1
|
Chen W, Song T, Li D, Chen M, Wang P, Ye J. Effect of dietary Clostridium butyricum supplementation on growth performance, immune function, and intestinal health of hybrid grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2025; 16:1557256. [PMID: 40078994 PMCID: PMC11897522 DOI: 10.3389/fimmu.2025.1557256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The aim of this study is to investigate the effects of supplementing Clostridium butyricum (C. butyricum) on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), with a particular focus on its impact on growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, tight junction protein (ZO-1) expression, and inflammatory gene expression. The study seeks to uncover the potential health benefits of C. butyricum supplementation for hybrid grouper. Methods The experiment included four groups: a control group (CON) and three experimental groups, each supplemented with different strains of C. butyricum (KM, DZN, and CLH), with a concentration of 1 × 10⁷ colony-forming units per gram. These groups were designated as CB1 (KM), CB2 (DZN), and CB3 (CLH). The study evaluated growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, ZO-1 protein expression, and inflammatory gene expression (IL-1β and Ikk-β). Result The results indicated that supplementation with C. butyricum had no significant effect on body weight gain (WG), feed efficiency (FE), or body composition. However, the CB3 group significantly increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the intestine, as well as the expression of ZO-1. In addition, the CB3 group significantly increased serum lysozyme (LZM) activity, complement 4 (C4) levels, and immunoglobulin M (IgM) concentration, while significantly reducing the expression of pro-inflammatory genes (IL-1β and Ikk-β). After supplementation with C. butyricum, the level of malondialdehyde (MDA) in the intestine was significantly lower than that in the control group, indicating a reduction in intestinal oxidative stress. Supplementation with C. butyricum also altered the composition of the gut microbiota, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria, thereby further enhancing ZO-1 expression and intestinal barrier function. Discussion This study suggests that supplementing C. butyricum has a significant immunomodulatory effect on hybrid grouper, enhancing serum immune parameters, alleviating intestinal inflammation and oxidative stress, and promoting intestinal health. Although no significant impact was observed on growth performance, the role of C. butyricum in improving intestinal barrier function and modulating the gut microbiota highlights its potential for enhancing fish health.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Fisheries College of Jimei University, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Xiamen, China
| |
Collapse
|
2
|
Zhang J, Jia C, Dong J, Wu J, Liu M, Zhang H, Zhao C. The role of sodium butyrate in modulating growth, intestinal health, and antimicrobial efficacy in turbot (Scophthalmus maximus L.) fed high soy diets. Sci Rep 2024; 14:32033. [PMID: 39739006 PMCID: PMC11685986 DOI: 10.1038/s41598-024-83704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Butyrate is one of the most abundant short-chain fatty acids (SCFAs), which are important metabolites of dietary fiber by fermentation of gut commensals, and has been shown to be vital in maintaining host health. The present study mainly investigated how sodium butyrate (NaB) supplementation in the diet with high proportion of soybean meal (SBM) affected turbot. Four experimental diets were formulated: (1) fish meal (FM) based diet (control group), (2) SBM protein replacing 45% FM protein in the diet (high SBM group), (3) 0.2% NaB supplementation in the high SBM diet (high SBM + 0.2% NaB group), and (4) 0.5% NaB supplementation in the high SBM diet (high SBM + 0.5% NaB group). The fish were fed four different diets for 8 weeks. The results showed that the high SBM diet significantly suppressed growth performance, induced typical enteritis symptoms and decreased resistance to bacterial infection. However, inclusion of 0.2% and 0.5% NaB in the high SBM diet both effectively increased the growth performance of turbot. Meanwhile, dietary NaB protected the intestinal morphology, and regulated the gene expression of inflammatory cytokines to relieve the inflammation of turbot, such as TNFα, IL-1β, NFκB and IL-10. Moreover, supplementation with NaB in the high SBM diet activated HIF-1α/IL-22/Lysozyme signaling pathway to against Edwardsiella tarda (E. tarda) infection, especially 0.5% NaB supplementation exerted more effectively to defence bacterial infection under inflammatory state. In conclusion, dietary NaB significantly promoted growth and gut health of turbot. Besides, it enhanced the resistance of fish to bacterial infection, especially dietary 0.5% NaB supplementation.
