1
|
Luo M, Li W, Ri S, Zhang W, Kim T, Ju K, Liu L, Zhou W, Shi W, Liu G. Identification, characterization, and functional verification of a novel fish-egg lectin (FEL) from the golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110308. [PMID: 40204242 DOI: 10.1016/j.fsi.2025.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/08/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Lectins play important roles in the innate immune response and therefore are of great interest for immunologists. Although different families of lectins have been increasingly documented in various fish species, our current understanding of fish-egg lectins (FELs) is still in paucity. In this study, a novel FEL (ToFEL) was identified in the commercially important marine fish golden pompano (Trachinotus ovatus) through transcriptomic screening. In addition to bioinformatic characterization, the expression of ToFEL in different tissues and upon pathogenic challenge were profiled. Moreover, the binding capacity of ToFEL to five bacteria and the agglutinating activity of ToFEL against bacteria as well as blood and sperm cells of donor species with and without Ca2+ were assessed using the recombinant T. ovatus FEL (rToFEL). Our results demonstrated that ToFEL had an open reading frame (ORF) of 786 bp, which encodes a putative protein with 261 amino acids including a signal peptide consists of 19 amino acids. In addition to harboring three typical TECPR domains, a Ca2+-binding site was also identified in ToFEL. The ToFEL was shown to be highly homology to FELs of other fish species investigated, especially to its close relatives Seriola dumerili and S. lalandi. The expression of ToFEL was detected in all the ten tissues examined (predominantly in gill, liver, and ovary) under normal condition and was significantly induced upon pathogenic challenge. In addition, in the presence of Ca2+, the rToFEL exhibited strong binding and agglutinating activity against both gram-positive and gram-negative bacteria as well as blood and/or sperm cells of donor species. Collectively, our data indicate that ToFEL is a constitutive and inducible acute-phase immune molecule of T. ovatus in response to a broad-spectrum alien substances.
Collapse
Affiliation(s)
- Ming Luo
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, South Korea
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, South Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, South Korea; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, South Korea
| | - Longlong Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhang Q, Li C, Guo Z, Liang H, Chen J, Liu C. Expression and antimicrobial characterization of rhamnose-binding lectin in Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110079. [PMID: 39642946 DOI: 10.1016/j.fsi.2024.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Rhamnose-binding lectins (RBLs) are key components of pattern recognition molecules involved in pathogen clearance during non-specific immune responses and play an important role in the immune response of Mollusca. Pinctada fucata martensii is an essential species for artificial seawater pearl cultivation in China. With the increasing pollution of seawater, the study of the immune function of P. f. martensii has become increasingly urgent. Therefore, investigating the basic structural characteristics and immunological activity of RBL is of significant interest. This study employed RACE technology to clone and perform bioinformatics analysis on the RBL from P. f. martensii (PmRBL). Real-time quantitative fluorescence (qRT-PCR) technology was used to analyze gene expression following stimulation with pathogen-associated molecular patterns (PAMPs). In addition, a prokaryotic expression vector for PmRBL was constructed, followed by an evaluation of the antibacterial and hemolytic activities of the recombinant protein. The results revealed that the cDNA sequence of the PmRBL gene is 1045 bp in length, with its open reading frame (ORF) encoding 212 amino acids that include two D-galactoside-binding lectin domains. The expression of PmRBL across various tissues and in response to PAMP stimulation showed that PmRBL was most abundantly expressed in the gill tissue of P. f. martensii and exhibited a significant response to stimulation with lipopolysaccharides (LPS). From the perspective of antibacterial activity, PmRBL exhibited significant efficacy against Gram-negative bacteria. Overall, this study enhances our understanding of the functional characteristics of RBLs in Mollusca and provides new insights into the immune molecular polymorphism of P. f. martensii.
