1
|
Tagliamonte S, Oliviero V, Vitaglione P. Food bioactive peptides: functionality beyond bitterness. Nutr Rev 2025; 83:369-381. [PMID: 38350613 DOI: 10.1093/nutrit/nuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Bitter taste is an aversive taste because it is unconsciously associated with toxic compounds. However, a considerable variability in bitter sensitivity exists in those who have the genetic polymorphism for bitter taste receptors (TAS2Rs). Besides the oral cavity, TAS2Rs are present in many body tissues, including the gastrointestinal tract; therefore, they are crucial players both in the gustatory/hedonic system and in the homeostatic system, triggering numerous biological responses, including adipogenesis, carcinogenesis, or immunity. Bitter-tasting compounds are widely distributed in plant and animal foods and belong to many chemical classes. In this study, the evidence was reviewed on bitter peptides, considering the food sources, their formation in food under different processing and storage conditions and in the gastrointestinal tract during digestion, as well as their biological activities. Bitterness associated with peptides is due to the presence of hydrophobic amino acids in the C-terminus. The current literature mainly explores the enzymes and hydrolysis conditions, with the aim of reducing the formation of bitter peptides in hydrolysate preparation or food. Few studies highlight the bioactivity (namely, antihypertensive, antidiabetic, antioxidant, or immunity boosting), besides the bitterness. However, encapsulation of bitter peptides has been tentatively used to develop antihypertensive and antidiabetic supplements. In the era of personalized nutrition and precision medicine, the evidence available suggests the opportunity to use bitter bioactive peptides as functional ingredients in food. Such types of food may modulate a plethora of physiological mechanisms by targeting TAS2Rs in the gastrointestinal tract, thus modulating appetite sensations or gastrointestinal motility and discomfort according to individual nutritional needs and goals. More studies are needed to optimize the technological strategies to target TAS2Rs by bitter bioactive peptides, improve their stability in food, and validate the biological efficacy through well-designed in vivo studies.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Veronica Oliviero
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Zhou Y, Gui L, Wei W, Xu EG, Zhou W, Sokolova IM, Li M, Wang Y. Low particle concentrations of nanoplastics impair the gut health of medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106422. [PMID: 36773443 DOI: 10.1016/j.aquatox.2023.106422] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias latipes were exposed to polystyrene NPs (diameter 100 nm; 0, 10, 104, and 106 items/L) for 3 months, and histopathology, digestive and antioxidant enzymes, immunity, intestinal permeability, gut microbiota, and mortality were assessed. NP exposures caused intestinal lesions, and increased intestinal permeability of the gut. The trypsin, lipase, and chymotrypsin activities were increased, but the amylase activity was decreased. Oxidative damage was reflected by the decreased superoxide dismutase and alkaline phosphatase and increased malondialdehyde, catalase, and lysozyme. The integrated biomarkers response index values of all NP-exposed medaka were significantly increased compared to the control group. Moreover, NP exposures resulted in a decrease of diversity and changed the intestinal microbiota composition. Our results provide new evidence that long-term NPs exposure impaired the health of fish at extremely low particle concentrations, suggesting the need for long-term toxicological studies resembling environmental particle concentrations when assessing the risk of NPs.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Wenzhong Zhou
- Eco‑environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
4
|
Gokulakrishnan M, Kumar R, Pillai BR, Nanda S, Bhuyan SK, Kumari R, Debbarma J, Ferosekhan S, Siddaiah GM, Sundaray JK. Dietary brewer’s spent yeast enhances growth, hematological parameters, and innate immune responses at reducing fishmeal concentration in the diet of climbing perch, Anabas testudineus fingerlings. Front Nutr 2022; 9:982572. [PMID: 36159475 PMCID: PMC9490235 DOI: 10.3389/fnut.2022.982572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A 60-day feeding trial was conducted to optimally reduce the fishmeal level in climbing perch (Anabas testudineus) fingerling diet using a dietary brewer’s spent yeast biomass (BSY) based diet. In this study, five isonitrogenous (35% CP) and isocaloric (19.15 MJ/Kg) feeds were prepared by replacing 0 (BSY0), 25% (BSY25), 50% (BSY50), 75% (BSY75) and 100% (BSY100) of fishmeal protein using BSY protein. A total of 225 numbers of uniform-sized climbing perch fingerlings (3.29 ± 0.09 g) were randomly stocked in the 15 rectangular FRP (Fiber-reinforced plastic) tanks (150 L capacity). The experimental fish were fed twice daily at 4% BW for the first fortnight and later reduced to 3% BW based on satiation. At the end of the feeding trial, the weight gain (WG) of fish increased with the increasing BSY incorporation rates corresponding to fishmeal content and peaked at 77.88%, and beyond that, WG decreased. Food conversion ratios decreased as dietary BSY levels increased and peaked at 76.28%. All other growth and feed utilization parameters followed a similar trend of weight gain. Hepatosomatic index (HSI) and viscerosomatic index (VSI), A:G ratio, serum catalase activity, and monocytes were unaffected and the total serum protein, albumin, globulin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), respiratory burst activity, lysozyme levels, myeloperoxidase activity, hemoglobulin, red blood cells, white blood cells, neutrophils, eosinophils, lymphocytes, and gut protease activities were increased significantly (P < 0.05) with the increasing replacement levels and peaked between 25 and 75%. The serum SOD activity and total platelets were decreased, whereas the serum uric acid and gut amylase activities were increased significantly to the increasing levels of FM replacement in the diets (P < 0.05). Among treatments, the BSY100 resulted in an overall poor growth response combined with relatively reduced values in nearly all biochemical parameters. The whole-body composition was nearly unaffected. The integrated biomarker response of various biochemical indicators from the different treatments has shown that the 50% fishmeal protein can be optimally replaced by BSY, which would cause an 18% reduction in the Economic conversion ratio (ECR) and −270.28 gCO2e– reduction in carbon footprint value per kg of climbing perch fingerlings production.
Collapse
Affiliation(s)
- M. Gokulakrishnan
- College of Fisheries (OUAT), Brahmapur, India
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Rajesh Kumar,
| | - Bindu R. Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - S. Nanda
- College of Fisheries (OUAT), Brahmapur, India
| | | | - Rakhi Kumari
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jackson Debbarma
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - S. Ferosekhan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - G. M. Siddaiah
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | |
Collapse
|
5
|
|
6
|
Zhang L, Song C, Chang J, Wang Z, Meng X. Optimization of protein hydrolysates production from defatted peanut meal based on physicochemical characteristics and sensory analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Mannan Oligosaccharide Enhanced the Growth Rate, Digestive Enzyme Activity, Carcass Composition, and Blood Chemistry of Thinlip Grey Mullet ( Liza ramada). Animals (Basel) 2021; 11:ani11123559. [PMID: 34944334 PMCID: PMC8698089 DOI: 10.3390/ani11123559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Sustainable aquaculture requires natural alternative substances with high potential in enhancing the performance and wellbeing of aquatic animals. In this regard, the present study tested the possibility of using mannan oligosaccharides (MOS) in the diets of grey mullet as functional additives. For 8 weeks, fish were fed with enriched diets containing 0, 0.5, 1, and 2% MOS. The results showed marked improvements in the growth performance, digestive enzyme activity, blood chemistry, and antioxidative capacity. In conclusion, dietary MOS at 0.5–1% is required to enhance the productivity of grey mullet. Abstract Mannan oligosaccharide (MOS) is prebiotic with high functionality in aquaculture. The current study investigated the potential roles of MOS on the growth performance, digestive enzyme activity, carcass composition, and blood chemistry of Thinlip grey mullet (Liza ramada). Four tested diets with 34.49% crude protein and 6.29% of total lipids were prepared and fortified with 0, 0.5, 1, and 2% MOS. Fish of initial weight = 5.14 ± 0.11 g/fish were distributed in 12 hapas (0.5 × 0.5 × 1 m) at 15 fish per hapa (triplicates) and fed the test diets to the satiation level two times a day (08:00 and 15:00) for eight weeks. At the end of the trial, all fish were weighed individually for growth performance calculation. Blood was collected to check blood chemistry traits, and intestines were dissected for digestive enzyme