1
|
Thwaite R, Benseny-Cases N, Rojas-Peña M, Chico V, Carreras M, Puente-Marin S, Villaverde A, Perez L, Ortega-Villaizan MDM, Sabés M, Roher N. Functional studies and synchrotron FTIR biochemical signatures reveal the potential of protein nanoparticles as a VHS virus vaccine. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110202. [PMID: 39961458 DOI: 10.1016/j.fsi.2025.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
As an innovative strategy towards new biomaterials for fish vaccine development, we have generated the C-terminal half of the viral haemorrhagic septicaemia virus (VHSV) G protein as nanostructured bacterial inclusion bodies (IBs). IBs offer a slow release of biologically active, native and native-like proteins from a protective scaffold based on a nontoxic amyloid network. These nanoscale materials are an attractive type of vaccine design for aquaculture, being cheap, scalable and stable in vivo without the need for encapsulation, unlike soluble proteins. The bacterial remnants carried in IBs, such as lipopolysaccharide, are safe for fish and act as immunostimulants. Here we tested VHSV-G fragment-based protein nanoparticles in a range of scenarios to ascertain cellular uptake, metabolic changes and immunogenicity. Trout (Oncorhynchus mykiss) macrophages, in the first line of defence against infections, uptake the particles, resulting in impacts on global cell biochemical signatures measured by synchrotron FTIR. These changes were similar to those observed using inactivated VHSV virus. In a trout VHSV infection model, fish immunized with the developed nanoparticles raised specific anti-VHSV IgM antibodies, detected by ELISA. Among these, neutralizing antibodies were present, shown by a viral neutralization assay in Epithelioma Papulosum Cyprini (EPC) carp cell line. Further, the anti-VHSV IgM antibody titre increased significantly in the vaccinated group post VHSV infection, compared to sham-vaccinated fish. We therefore show that viral proteins, nanostructured as IBs, can elicit specific, functional anti-viral antibodies in fish and also can mimic in vitro the metabolic signatures associated to viral stimuli. All together, these data demonstrate the potential of this strategy for vaccine development.
Collapse
Affiliation(s)
- Rosemary Thwaite
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès), 08193, Spain
| | - Núria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Mauricio Rojas-Peña
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès), 08193, Spain
| | - Verónica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Maria Carreras
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès), 08193, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Antonio Villaverde
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193, Spain; Department of Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Manel Sabés
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès), 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
2
|
Tharshan Jeyakanesh J, Nadarajapillai K, Tharanga EMT, Park C, Jo Y, Jeong T, Wan Q, Lee J. Amphiprion clarkii DDX41 modulates fish immune responses: Characterization by expression profiling, antiviral assay, and macrophage polarization analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109365. [PMID: 38199263 DOI: 10.1016/j.fsi.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.
Collapse
Affiliation(s)
- Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cheonguk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuhwan Jo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
3
|
Puente-Marin S, Cazorla D, Chico V, Coll J, Ortega-Villaizan M. Innate immune response of rainbow trout erythrocytes to spinycterins expressing a downsized viral fragment of viral haemorrhagic septicaemia virus. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2023; 568:739303. [PMID: 38533126 PMCID: PMC10961846 DOI: 10.1016/j.aquaculture.2023.739303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 03/28/2024]
Abstract
Recent studies have reported on the importance of RBCs in fish responses to viral infections and DNA vaccines. Surface-displaying recombinant bacterins (spinycterins) are a safe and adaptable prototype for viral vaccination of fish and represent an alternative method of aquaculture prophylaxis, since have been reported to enhance fish immune response. We evaluated the innate immune response of rainbow trout (Oncorhynchus mykiss) red blood cells (RBCs), head kidney, and spleen to spinycterins expressing a fragment of the glycoprotein G of viral haemorrhagic septicemia virus (VHSV), one of the most devastating world-wide diseases in farmed salmonids. We first selected an immunorelevant downsized viral fragment of VHSV glycoprotein G (frg16252-450). Then, spinycterins expressing frg16252-450 fused to Nmistic anchor-motif (Nmistic+frg16252-450) were compared to spinycterins expressing frg16252-450 internally without the anchor motif. Nmistic+frg16252-450 spinycterins showed increased attachment to RBCs in vitro and modulated the expression of interferon- and antigen presentation-related genes in RBCs in vitro and in vivo, after intravenous injection. In contrast, the head kidney and spleen of fish injected with frg16252-450, but not Nmistic+frg16252-450, spinycterins demonstrated upregulation of interferon and antigen-presenting genes. Intravenous injection of Nmistic+frg16252-450 spinycterins resulted in a higher innate immune response in RBCs while frg16252-450 spinycterins increased the immune response in head kidney and spleen. Although more studies are required to evaluate the practicality of using spinycterins as fish viral vaccines, these results highlight the important contribution of RBCs to the fish innate immune response to antiviral prophylactics.
