j.vetimm.2012.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/30/2012] [Indexed: 11/30/2022]
Abstract
Aeromonas hydrophila is an important fish pathogen responsible for huge economic losses in aquaculture sector. The bacterial outer membrane proteins (OMPs), especially adhesins play a key role in the virulence of the bacteria and are considered potential vaccine candidates. We evaluated the immunogenicity of two important outer membrane proteins namely Aha1 and OmpW of A. hydrophila. These proteins were over-expressed in Escherichia coli, purified and used for the vaccination of common carp. Sequence analysis predicted that, Aha1 and OmpW are adhesins and antigenic. Common carp immunized with recombinant Aha1 and OmpW proteins showed significant antibody production and a relative percentage survival of 52 and 71 respectively indicating their protective efficacy against A. hydrophila infection.
Collapse
Affiliation(s)
- Biswajit Maiti
- UNESCO-MIRCEN for Marine Biotechnology, Department of Fishery Microbiology, Karnataka Veterinary, Animal & Fisheries Sciences University, College of Fisheries, Mangalore 575002, India
| | | | | | | | | |
Collapse
|
49
|
Xu XY, Shen YB, Fu JJ, Liu F, Guo SZ, Yang XM, Li JL. Matrix metalloproteinase 2 of grass carp Ctenopharyngodon idella (CiMMP2) is involved in the immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2012; 33:251-257. [PMID: 22626808 DOI: 10.1016/j.fsi.2012.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
The gene encoding matrix metalloproteinase 2 (MMP2) was cloned from grass carp (Ctenopharyngodon idella), and its expression levels during Aeromonas hydrophila infection and embryonic development stages were evaluated. The complete open reading frame of CiMMP2 was 1974 bp in length, encoding a 658-amino acid polypeptide. The deduced MMP2 protein contained four conserved domain structures, including an N-terminal signal sequence, a propeptide domain, three repeats of fibronectin-type II domain inserted in the catalytic domain and a C-terminal hemopexin-like domain. Phylogenetic analysis of MMP2s grouped grass carp with other teleosts. Detected in all fish tissues examined, CiMMP2 expression increased in the spleen and head kidney at 4 h and was significantly downregulated at 1 d after A. hydrophila infection. CiMMP2 transcripts were present in unfertilized eggs, suggesting its maternal origin. These findings implicate an important role for CiMMP2 in A. hydrophila-related diseases and early embryonic developmental stages of grass carp.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Key Laboratory of Freshwater Fisheries Genetic Resources Certificated by Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Mu X, Pridgeon JW, Klesius PH. Transcriptional profiles of multiple genes in the anterior kidney of channel catfish vaccinated with an attenuated Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1162-1172. [PMID: 22019831 DOI: 10.1016/j.fsi.2011.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
A total of 22 uniquely expressed sequence tags (ESTs) were identified from channel catfish anterior kidney subtractive cDNA library at 12 h post vaccination with an attenuated Aeromonas hydrophila (AL09-71 N+R). Of the 22 ESTs, six were confirmed to be significantly (P < 0.05) induced by the vaccination. Of 88 channel catfish genes selected from literature, 14 were found to be significantly (P < 0.05) upregulated by the vaccination. The transcriptional levels of the total 20 genes induced by the vaccination were then compared to that induced by the virulent parent A. hydrophila (AL09-71) at different time points. At 3 h post vaccination (hpv) or infection (hpi), Na(+)/K(+) ATPase α subunit was upregulated the most. At 6 and 12 hpv or hpi, hepcidin and interleukin-1β were induced the highest. At 24 hpv or hpi, hepcidin was upregulated the most, followed by lysozyme c. At 48 hpi, lysozyme c and hepcidin were significantly induced. When vaccinated fish were challenged by AL09-71, relative percent of survival of vaccinated fish were 100% at 14 days post vaccination (dpv). Transcriptional levels of toll-like receptor 5 and hepcidin were significantly upregulated in vaccinated fish at 14 dpv. Taken together, our results suggest that vaccination with attenuated A. hydrophila mimics infection by live bacteria, inducing multiple immune genes in channel catfish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| | | | | |
Collapse
|