1
|
Xu X, Xu J, Qiu M, Yu Y, Gou M, Pang Y, Li Q, Su P. A Comparative Transcriptomic Study and Key Gene Targeting of Lamprey Gonadal Immune Response. Immunol Invest 2024; 53:241-260. [PMID: 38078455 DOI: 10.1080/08820139.2023.2289070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.
Collapse
Affiliation(s)
- Xiangting Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jing Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Functional laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mingyue Qiu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Yu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
González MF, Burgos-Ravanal R, Shao B, Heinecke J, Valenzuela-Valderrama M, Corvalán AH, Quest AFG. Extracellular vesicles from gastric epithelial GES-1 cells infected with Helicobacter pylori promote changes in recipient cells associated with malignancy. Front Oncol 2022; 12:962920. [PMID: 36313672 PMCID: PMC9596800 DOI: 10.3389/fonc.2022.962920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2023] Open
Abstract
Chronic Helicobacter pylori (H. pylori) infection is considered the main risk factor for the development of gastric cancer. Pathophysiological changes in the gastric mucosa initiated by this bacterium can persist even after pharmacological eradication and are likely attributable also to changes induced in non-infected cells as a consequence of intercellular communication via extracellular vesicles (EVs). To better understand what such changes might entail, we isolated EVs from immortalized normal gastric GES-1 cells infected (EVHp+) or not with H. pylori (EVHp-) by ultracentrifugation and characterized them. Infection of GES-1 cells with H. pylori significantly increased the release of EVs and slightly decreased the EV mean size. Incubation with EVHp+ for 24 h decreased the viability of GES-1 cells, but increased the levels of IL-23 in GES-1 cells, as well as the migration of GES-1 and gastric cancer AGS cells. Furthermore, incubation of GES-1 and AGS cells with EVHp+, but not with EVHp-, promoted cell invasion and trans-endothelial migration in vitro. Moreover, stimulation of endothelial EA.hy926 cells for 16 h with EVHp+ promoted the formation of linked networks. Finally, analysis by mass spectrometry identified proteins uniquely present and others enriched in EVHp+ compared to EVHp-, several of which are known targets of hypoxia induced factor-1α (HIF-1α) that may promote the acquisition of traits important for the genesis/progression of gastric pre-neoplastic changes associated with H. pylori infection. In conclusion, the harmful effects of H. pylori infection associated with the development of gastric malignancies may spread via EVs to non-infected areas in the early and later stages of gastric carcinogenesis.
Collapse
Affiliation(s)
- María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| | - Renato Burgos-Ravanal
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
| | - Jay Heinecke
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
| | - Manuel Valenzuela-Valderrama
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Universidad Central de Chile, Santiago, Chile
| | - Alejandro H. Corvalán
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
- Departamento de Hematología-Oncología, Facultad de Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| |
Collapse
|
4
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
5
|
Wang Z, Yu W, Liu L, Niu J, Zhang X, Nan F, Xu L, Jiang B, Ke D, Zhu W, Tian Z, Wang Y, Wang B. Human Cytomegalovirus Immediate Early Protein 2 Protein Causes Cognitive Disorder by Damaging Synaptic Plasticity in Human Cytomegalovirus-UL122-Tg Mice. Front Aging Neurosci 2021; 13:720582. [PMID: 34790111 PMCID: PMC8591137 DOI: 10.3389/fnagi.2021.720582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is very common in the human population all around the world. Although the majority of HCMV infections are asymptomatic, they can cause neurologic deficits. Previous studies have shown that immediate early protein 2 (IE2, also known as UL122) of HCMV is related with the cognitive disorder mechanism. Due to species isolation, a HCMV-infected animal model could not be established which meant a study into the long-term effects of IE2 on neural development could not be carried out. By establishing HCMV-UL122-Tg mice (UL122 mice), we explored the cognitive behavior and complexity of neuron changes in this transgenic UL122 mice that could consistently express IE2 protein at different ages (confirmed in both 6- and 12-month-old UL122 mice). In the Morris water maze, cognitive impairment was more pronounced in 12-month-old UL122 mice than in 6-month-old ones. At the same time, a decrease of the density of dendritic spines and branches in the hippocampal neurons of 12-month-old mice was observed. Moreover, long-term potentiation was showed to be impaired in 12-month-old UL122 mice. The expressions of several synaptic plasticity-regulated molecules were reduced in 12-month-old UL122 mice, including scaffold proteins postsynaptic density protein 95 (PSD95) and microtubule-associated protein 2 (MAP2). Binding the expression of IE2 was increased in 12-month-old mice compared with 6-month-old mice, and results of statistical analysis suggested that the cognitive damage was not caused by natural animal aging, which might exclude the effect of natural aging on cognitive impairment. All these results suggested that IE2 acted as a pathogenic regulator in damaging synaptic plasticity by downregulating the expression of plasticity-related proteins (PRPs), and this damage increased with aging.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Lili Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lili Xu