Collapse
Affiliation(s)
- S. Puente-Marin
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - D. Cazorla
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - V. Chico
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - J. Coll
- Instituto Nacional de Investigación y Tecnología Agrarias y Alimentarias, Dpto. Biotecnología. INIA, crt.Coruña km 7, 20040 Madrid, Spain
| | - M. Ortega-Villaizan
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| |
Collapse
|
4
|
Zhao Z, Jiang FY, Zhou GQ, Duan HX, Xia JY, Zhu B. Protective immunity against spring viremia of carp virus by mannose modified chitosan loaded DNA vaccine. Virus Res 2022; 320:198896. [PMID: 35977626 DOI: 10.1016/j.virusres.2022.198896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022]
Abstract
Spring viremia of carp virus (SVCV) usually be considered as one of the serious in viral diseases of aquaculture, and DNA vaccine with novel delivery mechanism or adjuvant has proven to be a promising and effective strategy to control aquatic animal diseases. In this study, the mannose-modified chitosan, a carrier system for vaccine delivery, were used to developed a chitosan-encapsulated DNA vaccine (CS-M-G) against SVCV, then investigated immune response induced by the vaccine. Our results showed that CS-M-G was confirmed the spherical or elliptical with even distribution and ranging from approximately 50 to 150 nm in size, the expression of the antigen gene could still be detected after 21 d post vaccination. The CS-M-G induces the highest antibody levels in the 20 μg dose group which is about 3 times than naked plasmid group at 21 d post vaccination, and still hold a higher level than control group at 28 d post vaccination. On the side, strongest protection with relative percent survival of 62.1% in the 20 μg CS-M-G group, which could produce significantly higher enzyme activities and up-regulated expression of immune-associated genes than control group. Thus, our results indicate that DNA vaccine loaded with mannose-modified chitosan induces strong immune response and provided an effective protection against SVCV infection, may be helpful and extended for developing more aquatic animal vaccines in the future.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hui-Xin Duan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Kim JY, Kim HJ, Park JS, Kwon SR. DNA vaccine dual-expressing viral hemorrhagic septicemia virus glycoprotein and C-C motif chemokine ligand 19 induces the expression of immune-related genes in zebrafish (Danio rerio). JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:1032-1038. [PMID: 35913595 DOI: 10.1007/s12275-022-2231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
Glycoprotein (G protein)-based DNA vaccines are effective in protecting aquaculture fish from rhabdoviruses but the degree of immune response they elicit depends on plasmid concentration and antigen cassette. Here, we developed a DNA vaccine using the viral hemorrhagic septicemia virus G (VG) gene and chemokine (C-C motif) ligand 19 (CCL19)a.2 regulated by the CMV promoter as the molecular adjuvant. After transfection of the prepared plasmid (pVG + CCL19) into epithelioma papulosum cyprini cells, mRNA expression was confirmed through quantitative real-time polymerase chain reaction. The vaccine was intramuscularly injected into zebrafish (Danio rerio), and 28 days after immunization, viral hemorrhagic septicemia virus (105 TCID50/10 µl/fish) was intraperitoneally injected. A survival rate of 68% was observed in the pVG + CCL19 group but this was not significantly different from the survival rate of fish treated with pVG alone, that is, without the adjuvant. However, the expression of interferon- and cytokine-related genes in the spleen and kidney tissues of zebrafish was significantly increased (p < 0.05) on days 1, 3, 7, and 14 after immunization. Thus, CCL19a.2 induced an initial immune response as a molecular adjuvant, which may provide initial protection against virus infection before vaccination-induced antibody formation. This study provides insights on the functions of CCL19a.2 adjuvant in DNA vaccines.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, Korea
| | - Jeong Su Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, Korea
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, Korea.