analysis. Fish treated with MOS had marked enhancement in the final body weight, feed conversion ratio, protein gain, and protein retention regardless of inclusion dose (p < 0.05). The weight gain, specific growth rate, and protein efficiency ratio were meaningfully enhanced by including MOS at 0.5 and 1%, followed by fish fed with 2% MOS, while the lowest values were in the control group (p < 0.05). Insignificant influences of MOS were seen on the chemical composition of carcass components (moisture, crude protein, total lipids, and ash) (p > 0.05). Fish treated with MOS at 0.5 and 1% had marked enhancement in the amylase, lipase, and protease activities regardless of inclusion dose (p < 0.05). The blood total protein and albumin levels were meaningfully enhanced by including MOS at 0.5 and 1%, followed by fish fed with 2% MOS, while the lowest values were in the control group (p < 0.05). The blood globulin was significantly enhanced in fish fed 1% MOS than fish treated with 0, 0.5, and 2% of MOS (p < 0.05). The blood lysozyme activity was meaningfully enhanced by including MOS at 1%, followed by fish treated with 0.5 and 2%, while the lowest values were in the control group (p < 0.05). Phagocytic activity and phagocytic index were markedly improved in fish treated with 1 and 2% MOS, followed by those fed 0.5% compared with fish fed MOS-free diet (p < 0.05). Superoxide dismutase and glutathione peroxidase were markedly improved in fish treated with 1, and 2% MOS, followed by those fed 0.5% compared with fish fed MOS-free diet (p < 0.05). Dietary MOS (0.5, 1, and 2%) meaningfully enhanced catalase activity while decreased the malondialdehyde concentration (p < 0.05). In summary, dietary MOS is required at 0.5–1% for enhancing the growth rate, feed efficiency, digestive enzyme activity, blood chemistry, and antioxidative capacity of grey mullet.
Collapse
|
8
|
Solomando A, Capó X, Alomar C, Compa M, Valencia JM, Sureda A, Deudero S. Assessment of the effect of long-term exposure to microplastics and depuration period in Sparus aurata Linnaeus, 1758: Liver and blood biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147479. [PMID: 33975116 DOI: 10.1016/j.scitotenv.2021.147479] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The constant increase in plastic pollution has attracted great attention in recent years due to its potential detrimental effects on organisms and ecosystems. While the consequences of ingestion of large plastic litter are mostly understood, the impacts resulting from a long-term exposure and a recovery period of microplastics (MPs) are still limited. The aims were to monitor oxidative stress, detoxification and inflammatory biomarkers in liver, plasma and erythrocytes of Sparus aurata exposed during 90 days to low-density polyethylene (LDPE)-MPs enriched diet (10% by weight) followed by 30 days of depuration. Exposure to LDPE-MPs progressively activates the antioxidant and detoxification system and induces an inflammatory response in liver and plasma, whereas no significant changes were observed in erythrocytes. The plasma activities of catalase, myeloperoxidase (MPO), lysozyme and the levels of malondialdehyde (MDA) as maker of lipid peroxidation significantly increased after exposure to LDPE-MPs for 90 days compared to the control group. The activities of all antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase-, the detoxification enzyme glutathione s-transferase, MPO, the production of reactive oxygen species and the levels of MDA were also significantly increased in liver after MPs exposure. Additionally, all these biomarkers tended to recover during the depuration period, most of them reaching similar levels to those of the control group. In conclusion, the ingestion of a diet containing LDPE-MPs for 90 days induced a progressive increase in oxidative stress and inflammation biomarkers in liver and plasma of S. aurata but not in erythrocytes, which tended to regain control values when not exposed to MPs for 30 days. The present study contributes to a better understanding of the toxic effects of MPs in S. aurata and highlights the usefulness of plasma that can be obtained in a minimally invasive way to monitor these effects.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Xavier Capó
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain
| | - Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| | - Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| | - José María Valencia
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, E-07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA) (INIA-CAIB-UIB), E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain..