Collapse
Affiliation(s)
- Qiyuan Zhang
- Fisheries College, Guangdong Ocean University, Zhangjiang, Guangdong, 524088, China
| | - Chaojie Li
- Fisheries College, Guangdong Ocean University, Zhangjiang, Guangdong, 524088, China
| | - Zhijie Guo
- Fisheries College, Guangdong Ocean University, Zhangjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College, Guangdong Ocean University, Zhangjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Jie Chen
- Fisheries College, Guangdong Ocean University, Zhangjiang, Guangdong, 524088, China
| | - Chuanjie Liu
- Fisheries College, Guangdong Ocean University, Zhangjiang, Guangdong, 524088, China
| |
Collapse
|
3
|
Yang W, Sun J, Leng J, Li Y, Guo Q, Wang L, Song L. A novel lectin with a distinct Gal_Lectin and CUB domain mediates haemocyte phagocytosis in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105222. [PMID: 38964676 DOI: 10.1016/j.dci.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Loeslakwiboon K, Li HH, Tsai S, Wen ZH, Lin C. Effects of chilling and cryoprotectants on glycans in shrimp embryos. Cryobiology 2024; 116:104930. [PMID: 38871207 DOI: 10.1016/j.cryobiol.2024.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glycans are carbohydrates present in every organism that bind to specific molecules such as lectins, a diverse group of proteins. Glycans are vital to cell proliferation and protein trafficking. In addition, embryogenesis is a critical phase in the development of marine organisms. This study investigated the effects of chilling and cryoprotective agents (CPAs) on glycans in the embryos of Stenopus hispidus. The glycan profiles of embryos of S. hispidus at the heartbeat stage were analyzed using lectin arrays. The results of analyses revealed that mannose was the most abundant glycan in the S. hispidus embryos; mannose is crucial to cell proliferation, providing the energy required for embryonic growth. Additionally, the results reveled that chilling altered the content of several glycans, including fucose and Gla-GlcNAc. Chilling may promote monosaccharide accumulation, facilitating osmotic regulation of cells and signal molecules to aid S. hispidus embryos in adapting to cold conditions. Changes were also observed in the lectins NPA, orysata, PALa, ASA, discoidin II, discoidin I, UDA, PA-IIL, and PHA-P after the samples were treated with different CPAs. DMSO may minimize cell damage during exposure to chilling by preserving cell structures, membrane properties, and functions. The present study is the first to investigate the profiles and functions of glycans in shrimp embryos subjected to low-temperature injuries. This study enhances the understanding of cell reproduction during embryogenesis and provides valuable information for the study of glycans in embryos.
Collapse
Affiliation(s)
- Kanokpron Loeslakwiboon
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Hsing-Hui Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, Chang Hua, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiahsin Lin
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| |
Collapse
|
5
|
Mizgina TO, Chikalovets IV, Bulanova TA, Molchanova VI, Filshtein AP, Ziganshin RH, Rogozhin EA, Shilova NV, Chernikov OV. New l-Rhamnose-Binding Lectin from the Bivalve Glycymeris yessoensis: Purification, Partial Structural Characterization and Antibacterial Activity. Mar Drugs 2023; 22:27. [PMID: 38248652 PMCID: PMC10817417 DOI: 10.3390/md22010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/β-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.
Collapse
Affiliation(s)
- Tatyana O. Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Irina V. Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Tatyana A. Bulanova
- Department of Chemistry and Materials, Far Eastern Federal University, Vladivostok 690950, Russia;
| | - Valentina I. Molchanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Alina P. Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Nadezhda V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| |
Collapse
|
6
|
New Data on the Rhamnose-Binding Lectin from the Colonial Ascidian Botryllus schlosseri: Subcellular Distribution, Secretion Mode and Effects on the Cyclical Generation Change. Mar Drugs 2023; 21:md21030171. [PMID: 36976220 PMCID: PMC10053368 DOI: 10.3390/md21030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Botryllus schlosseri in a cosmopolitan ascidian, considered a reliable model organism for studies on the evolution of the immune system. B. schlosseri rhamnose-binding lectin (BsRBL) is synthesised by circulating phagocytes and behaves as an opsonin by interacting with foreign cells or particles and acting as a molecular bridge between them and the phagocyte surface. Although described in previous works, many aspects and roles of this lectin in Botryllus biology remain unknown. Here, we studied the subcellular distribution of BsRBL during immune responses using light and electron microscopy. In addition, following the hints from extant data, suggesting a possible role of BsRBL in the process of cyclical generation change or takeover, we investigated the effects of interfering with this protein, by injecting a specific antibody in the colonial circulation, starting one day before the generation change. Results confirm the requirement of the lectin for a correct generation change and open new queries on the roles of this lectin in Botryllus biology.