| |
Collapse
|
6
|
Chang CJ. Immune sensing of DNA and strategies for fish DNA vaccine development. FISH & SHELLFISH IMMUNOLOGY 2020; 101:252-260. [PMID: 32247047 DOI: 10.1016/j.fsi.2020.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
Studies of DNA vaccines have shown that understanding the mechanism of DNA vaccine-mediated action is the key for vaccine development. Current knowledge has shown the presence of antigen presenting cells (APCs) involving in B and T cells at the muscle injection site and the upregulation of type I interferon (IFN-I) that initiates antiviral response and benefits adaptive immunity in fish DNA vaccines. IFN-I may be triggered by expressed antigen such as the rhabdovirus G protein encoded DNA vaccine or by plasmid DNA itself through cytosolic DNA sensing. The investigating of Toll-like receptor 9, and 21 are the CpG-motif sensors in many fish species, and the cytosolic DNA receptors DDX41 and downstream STING signaling revealed the mechanisms for IFN-I production. This review article describes the recent finding of receptors for cytosolic DNA, the STING-TBK1-IRF signaling, and the possibility of turning these findings into strategies for the future development of DNA vaccines.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Gan Z, Cheng J, Hou J, Xia H, Chen W, Xia L, Nie P, Lu Y. Molecular and functional characterization of tilapia DDX41 in IFN regulation. FISH & SHELLFISH IMMUNOLOGY 2020; 99:386-391. [PMID: 32081808 DOI: 10.1016/j.fsi.2020.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
DEAD-box helicase 41 (DDX41) is a key cytosolic DNA sensor playing critical roles in the regulation of type I IFN responses, and their functions have been well-characterized in mammals. However, little information is available regarding the function of fish DDX41. In this study, a DDX41 gene, named On-DDX41, was identified in Nile tilapia, Oreochromis niloticus. The predicted protein of On-DDX41 contains several structural features known in DDX41, including conserved DEADc and HELICc domains, and a conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)". On-DDX41 gene was constitutively expressed in all tissues examined, with the highest expression level observed in liver and muscle, and was inducible after poly(I:C) stimulation. Moreover, the overexpression of On-DDX41 can elicit a strong activation of both zebrafish IFN1 and IFN3 promoter in fish cells treated with poly(dA:dT). The present study thus contributes to a better understanding of the functional properties of DDX41 in fish.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Wenjie Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
8
|
Hu F, Li Y, Wang Q, Wang G, Zhu B, Wang Y, Zeng W, Yin J, Liu C, Bergmann SM, Shi C. Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:810-818. [PMID: 31743761 DOI: 10.1016/j.fsi.2019.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Koi herpesvirus (KHV) also named Cyprinid Herpesvirus 3 (CyHV-3) is one of the most threatening pathogens affecting common carp production as well as the valued ornamental koi carp. The current commercial vaccines available are costly and potentially cause severe stress caused by live virus. KHV ORF149 gene has been proved encoding one of the main immunogenic proteins for KHV. In this study, we coupled a plasmid expression vector for ORF149 to single walled carbon nanotubes (SWCNTs) for an anti-KHV vaccine. The vaccine conferred an 81.9% protection against intraperitoneal challenge with KHV. Importantly, SWCNTs as a promising vehicle can enhanced the protective effects 33.9% over that of the naked DNA vaccine at the same dose. The protection was longer and serum antibody production, enzyme activities and immune-related gene expression were all induced in fish vaccinated with the nanotube-DNA vaccine compared with the DNA alone. Thereby, this study demonstrates that the ORF149 DNA vaccine loaded onto SWCNTs as a novel vaccine might provide an effective method of coping with KHV disease using intra-muscular vaccination.
Collapse
Affiliation(s)
- Feng Hu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Weiwei Zeng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chun Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Sven M Bergmann
- German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| |
Collapse
|
9
|
Lim HJ, Abdellaoui N, Kim KH. Effect of miR-155 as a molecular adjuvant of DNA vaccine against VHSV in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 88:225-230. [PMID: 30822519 DOI: 10.1016/j.fsi.2019.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Rhabdoviral G protein-based DNA vaccines have been recognized as a useful way to protect cultured fish from rhabdoviral diseases. In Korea, viral hemorrhagic septicemia virus (VHSV) genotype IVa has been the primary culprit of high mortalities of cultured olive flounder (Paralichthys olivaceus). In this study, we inserted a miR-155-expressing cassette into the VHSV's G protein-based DNA vaccine, and analyzed the effects of miR-155 on the antiviral activity and on the vaccine efficacy in olive flounder. Olive flounder fingerlings were intramuscularly (i.m.) immunized with 10 μg/fish (1st experiment) or 1 μg/fish (2nd experiment) of DNA vaccine plasmids. However, there were no significant differences in mortalities and serum neutralization titers between fish immunized with 1 μg and 10 μg plasmids/fish, suggesting that i.m. injection with 1 μg plasmids/fish would be enough to induce effective adaptive immune responses in olive flounder fingerlings. In survival rates, as fish immunized with just G protein expressing plasmids showed no or too low mortalities, the adjuvant effect of miR-155 was not discernible. Also, in the serum neutralization activities, although G gene or G gene plus miR-155 expressing DNA vaccines induced significantly higher activities than control vaccines (PBS and vacant vector), no significant differences were found between G gene alone and G gene plus miR-155 expressing DNA vaccines. In the serum virucidal activity, fish immunized with G gene plus miR-155 expressing DNA vaccine showed significantly higher activity against hirame rhabdovirus (HIRRV) at 3 days post-immunization (d.p.i.) compared to other groups, suggesting that miR-155 produced from the vector can enhance innate immune responses in olive flounder. The significantly enhanced serum virucidal activities against VHSV especially at 28 d.p.i. in the groups immunized with G gene alone and G gene plus miR-155 expressing DNA vaccines reflect the increased antibodies against G protein, which could activate the classical complement pathway and subsequent viral inactivation. As the available information on the DNA vaccines in olive flounder is not sufficient, more diverse researches on the protective efficacy of DNA vaccines are needed to make more practical use of DNA vaccines in olive flounder farms.
