1
|
Thongsoi R, Maskaew S, Puechpon P, Noppradit B, Inaek N, Utarabhand P, Runsaeng P. Identification of an essential role against shrimp pathogens of prophenoloxidase activating enzyme 1 (PPAE1) from Fenneropenaeus merguiensis hemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105088. [PMID: 37923098 DOI: 10.1016/j.dci.2023.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Prophenoloxidase (proPO) activating enzymes, known as PPAEs, are pivotal in activating the proPO system within invertebrate immunity. A cDNA encoding a PPAE derived from the hemocytes of banana shrimp, Fenneropenaeus merguiensis have cloned and analyzed, referred to as FmPPAE1. The open reading frame of FmPPAE1 encompasses 1392 base pairs, encoding a 464-amino acid peptide featuring a presumed 19-amino acid signal peptide. The projected molecular mass and isoelectric point of this protein stand at 50.5 kDa and 7.82, respectively. Structure of FmPPAE1 consists of an N-terminal clip domain and a C-terminal serine proteinase domain, housing a catalytic triad (His272, Asp321, Ser414) and a substrate binding site (Asp408, Ser435, Gly437). Expression of the FmPPAE1 transcript is specific to hemocytes and is heightened upon encountering pathogens like Vibrio parahaemolyticus, Vibrio harveyi, and white spot syndrome virus (WSSV). Using RNA interference to silence the FmPPAE1 gene resulted in reduced hemolymph phenoloxidase (PO) activity and decreased survival rates in shrimp co-injected with pathogenic agents. These findings strongly indicate that FmPPAE1 plays a vital role in regulating the proPO system in shrimp. Furthermore, upon successful production of recombinant FmPPAE1 protein (rFmPPAE1), it became evident that this protein exhibited remarkable abilities in both agglutinating and binding to a wide range of bacterial strains. These interactions were primarily facilitated through the recognition of bacterial lipopolysaccharides (LPS) or peptidoglycans (PGN) found in the cell wall. This agglutination process subsequently triggered melanization, a critical immune response. Furthermore, rFmPPAE1 exhibited the ability to actively impede the growth of pathogenic bacteria harmful to shrimp, including V. harveyi and V. parahaemolyticus. These findings strongly suggest that FmPPAE1 not only plays a pivotal role in activating the proPO system but also possesses inherent antibacterial properties, actively contributing to the suppression of bacterial proliferation. In summary, these results underscore the substantial involvement of FmPPAE1 in activating the proPO system in F. merguiensis and emphasize its crucial role in the shrimp's immune defense against invading pathogens.
Collapse
Affiliation(s)
- Ratiporn Thongsoi
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Siriluk Maskaew
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Panumas Puechpon
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Benjaporn Noppradit
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Napassawan Inaek
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prapaporn Utarabhand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
2
|
Jatuyosporn T, Laohawutthichai P, Romo JPO, Gallardo-Becerra L, Lopez FS, Tassanakajon A, Ochoa-Leyva A, Krusong K. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon. Sci Rep 2023; 13:996. [PMID: 36653369 PMCID: PMC9849358 DOI: 10.1038/s41598-023-27906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The gut microbiome plays an essential role in the immune system of invertebrates and vertebrates. Pre and pro-biotics could enhance the shrimp immune system by increasing the phenoloxidase (PO), prophenoloxidase (ProPO), and superoxide dismutase activities. During viral infection, the host immune system alteration could influence the gut microbiome composition and probably lead to other pathogenic infections. Since the JAK/STAT pathway is involved in white spot syndrome virus (WSSV) infection, we investigated the intestine immune genes of STAT-silenced shrimp. During WSSV infection, expression levels of PmVago1, PmDoral, and PmSpätzle in PmSTAT-silenced shrimp were higher than normal. In addition, the transcription levels of antimicrobial peptides, including crustinPm1, crustinPm7, and PmPEN3, were higher in WSSV-challenged PmSTAT-silenced shrimp than the WSSV-infected normal shrimp. Meanwhile, PmSTAT silencing suppressed PmProPO1, PmProPO2, and PmPPAE1 expressions during WSSV infection. The microbiota from four shrimp tested groups (control group, WSSV-infected, PmSTAT-silenced, and PmSTAT-silenced infected by WSSV) was significantly different, with decreasing richness and diversity due to WSSV infection. The relative abundance of Bacteroidetes, Actinobacteria, and Planctomycetes was reduced in WSSV-challenged shrimp. However, at the species level, P. damselae, a pathogen to human and marine animals, significantly increased in WSSV-challenged shrimp. In constrast, Shewanella algae, a shrimp probiotic, was decreased in WSSV groups. In addition, the microbiota structure between control and PmSTAT-silenced shrimp was significantly different, suggesting the importance of STAT to maintain the homeostasis interaction with the microbiota.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juan Pablo Ochoa Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Filiberto Sánchez Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Zhu K, Yang F, Li F. Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104407. [PMID: 35364134 DOI: 10.1016/j.dci.2022.