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| |
Collapse
|
9
|
Gu H, Wang S, Wang X, Yu X, Hu M, Huang W, Wang Y. Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122773. [PMID: 32361245 DOI: 10.1016/j.jhazmat.2020.122773] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) have become a severe concern in marine environment worldwide. Micro-polystyrene particles have been proved to accumulate in vivo and caused disorders of digestion, antioxidant system, immunity and intestinal microflora, but little is known about the effects of nano-polystyrene (nano-PS). In order to understand response mechanism of marine fish to nano-PS, the effects of nanoplastics on the intestinal health and growth performance of the juvenile Larimichthys crocea were investigated. After 14-d exposure, the reduced digestive enzyme activities indicated that nano-PS had a negative impact on the digestion and absorption of juvenile fish. Moreover, analysis of the intestinal microbiota showed that the proportion of the three-dominant bacterial phyla (Bacteroidetes, Proteobacteria and Firmicutes) in the gut changed significantly, accompanied by a significant increase of potentially pathogenic bacteria (Parabacteroides and Alistipes). In addition, lysozyme activity and specific growth rate (SGR) were significantly reduced, and total mortality of juvenile fish was significantly increased. Overall, nano-PS exposure was harmful for the health of juvenile fish, which might threaten their population in the long term.
Collapse
Affiliation(s)
- Huaxin Gu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shixiu Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China
| | - Xiang Yu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Youji Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
10
|
Mohammadi G, Rafiee G, Abdelrahman HA. Effects of dietary Lactobacillus plantarum (KC426951) in biofloc and stagnant-renewal culture systems on growth performance, mucosal parameters, and serum innate responses of Nile tilapia Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1167-1181. [PMID: 32133574 DOI: 10.1007/s10695-020-00777-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Effects of dietary Lactobacillus plantarum (KC426951) on growth and innate responses of Nile tilapia Oreochromis niloticus were evaluated in biofloc technology system and stagnant-renewal culture system (SRCS). The 90-day-long experiment contained four treatments: SRCS without probiotic (T1), SRCS with probiotic (T2), biofloc without probiotic (T3), and biofloc with probiotic (T4). The administration dose of probiotic was 2 × 108 CFU kg-1 diet. At the end of experiment, the mean final weights, specific growth rates, feed conversion ratios, and total biomass were significantly (P < 0.05) better in BFT treatments, with no significant effect of probiotic on these parameters in both culture systems. Meanwhile, skin mucosal parameters including total protein (TP), lysozyme (LYZ), alkaline phosphatase (ALP), and protease (PRO) activity were significantly enhanced following probiotic supplementation. T4 treatment displayed a significantly higher LYZ and ALP activity in mucus versus other treatments. Also, serum alternative complement activity was significantly heightened in probiotic-supplemented fish. Superoxide dismutase activity in T4 was detected higher than that of SRCS groups. The results of the current study demonstrated the enhancement of some mucosal and serum innate responses of Nile tilapia in both culture systems upon L. plantarum (KC426951) supplementation.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Gholamreza Rafiee
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Hisham A Abdelrahman
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Attia YA, Al-Khalaifah H, Abd El-Hamid HS, Al-Harthi MA, El-Shafey AA. Effect of Different Levels of Multienzymes on Immune Response, Blood Hematology and Biochemistry, Antioxidants Status and Organs Histology of Broiler Chicks Fed Standard and Low-Density Diets. Front Vet Sci 2020; 6:510. [PMID: 32195272 PMCID: PMC7015166 DOI: 10.3389/fvets.2019.00510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
This study was executed to investigate the effect of supplementing three multienzyme levels (0, 0. 1, and 0.2%) with two types of diet [standard diet (SD) vs. low-density diet (LDD)] on immune response, blood hematology and biochemistry, antioxidant status, and organ histology of broilers during 1–38 days of age. A total of 216 unsexed 1-day-old Arbor Acres broiler chicks were randomly distributed, on a factorial design (2 × 3), to six treatments each with six replicates. There were six chicks per replicate. Results showed that LDD significantly decreased body weight gain (BWG) of broilers, but did not affect the European Production Efficiency Index (EPEI). Addition of multienzymes at both levels (0.1 and 0.2%) significantly increased BWG and improved EPEI, compared to the control diet. Alanine aminotransferase (ALT), aspirate aminotransferase (AST), malondialdehyde (MDA), lymphocyte, lymphocyte transformation test (LTT), and phagocyte activity (PA) were significantly higher for LDD than the SD, but eosinophil was lower. Supplementation of multienzymes significantly decreased ALT, AST, and MDA, compared to the control group, but increased packed cell volume (PCV), hemoglobin (Hgb), lymphocytes, and monocytes. Immune organs, such as spleen, thymus, and the bursa of Fabricius were significantly increased with multienzyme supplementation. It could be concluded that multienzyme supplementation at either 0.1 or 0.2% to SD or LDD improved EPEI and immune status of broiler chicks.