Collapse
|
7
|
Wang J, Guo XL, Chen HY, Xiao LX, Yang GW, Yang HT. A novel l-rhamnose-binding lectin participates in defending against bacterial infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108553. [PMID: 36693487 DOI: 10.1016/j.fsi.2023.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
l-rhamnose-binding lectin (RBL), which is a class of animal lectins independent of Ca2+, can specifically bind l-rhamnose or d-galactose. Although several lectins in zebrafish have been reported, their functional mechanisms have not been fully uncovered. In this study, we discovered a novel l-rhamnose binding lectin (DrRBL) and studied its innate immune function. The DrRBL protein contains only one carbohydrate-recognition domain (CRD), which includes two strictly conserved motifs, "YGR" and "DPC". DrRBL was detected in all tested tissues and was present at high levels in the spleen, hepatopancreas and skin. After Aeromonas hydrophila challenge, the DrRBL mRNA level was significantly upregulated. Additionally, DrRBL was secreted into the extracellular matrix. Recombinant DrRBL (rDrRBL) could significantly inhibit the growth of gram-positive/negative bacteria, bind to several bacteria and cause obvious agglutination. The rDrRBL protein could combine with polysaccharides, such as PGN and LPS, rather than LTA. A more detailed study showed that rDrRBL could combine with monosaccharides, such as mannose, rhamnose and glucose, which are important components of PGN and LPS. However, rDrRBL could not bind to ribitol, which is an important component of LTA. The DrRBL deletion mutants, DrRBLΔ144-150 and DrRBLΔ198-200, were also constructed. DrRBLΔ144-150 ("ANYGRTD" deficient) showed weak bacterial inhibiting ability. However, DrRBLΔ198-200 ("DPC" deficient) showed weak agglutination ability. These results suggest that the "DPC" domain is important for agglutination. The conserved domain "ANYGRTD" is essential for inhibiting bacterial growth.
Collapse
Affiliation(s)
- Jing Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xin-Lu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hong-Ye Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin-Xi Xiao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
8
|
Cai X, Lymbery AJ, Armstrong NJ, Gao C, Ma L, Li C. Systematic identification and characterization of lncRNAs and lncRNA-miRNA-mRNA networks in the liver of turbot (Scophthalmus maximus L.) induced with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2022; 131:21-29. [PMID: 36170960 DOI: 10.1016/j.fsi.2022.09.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Long noncoding RNAs (lncRNAs), can regulate mRNA by targeting miRNA in a competing endogenous RNA network, have become a hot topic in the research of fish immune mechanism recent years. While in turbot (Scophthalmus maximus L.), an economically important marine fish, there are limited researches about the role of lncRNAs in its immune response to bacterial infection. In this study, a total of 184 differentially expressed lncRNAs (DElncRNAs) were systematically identified and characterized using whole-transcriptome sequencing of the liver of turbot challenged with Vibrioanguillarum at 0 h (control) and three different time points post infection (2 h, 12 h and 24 h, respectively). Subsequently, GO and KEGG signaling pathways of differentially expressed lncRNAs were analyzed to predict their function. We found that lncRNAs in our results were significantly enriched in several immune-related signaling pathways, including the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, Cytokine-cytokine receptor, MAPK signaling pathway, phagosome, PPAR signaling pathway and the regulation of autophagy. In addition, a total of 492 DE lncRNA - DE miRNA -DE mRNA networks were identified at three different time points post infection, which were consisted of 102 networks at 2 h, 122 networks at 12 h and 81 networks at 24 h post infection, respectively. Noticeably, 92 of these regulated networks were immune-related. These observations suggested that lncRNAs can regulate the expression of immune-related genes in the response to bacterial infection in turbot. Moreover, our findings would provide a new insight into the immune response of turbot to pathogen infection and lay a foundation for future study.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Alan J Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Fu Q, Li Y, Zhao S, Wang H, Zhao C, Zhang P, Cao M, Yang N, Li C. Comprehensive identification and expression profiling of immune-related lncRNAs and their target genes in the intestine of turbot (Scophthalmus maximus L.) in response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:233-243. [PMID: 36084890 DOI: 10.1016/j.fsi.