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Semigranular cells (SGCs) and granular cells (GCs) are two dominant groups of circulating hemocytes in crayfish Cherax quadricarinatus. Molecular markers are required for the clear classification of the hemocytes and the research of their function and differentiation. In this study, we compared the protein content of GCs and SGCs by using two workflows: one-dimensional gel electrophoresis followed by LC-MS/MS and in-solution digestion of cell lysate followed by LC-MS/MS. Cell type-specific proteins were identified, and their expression in SGCs and GCs was further investigated by RT-PCR, Western blotting, and immunofluorescence analysis. Three molecular markers for GCs (peroxinectin, a mannose-binding protein, and prophenoloxidase-activating enzyme 2a) and three molecular markers for SGCs (a vitelline membrane outer layer protein I-like protein, a C-type lectin, and a peptidase) were identified. The application of some of the markers in Eriocheir sinensis was also analyzed. These molecular markers are useful tools for the research of crustaceans hemocytes.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
4
|
Wang C, Wei M, Wu G, He L, Zhu J, Juventus Aweya J, Chen X, Zhao Y, Zhang Y, Yao D. Proteomics analysis reveals a critical role for the WSSV immediate-early protein IE1 in modulating the host prophenoloxidase system. Virulence 2022; 13:936-948. [PMID: 35582758 PMCID: PMC9154788 DOI: 10.1080/21505594.2022.2078471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
White spot syndrome virus (WSSV) is a large enveloped double-stranded DNA virus that is a major impediment for shrimp aquaculture worldwide. So far, the mechanisms of WSSV-host interactions are ill-defined. Recent studies have revealed that IE1, an immediate-early protein encoded by WSSV, is a multifunctional modulator implicated in virus-host interactions. In this study, the biological functions of IE1 were further explored by identifying its interacting proteins using GST-pull down and mass spectrometry analysis. A total of 361 host proteins that potentially bind to IE1 were identified. Bioinformatics analysis revealed that the identified IE1-interacting proteins were key molecules involved in various signaling pathways such as prophenoloxidase (proPO) system, PI3K-AKT, MAPK, Focal adhesion, and cell cycle. Among these, the regulatory role of IE1 in the shrimp proPO system was further studied. The Co-immunoprecipitation (Co-IP) results confirmed that IE1 interacted with the Ig-like domain of Penaeus vannamei proPO or proPO-like proteins (proPO1/2 and hemocyanin). In addition, we found that in vivo RNAi mediated knockdown of IE1 reduced the viral genes expression and viral loads, as well as caused an increase in the PO activity of hemocytes during infection, whereas recombinant IE1 protein could inhibit the PO activity in a dose-dependent manner. Finally, our result demonstrated that WSSV could suppress the PO activity of hemocytes at the early infection stage. Collectively, our current data indicate that IE1 is a novel viral regulator that negatively modulates the shrimp proPO system, which provide additional insights into the biological functions of IE1 during WSSV infection.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Menghao Wei
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Gaochun Wu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Lixuan He
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
5
|
Li Y, Han Z, Xu W, Li X, Zhao Y, Wei H, Li X, Chen Q. Antioxidant and immune responses of the Oriental river prawn Macrobrachium nipponense to the isopod parasite Tachaea chinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 101:78-87. [PMID: 32209399 DOI: 10.1016/j.fsi.2020.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Tachaea chinensis is a parasitic isopod that negatively affects the production of several commercially important shrimp species in China. To date, there have been no reports on the antioxidant and immune responses of host shrimps to isopod parasite infection or their underlying molecular mechanisms. In this study, we examined the specific activities of the immune and antioxidant enzymes of the shrimp Macrobrachium nipponense during the course of a 15-day isopod infection and evaluated expression of related genes. Acid phosphatase (ACP) and alkaline phosphatase (AKP) activities and malondialdehyde (MDA) levels showed significant peaks over 15 days of exposure in both the hepatopancreas and muscle (P < 0.05), whereas catalase (CAT) activity increased continuously during infection (P < 0.05), and lysozyme (LZM) activity increased only in the hepatopancreas (P < 0.05). After 6 days of exposure, expressions of glutathione S-transferase (GST), ACP, and AKP were significantly higher than at 12 days. Compared with the control group, at 12 days, S-(hydroxymethyl) glutathione dehydrogenase activity and glutathione metabolism pathways were significantly inhibited (P < 0.05). Furthermore, the NOD-like receptor signaling pathway and antigen processing and presentation pathways were also significantly inhibited at 12 days compared with that at 6 days (P < 0.05), indicating that T. chinensis parasitism could perturb the antioxidant and immune systems of shrimp hosts during the latter stages of infection. Additionally, the molting and mortality rates of M. nipponense increased the duration of parasitism. These findings indicate that M. nipponense can activate antioxidant and immune defense systems during the early period during isopod parasitism, whereas the parasite can negatively affect these host defense systems during the latter period. Our findings accordingly provide valuable insights into the antioxidant defense systems and immune function characterizing parasite-host interactions.