Collapse
Affiliation(s)
- Y A Attia
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Animal and Poultry Production Department, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| | - H Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - H S Abd El-Hamid
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt
| | - M A Al-Harthi
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A A El-Shafey
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| |
Collapse
|
12
|
Wang H, Ding C, Wang J, Zhao X, Jin S, Liang J, Luo H, Li D, Li R, Li Y, Xiao T. Molecular cloning and expression analysis of coagulation factor VIII and plasminogen involved in immune response to GCRV, and immunity activity comparison of grass carp Ctenopharyngodon idella with different viral resistance. FISH & SHELLFISH IMMUNOLOGY 2019; 86:794-804. [PMID: 30557607 DOI: 10.1016/j.fsi.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The grass carp reovirus (GCRV) has been shown to cause lethal infections in the grass carp Ctenopharyngodon idella (C. idella). In order to investigate the immune response to GCRV infection, the full-length cDNA sequences of coagulation factor VIII (CiFVIII) and plasminogen (CiPLG) from C. idella were cloned and their involvement in the immune response was studied. The immunity factor levels in C. idella with different GCRV resistances were also analyzed. The full-length 2478 bp cDNA of CiFVIII contained an open reading frame of 1965 bp and encoded a putative polypeptide of 654 amino acid residues. The full-length 2907 bp cDNA of CiPLG contained an open reading frame of 2133 bp and encoded a putative polypeptide of 710 amino acid residues. CiFVIII was closely clustered with that of Clupea harengus. CiPLG was first clustered with those of Cyprinus carpio and Danio rerio. CiFVIII transcripts were most abundant in the liver and least in the skin. The highest expression level of CiPLG was observed in liver and the lowest in muscle. Expression levels of CiFVIII in gill, head kidney and spleen, and expression levels of CiPLG in gill, intestine and liver all reached the maximum at 72 h post GCRV infection. In spleen, expression levels of CiFVIII and CiPLG were significantly positively correlated. The activities of T-AOC, LSZ and IgM in R♂ were significantly higher than those in O♂. Likewise, T-AOC and LSZ activities in F1 were significantly higher than f1 individuals (P < 0.01). These results indicated that CiFVIII and CiPLG may play important roles in the immune response to GCRV infection. In addition, antioxidant ability and serum immune factor activity may confer a different viral resistance to C. idella.
Collapse
Affiliation(s)
- Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Liang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Dongfang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
13
|
Yengkhom O, Shalini KS, Subramani PA, Michael RD. Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the methanolic extract of the marine macroalga, Caulerpa scalpelliformis. Vet World 2019; 12:271-276. [PMID: 31040570 PMCID: PMC6460875 DOI: 10.14202/vetworld.2019.271-276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
AIM The objective of the present study was to test the immunostimulating potential of marine macroalga, Caulerpa scalpelliformis, in terms of non-specific immune responses, gene expression, and disease resistance of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). MATERIALS AND METHODS O. niloticus was injected intraperitoneally with three different doses of methanol extract of C. scalpelliformis (CSME) (2 mg/kg, 20 mg/kg, or 200 mg/kg body weight), or MacroGard™ (commercial immunostimulant, positive control, and 20 mg/kg body weight), or distilled water (untreated control). In one set of fish, 5 days post-injection, serum lysozyme, myeloperoxidase, and antiprotease activities were assayed. 24 h after injection, gene expression was analyzed in a separate set of fish. To another set of fish, 1 week post-administration of the products, fish were challenged with lethal dose 50 (LD50) dose of a live virulent pathogen, Aeromonas hydrophila and subsequent resistance to it was noted in terms of cumulative percent mortality. RESULTS CSME increased serum lysozyme, myeloperoxidase, and antiprotease activities. There was an increase in the expression of lysozyme gene in the spleen of treated fish. Mid dose of CSME caused the minimum mortality of 10% (consequent relative percentage survival = 73) which is comparable to that of the positive control. CONCLUSION CSME is considered to have the potential to be developed into an immunostimulant for finfish aquaculture.
Collapse
Affiliation(s)
- Omita Yengkhom
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - Konda Subramanian Shalini
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - P. A. Subramani
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - R. Dinakaran Michael
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| |
Collapse
|