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Long non-coding RNA (lncRNA) play vital regulatory roles in various biological processes. Intestine is one of the most sensitive organs to environmental and homeostatic disruptions for fish. However, systematic profiles of lncRNAs in the intestine of teleost in responses to pathogen infections is still limited. Turbot (Scophthalmus maximus L.), an important commercial fish species in China, has been suffering with Vibrio anguillarum infection, resulted in dramatic economic loss. Hereinto, the intestinal tissues of turbot were sampled at 0 h, 2 h, 12 h, and 48 h following V. anguillarum infection. The histopathological analysis revealed that the pathological trauma was mainly present in intestinal tunica mucosal epithelium. After high-throughput sequencing and bioinformatic analysis, a total of 9722 lncRNAs and 21,194 mRNAs were obtained, and the average length and exon number of lncRNAs were both less than those of mRNAs. Among which, a set of 158 lncRNAs and 226 mRNAs were differentially expressed (DE-lncRNAs and DEGs) in turbot intestine at three time points, related to many immune-related genes such as complement, interleukin, chemokine, lysosome, and macrophage, indicating their potential critical roles in immune responses. In addition, 2803 and 1803 GO terms were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Moreover, 127 and 50 KEGG pathways including cell adhesion molecules (CAMs), phagosome, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, and intestinal immune network for IgA production, were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Finally, qRT-PCR was conducted to confirm the reliability of sequencing data. The present study will set the foundation for the future exploration of lncRNA functions in teleost in response to bacterial infection.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
11
|
Mu L, Yin X, Qi W, Li J, Bai H, Chen N, Yang Y, Wang B, Ye J. An l-rhamnose-binding lectin from Nile tilapia (Oreochromis niloticus) possesses agglutination activity and regulates inflammation, phagocytosis and respiratory burst of monocytes/macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104256. [PMID: 34517013 DOI: 10.1016/j.dci.2021.104256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Rhamnose-binding lectins (RBLs), a Ca2+-independent lectin family, are widely present in vertebrates and invertebrates, which involve in the innate immune response. However, the functional characterization and related regulation mechanisms of RBLs remain unclear in teleost fish. In this study, an l-rhamnose-binding lectin-like (OnRBL-L) was identified and functionally characterized from Nile tilapia (Oreochromis niloticus). The open reading frame of OnRBL-L is 678 bp encoding 225 aa. The sequence of OnRBL-L has relatively conservative characteristic peptide motifs, including YGR, DPC, and KYL-motif. Expression analysis showed that OnRBL-L was abundantly distributed in intestine tissue, and widely existed in all detected tissues. Meanwhile, the expression of OnRBL-L increased significantly in vivo (liver, spleen, head kidney, intestine, gills and peripheral blood) and in vitro (monocytes/macrophages) following challenges with two important tilapia pathogenic bacteria Streptococcus agalactiae and Aeromonas hydrophila. In addition, the recombinant OnRBL-L was found to bind and agglutinate S. agalactiae and A. hydrophila. Furthermore, OnRBL-L could participate in non-specific cellular immune defense, including reducing the expression of pro-inflammatory factors (IL-6、IL-8 and TNF-α), and enhancement of the phagocytosis and respiratory burst of MO/MФ. Overall, our results provide new insights into the understanding of RBL as an important pattern recognition molecule and regulator in non-specific cell immunity in an early vertebrate.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Weiwei Qi
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jiadong Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hao Bai
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Nuo Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
12
|
Gao C, Cai X, Cao M, Fu Q, Yang N, Liu X, Wang B, Li C. Comparative analysis of the miRNA-mRNA regulation networks in turbot (Scophthalmus maximus L.) following Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104164. [PMID: 34129850 DOI: 10.1016/j.dci.2021.104164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs could not only regulate posttranscriptional silencing of target genes in eukaryotic organisms, but also have positive effect on their target genes as well. These microRNAs have been reported to be involved in mucosal immune responses to pathogen infection in teleost. Therefore, we constructed the immune-related miRNA-mRNA networks in turbot intestine following Vibrio anguillarum infection. In our results, 1550 differentially expressed (DE) genes and 167 DE miRNAs were identified. 113 DE miRNAs targeting 89 DE mRNAs related to immune response were used to construct miRNA-mRNA interaction networks. Functional analysis showed that target genes were associated with synthesis and degradation of ketone bodies, mucin type O-Glycan biosynthesis, homologous recombination, biotin metabolism, and intestinal immune network for IgA production that were equivalent to the function of IgT and IgM in fish intestine. Finally, 10 DE miRNAs and 7 DE mRNAs were selected for validating the accuracy of high-throughput sequencing results by qRT-PCR. The results of this study will provide valuable information for the elucidation of the regulation mechanisms of miRNA-mRNA interactions involved in disease resistance in teleost mucosal immune system.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