Collapse
Affiliation(s)
- Hyun Ju Lim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Najib Abdellaoui
- Department of Microbiology, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
10
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
11
|
Collins C, Lorenzen N, Collet B. DNA vaccination for finfish aquaculture. FISH & SHELLFISH IMMUNOLOGY 2019; 85:106-125. [PMID: 30017931 DOI: 10.1016/j.fsi.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
In fish, DNA vaccines have been shown to give very high protection in experimental facilities against a number of viral diseases, particularly diseases caused by rhabdoviruses. However, their efficacy in generating protection against other families of fish viral pathogens is less clear. One DNA vaccine is currently in use commercially in fish farms in Canada and the commercialisation of another was authorised in Europe in 2017. The mechanism of action of DNA vaccines, including the role of the innate immune responses induced shortly after DNA vaccination in the activation of the adaptive immunity providing longer term specific protection, is still not fully understood. In Europe the procedure for the commercialisation of a veterinary DNA vaccine requires the resolution of certain concerns particularly about safety for the host vaccinated fish, the consumer and the environment. Relating to consumer acceptance and particularly environmental safety, a key question is whether a DNA vaccinated fish is considered a Genetically Modified Organism (GMO). In the present opinion paper these key aspects relating to the mechanisms of action, and to the development and the use of DNA vaccines in farmed fish are reviewed and discussed.
Collapse
Affiliation(s)
| | | | - Bertrand Collet
- Marine Scotland, Aberdeen, United Kingdom; Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Zhang C, Zhao Z, Liu GY, Li J, Wang GX, Zhu B. Immune response and protective effect against spring viremia of carp virus induced by intramuscular vaccination with a SWCNTs-DNA vaccine encoding matrix protein. FISH & SHELLFISH IMMUNOLOGY 2018; 79:256-264. [PMID: 29777766 DOI: 10.1016/j.fsi.2018.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
To elicit the immune protective of vaccine against the highly contagious and pathogenic disease caused by spring viremia of carp virus (SVCV), a novel functionalized single-walled carbon nanotubes (SWCNTs) were applied as a delivery vehicle for DNA vaccine. In this study, we report a SWCNTs-DNA vaccine encoding matrix protein of SVCV which, when injected in the muscle at a dose of 10 μg SWCNTs-pcDNA-M vaccine, confers up to 51.3% protection against intraperitoneal challenge with SVCV. In addition, SWCNTs as a promising vehicle can enhance about 17.5% of the immune protective effect in SWCNTs-pcDNA-M vaccinated common carp compared with fish injected with naked pcDNA-M DNA vaccine. In addition, serum antibody production, none specific immunity parameters (complement activity, superoxide dismutase activity (SOD), acid phosphatase activity (ACP) and alkaline phosphatase activity (AKP)) and immune-related genes were used to verify the enhancement immune response induced in SWCNTs-pcDNA-M vaccinated fish, herein all these mentioned immune activities were significantly enhanced after immunization. Thereby, it is revealed that the M gene of SVCV could be used as an antigen for DNA vaccine constructs, and SWCNTs could be a candidate DNA vaccine carrier to enhance the immunological response against fish disease.