Collapse
Affiliation(s)
- Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zhibin Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Weibin Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Xin Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingying Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Hua Wei
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
6
|
Wang W, Luo P, Pan C, Wang Q, Yuan H, Liu J, Jin C, Chen J, Wu W. LvPPAE2 induced by WSV056 confers host defense against WSSV in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 96:319-329. [PMID: 31805414 DOI: 10.1016/j.fsi.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Viral immediate early (IE) genes encode regulatory proteins that are critical for viral replication. WSV056 is an IE protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. It targets the host Rb protein(s) and, according to a previous study, may enhance the replication of the viral genome. However, the ectopic expression of WSV056 in transgenic Drosophila melanogaster exerted an inhibitory effect on the replication of Drosophila C virus (DCV). Transcriptome study using Affymetrix GeneChip suggested that the enrichment of serine proteases (SPs) likely accounts for DCV inhibition in WSV056-overexpressing Drosophila. Injection of recombinant WSV056 to the WSSV natural host Litopenaeus vannamei enhanced the expression of the SP family member prophenoloxidase-activating enzyme 2 (LvPPAE2) and conferred shrimp with more resistance to WSSV infection. LvPPAE2 knockdown contributed to decreased expression of antimicrobial peptides LvAlf1 and LvLyz1, reduced hemolymph phenoloxidase activity, and increased virus load, suggesting that LvPPAE2 is involved in the host defense against WSSV infection. Taken together, these results suggest that wsv056 plays a role in restricting viral replication by inducing the SP-mediated immune responses in the host.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Changkun Pan
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qingbai Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Huifang Yuan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jieping Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Chunying Jin
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361000, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
7
|
Wei Z, Sun W, Tran NT, Gong Y, Ma H, Zheng H, Zhang Y, Li S. Two novel serine proteases from Scylla paramamosain involved in the synthesis of anti-lipopolysaccharide factors and activation of prophenoloxidase system. FISH & SHELLFISH IMMUNOLOGY 2019; 84:322-332. [PMID: 30300737 DOI: 10.1016/j.fsi.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Serine proteases (SPs) are important in various immune responses, including prophenoloxidase (proPO) activation, antimicrobial peptides (AMPs) synthesis, and hemolymph coagulation in invertebrates. In this study, SP3 and SP5 of mud crab (Scylla paramamosain) were studied. SP3 and SP5 were expressed in all examined tissues (mainly in hemocytes), and are associated with the immune responses of mud crab to Vibrio parahemolyticus and Staphylococcus aureus, as well as interacted with TRAF6, and are involved in the activation of anti-lipopolysaccharide factors (ALFs) probably through the TLR/NF-κB pathway. Depletion of SP3 inhibited the expression of ALF1, ALF2, ALF3, and ALF6, while knockdown of SP5 significantly decreased ALF5, and ALF6. Furthermore, both SP5 and TRAF6 regulated the PO activity in the hemolymph of mud crab. Overexpression assay showed that both SP3 and SP5 could enhance the promoter activities of ALFs in mud crab. Taken together, the results of this study indicate that SP3 and SP5 might play important roles in the immune system of mud crab against pathogen invasion.