13
|
Zhang K, Liu X, Li X, Liu Y, Yu H, Liu J, Zhang Q. Antibacterial functions of a novel fish-egg lectin from spotted knifejaw (Oplegnathus punctatus) during host defense immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103758. [PMID: 32502504 DOI: 10.1016/j.dci.2020.103758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Fish-egg lectins (FELs) have been identified in several teleost species and have been proved to play important roles in innate immune system against pathogen infection. In this study a novel fish-egg lectin (OppFEL) was identified from spotted knifejaw (Oplegnathus punctatus), and the expression patterns against bacterial infection was characterized. The amino acid sequence is highly homologous to other teleost FELs, containing five repeats of the conserved TECPR domain. Expression of OppFEL was widely observed in examined tissues, with the most abundant transcripts observed in gill, showing a pattern of tissue specific expression. The OppFEL expression was significantly up-regulated following a Gram-negative bacterium (Vibrio anguillarum) challenge in vivo, suggesting participation in host antibacterial immune responses. Recombinant OppFEL protein (rOppFEL) possessed calcium dependent binding capacities and agglutination to four Gram-negative bacterium and two Gram-positive bacterium. Sugar binding assay revealed that rOppFEL specifically bound to insoluble lipopolysaccharide and peptidoglycan. In addition, rOppFEL was also proved to have hemagglutinating activity against erythrocytes from Mus musculus, O. punctatus, Sebastes schlegelii and Paralichthys olivaceus. Dual-luciferase analysis showed that overexpression of OppFEL could suppress the activity of NF-κB in a dose dependent manner. Taken together, these results suggest that OppFEL is a unique fish-egg lectin that possesses apparent immunomodulating property and is involved in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xuemei Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao -National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao -National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao -National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
14
|
Tian M, Cao M, Zhang L, Fu Q, Yang N, Tan F, Song L, Su B, Li C. Characterization and initial functional analysis of cathepsin K in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 93:153-160. [PMID: 31319206 DOI: 10.1016/j.fsi.2019.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Cathepsins are the best-known group of proteases in lysosomes, playing a significant role in immune responses. Cathepsin K (CTSK) is abundantly and selectively expressed in osteoclasts, dendritic cells and monocyte-derived macrophages, where it is involved in ECM degradation and bone remodeling. A growing body of evidences have indicated the vital roles of cathepsin K in innate immune responses. Here, one CTSK gene was captured in turbot (SmCTSK) with a 993 bp open reading frame (ORF). The genomic structure analysis showed that SmCTSK had 7 exons similar to other vertebrate species. The syntenic analysis revealed that CTSK had the same neighboring genes across all the selected species, which suggested the synteny encompassing CTSK region was conserved during vertebrate evolution. Subsequently, SmCTSK was widely expressed in all the examined tissues, with the highest expression level in spleen and the lowest expression level in liver. In addition, SmCTSK was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum immersion challenge, but up-regulated in three tissues (gill, skin and intestine) following Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSK showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmCTSK played vital roles in fish innate immune responses against infection. However, the knowledge of SmCTSK is still limited in teleost species, further studies should be carried out to better characterize its comprehensive roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Tan F, Cao M, Ge X, Li C, Tian M, Zhang L, Fu Q, Song L, Yang N. Identification and initial functional characterization of lysosomal integral membrane protein type 2 (LIMP-2) in turbot (Scophthalmus maximus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103412. [PMID: 31176756 DOI: 10.1016/j.dci.2019.103412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The immune system protects organism from external pathogens, this progress starts with the pathogen recognition by pattern recognition receptors (PRRs). As a group of PRRs, the class B scavenger receptors showed important roles in phagocytosis. Among three class B scavenger receptors, lysosomal integral membrane protein type 2 (LIMP-2) was reported to present in