Collapse
Affiliation(s)
- Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Yang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Lee JS, Kim J, Im SP, Kim SW, Lazarte JMS, Jung JW, Gong TW, Kim YR, Lee JH, Kim HJ, Jung TS. Generation and characterization of hagfish variable lymphocyte receptor B against glycoprotein of viral hemorrhagic septicemia virus (VHSV). Mol Immunol 2018; 99:30-38. [PMID: 29679865 DOI: 10.1016/j.molimm.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022]
Abstract
Variable lymphocyte receptors B (VLRBs) are non-immunoglobulin components of the humoral immune system in jawless vertebrates including hagfish (Eptatretus burgeri) and lamprey (Petromyzon marinus). Hagfish VLRBs consist of leucine rich repeat (LRR) modules with a superhydrophobic C-terminal tail, the latter of which leads to extremely low expression levels in recombinant protein technology. Here, we present an artificially oligomerized VLRB (arVLRB) that conjugates via the C4bp oligomerization domain derived from human C4b-binding protein (hC4bp) rather than the superhydrophobic tail. The resulting arVLRB had a tightly multimerized form with seven monomeric VLRB arms and showed high expression and secretion levels in a mammalian expression system. To isolate antigen-specific arVLRB, we constructed large VLRB libraries from hagfish immunized with the fish pathogen, viral hemorrhagic septicemia virus (VHSV). The selected arVLRBs were found to recognize various types of antigens, including the recombinant target protein, purified viruses, and progeny viruses, with high antigen binding abilities and specificities. We also performed in vitro affinity maturation of the arVLRBs through LRRCT mutagenesis, and found that this enhanced their antigen-binding properties by at least 125-fold. Our epitope mapping analysis revealed that 37DWDTPL42, which is located in a region conserved among the glycoproteins of all VHSV isolates, is the recognition epitope of the arVLRBs. Thus, our newly developed arVLRB could prove useful in the development of universal diagnostic tools and/or therapeutic agents for the virus. Together, our novel findings provide valuable insights into hagfish VLRB and its potential use as a novel alternative to conventional antibodies for biotechnological applications.
Collapse
Affiliation(s)
- Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Tae Won Gong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jeong Ho Lee
- Inland Aquaculture Research Center, NIFS, Changwon, 645-806, South Korea
| | - Hyoung Jun Kim
- Laboratory of Aquatic Animal Quarantine, General Service Division, National Fishery Products Quality Management Service, Busan 49111, South Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea.
| |
Collapse
|
14
|
Dalmo RA. DNA vaccines for fish: Review and perspectives on correlates of protection. JOURNAL OF FISH DISEASES 2018; 41:1-9. [PMID: 29064091 DOI: 10.1111/jfd.12727] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Recently in 2016, the European Medicines Agency (EMA) recommended granting a marketing authorization in the EU for "Clynav," a DNA vaccine against salmon pancreas disease (salmonid alphavirus-3). Generally, DNA vaccines induce both early and late immune responses in fish that may be protective against disease. Several transcriptomic approaches have been performed to map immunome profiles following DNA vaccination, but the precise immune mechanism(s) that is responsible for protection is not known, although reasonable suggestions have been made. The current review includes an overview on main transcriptomic findings from microarray experiments after DNA vaccination against VHSV, IHNV, HIRRV and IPNV-with considerations of what can be considered as correlates of protection (CoP) or merely a surrogate of protection. Identification and use of correlates of protection (COPs) may be a strategic tool for accelerated and targeted vaccine design, testing and licensure. General rules on what can be considered as CoPs can be extracted from past knowledge on protective immune responses following vaccination that induced protection. Lastly, there will be an overview on non-viral molecular adjuvants that have been exploited to obtain higher vaccine potencies and efficacies.
Collapse
Affiliation(s)
- R A Dalmo
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
15
|
STING signaling in tumorigenesis and cancer therapy: A friend or foe? Cancer Lett 2017; 402:203-212. [PMID: 28602976 DOI: 10.1016/j.canlet.2017.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) is a DNA sensor and an important cytoplasmic adaptor for other DNA sensors, such as Z-DNA binding protein 1 (DAI), DEAD-box helicase 41 (DDX41), and interferon-γ-inducible protein 16 (IFI16). The activation of STING signaling leads to the production of type I interferons and some other pro-inflammatory cytokines, which are critical for host defense against viral infection. Recent accumulating evidences suggest that STING is also involved in tumor development. However, the role of STING signaling in tumorigenesis is complicated, and a comprehensive review is still lacking. In this paper, we provided an overview of the dual role of STING signaling in tumor development from clinical significance to fundamental mechanisms, as well as its pre-clinical application in cancer therapy.
Collapse
|