Collapse
Affiliation(s)
- Zibo Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Wanwei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Qian Y, Yang S, Ye JX, Xie J. Effect of quercetin-containing preservatives and modified atmospheric packaging on the production of biogenic amines in Pacific white shrimp (Litopenaeus vannamei). AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Koiwai K, Kondo H, Hirono I. RNA-seq identifies integrin alpha of kuruma shrimp Marsupenaeus japonicus as a candidate molecular marker for phagocytic hemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:271-278. [PMID: 29258750 DOI: 10.1016/j.dci.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Phagocytosis is main cellular immunity, however, it is still unknown or debated upon which types of hemocyte contributes phagocytosis in penaeid shrimps. The hemocyte characterization in kuruma shrimp have been mainly performed based on its morphology by microscopic observation. Therefore, establishment of molecular markers to distinguish phagocytic hemocytes is required. In this study, using magnetic fluorescent beads, we enriched phagocytic hemocytes and conducted RNA-seq analysis between total and enriched phagocytic hemocytes. The data demonstrated functional difference between total and phagocytic hemocytes. In addition, a transcript homologous to integrin-alpha was highly expressed in phagocytic hemocytes, and named Mj-Intgα. Using anti-serum against Mj-Intgα revealed that around 60% of total hemocytes and more than 90% of phagocytic hemocytes showed positive for Mj-Intgα. This study presents Mj-Intgα as a candidate molecular marker for future functional characterization of hemocytes.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
10
|
Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:81-93. [PMID: 28501515 DOI: 10.1016/j.dci.2017.05.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Sureerat Tang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
11
|
Zhang M, Qiao G, Li Q, Xu DH, Qi Z, Wang A, Xu M, Huang J. Transcriptome analysis and discovery of genes involved in immune pathways from coelomocytes of Onchidium struma after bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 72:528-543. [PMID: 29155030 DOI: 10.1016/j.fsi.2017.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Onchidium struma widely distributes in subtidal and low-tidal zones, which is considered to be an economical species with rich nutrition, a valuable biomonitor for heavy metal pollution and a representative species for evolution from ocean to land. However, there is limited genetic information available for O. struma development. This study compared transcriptomic profiles of coelomocytes from normal and bacteria infected O. struma by Illumina-based paired-end sequencing to explore the molecular immune mechanism of O. struma against bacterial infection. After assembly, a total of 92,450 unigenes with an average length of 1019 bp were obtained. Approximately 34,964 (37.82%) unigenes were annotated in the Nr NCBI database and 40.1% of unigenes were similar with that of Aplysia californica. Among them, 7609 unigenes were classified into three Gene Ontology (GO) categories: biological process (3250 unigenes, 42.7%), cellular component (2,281, 30.0%) and molecular function (2078 unigenes, 27.3%). A total of 22,776 unigenes were aligned to the Clusters of Orthologous Groups (COG) of proteins and classified into 25 functional categories. Following bacterial infection, 10,623 differently expressed unigenes (DEGs) were identified, including 7644 up-regulated and 2979 down-regulated unigenes. Further KEGG analysis annotated 11,681 DEGs to 42 pathways, and 11 pathways were identified to be related with diseases and immune system. To our knowledge, it was first time to analyze transcriptome profiles of O. struma. Results of the present study will provide valuable theoretical resources for future genetic and genomic research on O. struma. The research results will be helpful for improving the efficiency and quality of artificial breeding, establishing genetic linkage map, and enhancing health management for this species.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China; School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Guo Qiao
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China.
| | - Qiang Li
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832, USA
| | - Zhitao Qi
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Aiming Wang
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Mengyao Xu
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Jintian Huang
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China.