- Qingdao Women and Childrens Hospital, Qingdao University, Qingdao, China
| | - Bin Jiang
- Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Dingxin Ke
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenhua Zhu
- Qingdao Fuwai Cardiovascular Hospital, Qingdao, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yashuo Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Han Q, Han Y, Wen H, Pang Y, Li Q. Molecular Evolution of Apolipoprotein Multigene Family and the Original Functional Properties of Serum Apolipoprotein (LAL2) in Lampetra japonica. Front Immunol 2020; 11:1751. [PMID: 32849624 PMCID: PMC7431520 DOI: 10.3389/fimmu.2020.01751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023] Open
Abstract
Apolipoprotein (APO) genes represent a large family of genes encoding various binding proteins associated with plasma lipid transport. Due to the long divergence history, it remains to be confirmed whether these genes evolved from a common ancestor through gene duplication and original function, and how this evolution occurred. In this study, based on the phylogenetic tree, sequence alignment, motifs, and evolutionary analysis of gene synteny and collinearity, APOA, APOC, and APOE in higher vertebrates may have a common ancestor, lamprey serum apolipoprotein LAL1 or LAL2, which traces back to 360 million years ago. Moreover, the results of immunofluorescence, immunohistochemistry, and flow cytometry show that LAL2 is primarily distributed in the liver, kidney, and blood leukocytes of lampreys, and specifically localized in the cytoplasm of liver cells and leukocytes, as well as secreted into sera. Surface plasmon resonance technology demonstrates that LAL2 colocalizes to breast adenocarcinoma cells (MCF-7) or chronic myeloid leukemia cells (K562) associated with lamprey immune protein (LIP) and further enhances the killing effect of LIP on tumor cells. In addition, using quantitative real-time PCR (Q-PCR) and western blot methods, we found that the relative mRNA and protein expression of lal2 in lamprey leukocytes and sera increased significantly at different times after stimulating with Staphylococcus aureus, Vibrio anguillarum, and Polyinosinic-polycytidylic acid (Poly I:C). Moreover, LAL2 was found to recognize and bind to gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli) and play an important role in the antibacterial process. All in all, our data reveals a long, complex evolutionary history for apolipoprotein genes under different selection pressures, confirms the immune effect of LAL2 in lamprey sera against pathogens, and lays the foundation for further research regarding biological functions of lamprey immune systems.
Collapse
Affiliation(s)
- Qing Han
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hongyan Wen
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
7
|
Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, Xie XJ, Liao DF, Qin L. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal 2020; 18:119. [PMID: 32746850 PMCID: PMC7398059 DOI: 10.1186/s12964-020-00581-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Yan
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-Ning Shi
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Neurosurgery in Changsha, 921 hospital, joint service support force of People's Liberation Army, Changsha, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Li Qin
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
8
|
Adaptive immune stimuli altered the cargo proteins of exosomes released by supraneural myeloid body cells in Lampetra japonica. Mol Immunol 2019; 111:64-72. [DOI: 10.1016/j.molimm.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/20/2023]
|
9
|
Zhang K, Tai Z, Han Q, Pang Y, Li Q. Adiponectin as inducer of inflammatory and apoptosis involving in immune defense in lamprey. FISH & SHELLFISH IMMUNOLOGY 2019; 90:446-455. [PMID: 31002928 DOI: 10.1016/j.fsi.2019.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Adiponectin (APN) is an important cytokine secreted by fat cells that is responsible for regulating numerous biological functions. However, the APN gene in lamprey and its precise function remain unidentified. In this study, the full-length cDNA sequence of L-APN was cloned, and it encoded a protein of 267 amino acid residues with a globular domain. The results of immunohistochemistry and FACS assays showed that APN protein was distributed in multiple tissues. L-APN expression in the supraneural body (SB) and leukocytes was differentially upregulated in response to Gram-negative bacteria, Gram-positive bacteria and poly (I:C). The expression levels of inflammatory cytokines were upregulated, and a proapoptotic effect was stimulated in SB cells treated with recombinant APN. Furthermore, L-APN could inhibit cell proliferation and arrest cell growth in the G1 phase. In summary, the APN protein from the lamprey plays an important role in inhibiting cell proliferation, inducing the production of inflammatory cytokines and promoting cell apoptosis, and it is also involved in immune responses and immune defenses. Our data provide insights into the evolutionary origin of the structure and function of APN gene.
Collapse
Affiliation(s)
- Kejia Zhang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Zhao Tai
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qing Han
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|