1
|
Oliveira J, Raposo de Magalhães C, Schrama D, Rodrigues PM, Barata M, Soares F, Pousão-Ferreira P, Oliva-Teles A, Couto A. Skin mucus and blood plasma as non-lethal sources of malnutrition protein biomarkers in meagre (Argyrosomus regius). J Proteomics 2025; 316:105432. [PMID: 40089056 DOI: 10.1016/j.jprot.2025.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Developing dietary formulations for aquaculture that meet nutritional requirements is essential to production, as nutrition is key for fish growth and health. However, novel dietary formulations may induce malnutrition, which is complex to evaluate and often requires animal sacrifice. Therefore, finding reliable non-lethal biomarkers to diagnose malnutrition in fish is important. This study aimed to obtain vital information on potential non-lethal biomarkers from blood plasma and skin mucus to assess the fish's nutritional status using meagre (Argyrosomus regius) juveniles. For that purpose, a nutritional challenge was performed with fish fed a fish meal (FM) and fish-oil (FO) based control diet (55.1 % FM; 11 % FO, CTRL), a challenging diet (15 % FM; 7 % FO, CD), and a highly challenging diet (5 % FM; 5 % FO, ED), which, despite being nutritionally complete, may pose digestive and physiological challenges to carnivorous species. Diets significantly affected blood parameters, except for leukocyte counts, peroxidase activity, and immunoglobulin levels. Overall, blood parameters showed potential as non-lethal biomarkers to accurately identify signs of malnutrition. Meagre's plasma and skin mucus proteomes provided crucial information on the species' reaction to malnutrition, and 29 proteins connected to various physiological functions such as metabolism, development and immunity showed potential as non-lethal biomarkers. SIGNIFICANCE: The significance of this study lies in the establishment of potential non-lethal biomarkers for diagnosing malnutrition in fish. The results demonstrate that immunological, haematological, and biochemical parameters measured in fish blood can reveal signs of nutritional deficiencies. The findings further highlight that the proteomes of plasma and skin mucus provide valuable information about the fish's nutritional status. Notably, 29 proteins identified in this study, associated with various physiological functions, exhibit biomarker potential and warrant consideration in future research in the field of aquaculture nutrition. Moreover, the research provides critical insights into the proteome of meagre (Argyrosomus regius), enhancing our understanding of the species and contributing to the future improvement of its aquaculture production.
Collapse
Affiliation(s)
- Joana Oliveira
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal.
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Pedro M Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisa Barata
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Florbela Soares
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Aires Oliva-Teles
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| | - Ana Couto
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Vincent D, Parsopoulou F, Martin L, Gaboriaud C, Demongeot J, Loules G, Fischer S, Cichon S, Germenis AE, Ghannam A, Drouet C. Hereditary angioedema with normal C1 inhibitor associated with carboxypeptidase N deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100223. [PMID: 38445235 PMCID: PMC10912455 DOI: 10.1016/j.jacig.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 03/07/2024]
Abstract
Background Hereditary angioedema (HAE) is a potentially life-threatening disorder characterized by recurrent episodes of subcutaneous or submucosal swelling. HAE with normal C1 inhibitor (HAE-nC1-INH) is an underdiagnosed condition. Although the association with genetic variants has been identified for some families, the genetic causes in many patients with HAE-nC1-INH remain unknown. The role of genes associated with bradykinin catabolism is not fully understood. Objective We sought to investigate the biological parameters and the genes related to kallikrein-kinin system in families with a clinical phenotype of HAE-nC1-INH and presenting with a carboxypeptidase N (CPN) deficiency. Methods This study includes 4 families presenting with HAE-nC1-INH and CPN deficiency. Patients' clinical records were examined, biological parameters of kallikrein-kinin system were measured, and genetics was analyzed by next-generation sequencing and Sanger sequencing. Predictive algorithms (Human Splicing Finder, Sorting Intolerant From Tolerant, Polymorphism Phenotyping v2, MutationTaster, and ClinPred) were used to classify variants as affecting splicing, as benign to deleterious, or as disease-causing. Results Patients presented with angioedema and urticaria, mainly on face/lips, but also with abdominal pain or laryngeal symptoms. Affected patients displayed low CPN activity-30% to 50% of median value in plasma. We identified 3 variants of the CPN1 gene encoding the catalytic 55-kDa subunit of CPN: c.533G>A, c.582A>G, and c.734C>T. CPN deficiency associated with genetic variants segregated with HAE-nC1-INH symptoms in affected family members. Conclusions CPN1 gene variants are associated with CPN deficiency and HAE-nC1-INH symptoms in 4 unrelated families. Genetic CPN deficiency may contribute to bradykinin and anaphylatoxin accumulation, with synergistic effects in angioedema and urticarial symptoms.
Collapse
Affiliation(s)
- Denis Vincent
- Allergy and Internal Medicine Unit, University Hospital, Nîmes, France
- Centre de compétence, Centre de Référence des Angioedèmes (CREAK), Nîmes
| | | | - Ludovic Martin
- Dermatology Department, University Hospital, Angers, France
- Centre de Référence des Maladies Rares de la peau et des muqueuses d’origine génétique-Nord (MAGEC), filière FIMARAD, CHU Angers, Angers, France
| | | | | | | | - Sascha Fischer
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Anastasios E. Germenis
- Department of Immunology and Histocompatibility, University of Thessaly, Larissa, Greece
| | | | - Christian Drouet
- Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75679, Paris, France
| |
Collapse
|
3
|
Tang Y, Sun Y, Zhao L, Xu X, Huang L, Qin Y, Su Y, Yi G, Yan Q. Mechanistic insight into the roles of Pseudomonas plecoglossicida clpV gene in host-pathogen interactions with Larimichthys crocea by dual RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2019; 93:344-353. [PMID: 31352116 DOI: 10.1016/j.fsi.2019.07.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economical important farmed fish in China. "Visceral White Spot Disease" caused by Pseudomonas plecoglossicida is a disease with a high mortality rate in cage-cultured L. crocea in recent years and resulted in heavy economy lossess. The dual RNA-seq results of previous study showed that the expression of clpV gene in P. plecoglossicida was significantly up-regulated during infection. RNAi significantly reduced the expression of clpV in P. plecoglossicida with maximum silencing efficiency of 96.1%. Compared with the wild type strain, infection of clpV-RNAi strain resulted in a delayed onset time and a 25% reduction in mortality of L. crocea, as well as lessening the symptoms of the spleen. The results of dual RNA-seq of L. crocea infected by clpV-RNAi strain of P. plecoglossicida changed considerably, compared with the counterpart infected with the wild strain. The KEGG enrichment analysis showed that Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway and MAPK signaling pathway of L. crocea were most affected by the silence of clpV in P. plecoglossicida. RNAi of clpV resulted in the downregulation of genes in flagella assembly pathway and a weaker immune response of host.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yujia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian, 352000, China
| | - Ganfeng Yi
- Fujian Dabeinong Aquaculture Science & Technology Co. Ltd., Zhangzhou, Fujian, 363502, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|