| |
Collapse
|
12
|
Sangsuriya P, Charoensapsri W, Chomwong S, Senapin S, Tassanakajon A, Amparyup P. A shrimp pacifastin light chain-like inhibitor: molecular identification and role in the control of the prophenoloxidase system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:32-45. [PMID: 26271600 DOI: 10.1016/j.dci.2015.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Pacifastin is a recently classified family of serine proteinase inhibitors that play essential roles in various biological processes, including in the regulation of the melanization cascade. Here, a novel pacifastin-related gene, termed PmPacifastin-like, was identified from a reverse suppression subtractive hybridization (SSH) cDNA library created from hemocytes of the prophenoloxidase PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon. The full-length sequences of PmPacifastin-like and its homologue LvPacifastin-like from the Pacific white shrimp Litopenaeus vannamei were determined. Sequence analysis revealed that both sequences contained thirteen conserved pacifastin light chain domains (PLDs), followed by two putative kunitz domains. Expression analysis demonstrated that the PmPacifastin-like transcript was expressed in all tested shrimp tissues and larval developmental stages, and its expression responded to Vibrio harveyi challenge. To gain insight into the functional roles of PmPacifastin-like protein, the in vivo RNA interference experiment was employed; the results showed that PmPacifastin-like depletion strongly increased PO activity. Interestingly, suppression of PmPacifastin-like also down-regulated the expression of the proPO-activating enzyme PmPPAE2 transcript; the PmPacifastin-like transcript was down-regulated after the PmproPO1/2 transcripts were silenced. Taken together, these results suggest that PmPacifastin-like is important in the shrimp proPO system and may play an essential role in shrimp immune defense against bacterial infection. These results also expand the knowledge of how pacifastin-related protein participates in the negative regulation of the proPO system in shrimp.
Collapse
Affiliation(s)
- Pakkakul Sangsuriya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Sudarat Chomwong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; Program of Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
13
|
Transcriptomic Analysis of Musca domestica to Reveal Key Genes of the Prophenoloxidase-Activating System. G3-GENES GENOMES GENETICS 2015; 5:1827-41. [PMID: 26156588 PMCID: PMC4555219 DOI: 10.1534/g3.115.016899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The proPO system regulates melanization in arthropods. However, the genes that are involved in the proPO system in housefly Musca domestica remain unclear. Thus, this study analyzed the combined transcriptome obtained from M. domestica larvae, pupae, and adults that were either normal or bacteria-challenged by an Escherichia coli and Staphylococcus aureus mixture. A total of 54,821,138 clean reads (4.93 Gb) were yielded by Illumina sequencing, which were de novo assembled into 89,842 unigenes. Of the 89,842 unigenes, based on a similarity search with known genes in other insects, 24 putative genes related to the proPO system were identified. Eight of the identified genes encoded for peptidoglycan recognition receptors, two encoded for prophenoloxidases, three encoded for prophenoloxidase-activating enzymes, and 11 encoded for serine proteinase inhibitors. The expression levels of these identified genes were investigated by qRT-PCR assay, which were consistent with expected activation process of the proPO system, and their activation functions were confirmed by the measurement of phenoloxidase activity in bacteria-infected larvae after proPO antibody blockage, suggesting these candidate genes might have potentially different roles in the activation of proPO system. Collectively, this study has provided the comprehensive transcriptomic data of an insect and some fundamental basis toward achieving understanding of the activation mechanisms and immune functions of the proPO system in M. domestica.
Collapse
|
14
|
Qiao G, Xu DH, Wang Z, Jang IK, Qi Z, Zhang M, Kim SK. Comparison of immune response of Pacific white shrimp, Litopenaeus vannamei, after multiple and single infections with WSSV and Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2015; 44:257-264. [PMID: 25700782 DOI: 10.1016/j.fsi.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Our previous study demonstrated that Pacific white shrimp (Litopenaeus vannamei) infected by multiple pathogens showed higher mortality and death occurred more quickly than those infected by a single pathogen (Jang et al., 2014). For better understanding the defense mechanism against white spot syndrome virus (WSSV) and Vibrio anguillarum, immune responses of shrimp were evaluated in this study. The mRNA expression levels of five immune-related genes were analyzed by quantitative reverse real-time PCR, which included proPO-activating enzyme 1 (PPAE1), PPAE2, proPO activating factor (PPAF), masquerade-like serine proteinase (Mas) and ras-related nuclear gene (Ran). Results demonstrated that the transcription was suppressed more intensively in the multiple infection group than those in single infection groups. The transcriptional suppression was directly related to the higher mortality. The hypoimmunity could benefit pathogen invasion, replication and release of toxin in vivo. Results in this study will help to understand immune defense mechanism after shrimp were infected by multiple pathogens in aquaculture.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832, USA
| | - Zishen Wang
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - In-Kwon Jang
- West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 400-420, Republic of Korea
| | - Zhitao Qi
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Mingming Zhang
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Su-Kyoung Kim
- West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 400-420, Republic of Korea.
| |
Collapse
|