the limiting membranes of lysosomes and late endosomes, but its immune roles in teleost species are still limited in handful species. Here, we characterized LIMP-2 gene in turbot, and its expression patterns in mucosal barriers following different bacterial infection, as well as ligand binding activities to different microbial ligands and agglutination assay with different bacteria. In our results, one SmLIMP2 gene was identified with a 1,593 bp open reading frame (ORF). The multiple species comparison and phylogenetic analysis showed the closest relationship to Paralichthys olivaceus, the genomic structure analysis and syntenic analysis revealed the conservation of LIMP-2 during evolution. In tissue distribution analysis, SmLIMP-2 was expressed in all the examined turbot tissues, with the highest expression level in brain, and the lowest expression level in liver. In addition, SmLIMP-2 was significantly up-regulated in all the mucosal tissues (skin, gill and intestine) following Gram-negative bacteria Vibrio anguillarum infection, and was only up-regulated in gill following Gram-positive bacteria Streptococcus iniae challenge. Finally, the rSmLIMP-2 showed strong binding ability to all the examined microbial ligands, and strong agglutination with Escherichia coli, Staphylococcus aureus and V. anguillarum. Taken together, our results suggested SmLIMP-2 played important roles in fish immune response to bacterial infection. However, further functional studies should be carried out to better characterize its detailed roles in teleost immunity.
Collapse
Affiliation(s)
- Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Cai X, Gao C, Song H, Yang N, Fu Q, Tan F, Li C. Characterization, expression profiling and functional characterization of cathepsin Z (CTSZ) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:599-608. [PMID: 30359754 DOI: 10.1016/j.fsi.2018.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin Z (CTSZ) is a lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. In this study, we reported the identification of SmCTSZ, a CTSZ homolog from turbot (Scophthalmus maximus L.). SmCTSZ was 317 residues in length and contains a Pept-C1 domain. In multiple species comparison, SmCTSZ shared 65-93% overall sequence identities with the CTSZ counterparts from human, rat, and several fish species. In the phylogenetic analysis, SmCTSZ showed the closest relationship to Cynoglossus semilaevis. The syntenic analysis revealed the similar neighboring genes of CTSZ across all the selected species, which suggested the synteny encompassing CTSZ region during vertebrate evolution. Subsequently, SmCTSZ was constitutively expressed in various tissues, with the lowest and highest levels in brain and intestine respectively. In addition, SmCTSZ was significantly up-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSZ showed strong binding ability to all the examined microbial ligands, and the agglutination effect to different bacteria. Taken together, these results indicated SmCTSZ could play important roles in mucosal immune response in the event of bacterial infection in teleost. However, the knowledge of CTSZ are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
17
|
Li C, Tian M, Zhang L, Fu Q, Song L, Yang N. Expression profiling and functional characterization of CD36 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 81:485-492. [PMID: 30064021 DOI: 10.1016/j.fsi.2018.07.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
CD36 is a scavenger receptor, a type of membrane-bound receptors that characterized by recognizing a variety of ligands including endogenous proteins and pathogens. Here, we characterized CD36 gene in turbot, and its expression patterns in mucosal barriers following different bacterial infection, as well as microbial ligand binding ability and bacteriostatic activities. In current study, one SmCD36 gene was captured with a 1407 bp open reading frame (ORF). In multiple species comparison, SmCD36 showed the highest similarity and identity to Cynoglossus semilaevis. In the phylogenetic analysis, SmCD36 showed the closest relationship to C. semilaevis, followed by Takifugu rubripes. The genomic structure analysis showed that CD36 had 12 exons with almost the same length in vertebrate species, indicating the conservation of CD36 during evolution. The syntenic analysis revealed that CD36 located between GNAI1 and SEMA3C genes across all the selected species, which suggested the synteny encompassing CD36 region during vertebrate evolution. Subsequently, SmCD36 was expressed in all the examined turbot tissues, with the highest expression level in intestine. In addition, SmCD36 was significantly up-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCD36 showed strong binding ability to all the examined microbial ligands and significant inhibition effect on Staphylococcus aureusrequires. Taken together, our results suggested SmCD36 involved in fish innate immune responses to bacterial infection. However, the knowledge of CD36 are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|