Collapse
Affiliation(s)
- Jinjin Zhang
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China.
| | - Cuijing Jia
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Jinping Dong
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Jingliang Wu
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Minggang Liu
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Hansong Zhang
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Chengshuo Zhao
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| |
Collapse
|
3
|
Wang S, Cai M, Wang Y, Zhong L, Hu Y, Fu G. Dietary Clostridium butyricum metabolites mitigated the disturbances in growth, immune response and gut health status of Ctenopharyngodon idella subjected to high cottonseed and rapeseed meal diet. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109934. [PMID: 39357627 DOI: 10.1016/j.fsi.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. Clostridium butyricum metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (Ctenopharyngodon idella) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg-1 CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg-1 CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (mnsod, cat, gsto and gpx1) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (tgf-β1 and il-15), and suppressed the expression of pro-inflammatory factors (tnf-α and il-12β), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (zo-1, occludin, occludin7a and occludin-c), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (Streptococcus and Actinomyces). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.
Collapse
Affiliation(s)
- Shao Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minglang Cai
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Guihong Fu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
4
|
Fontinha F, Martins N, Campos G, Peres H, Oliva-Teles A. The Effects of Short-Chain Fatty Acids in Gut Immune and Oxidative Responses of European Sea Bass ( Dicentrarchus labrax): An Ex Vivo Approach. Animals (Basel) 2024; 14:1360. [PMID: 38731364 PMCID: PMC11083385 DOI: 10.3390/ani14091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to evaluate the intestinal interactions between three short-chain fatty acids (SCFA), namely, acetate, propionate, and butyrate, and pathogenic bacteria (Vibrio anguillarum) in intestinal explants of European sea bass (Dicentrarchus labrax) juveniles. The anterior intestine of 12 fish with an average weight of 100 g (killed by excess anesthesia with 2-phenoxyethanol) were sampled and placed in 24-well plates. The experimental treatments consisted of a control medium and a control plus 1 mM or 10 mM of sodium acetate (SA), sodium butyrate (SB), and sodium propionate (SP). After 2 h of incubation, the explants were challenged with Vibrio anguillarum at 1 × 107 CFU/mL for 2 h. After the bacterial challenge, and regardless of the SCFA treatment, the oxidative stress-related genus catalase (cat) and superoxide dismutase (sod) were down-regulated and glutathione peroxidase (gpx) was up-regulated. Furthermore, the immune-related genes, i.e., the tumor necrosis factor (TNF-α), interleukin 8 (IL-8), transforming growth factor (TGF-β), and nuclear factor (NF-Kβ) were also up-regulated, and interleukin 10 (IL-10) was down-regulated. During the pre-challenge, sodium propionate and sodium butyrate seemed to bind the G-protein coupled receptor (grp40L), increasing its expression. During the challenge, citrate synthase (cs) was down-regulated, indicating that the SCFAs were used as an energy source to increase the immune and oxidative responses. Overall, our results suggest that sodium propionate and sodium butyrate may boost European sea bass immune response at the intestine level.
Collapse
Affiliation(s)
- Filipa Fontinha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| | - Nicole Martins
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| | - Gabriel Campos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Louvado A, Coelho FJRC, Palma M, Magnoni LJ, Silva-Brito F, Ozório ROA, Cleary DFR, Viegas I, Gomes NCM. Study of the influence of tributyrin-supplemented diets on the gut bacterial communities of rainbow trout (Oncorhynchus mykiss). Sci Rep 2024; 14:5645. [PMID: 38454011 PMCID: PMC10920674 DOI: 10.1038/s41598-024-55660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Dietary supplementation with triglyceride tributyrin (TBT), a butyrate precursor, has been associated with beneficial effects on fish health and improvements in the ability of carnivorous fish to tolerate higher levels of plant-based protein. In this study, we aimed to investigate the effects of a plant-based diet supplemented with TBT on the structural diversity and putative function of the digesta-associated bacterial communities of rainbow trout (Oncorhynchus mykiss). In addition to this, we also assessed the response of fish gut digestive enzyme activities and chyme metabolic profile in response to TBT supplementation. Our results indicated that TBT had no significant effects on the overall fish gut bacterial communities, digestive enzyme activities or metabolic profile when compared with non-supplemented controls. However, a more in-depth analysis into the most abundant taxa showed that diets at the highest TBT concentrations (0.2% and 0.4%) selectively inhibited members of the Enterobacterales order and reduced the relative abundance of a bacterial population related to Klebsiella pneumoniae, a potential fish pathogen. Furthermore, the predicted functional analysis of the bacterial communities indicated that increased levels of TBT were associated with depleted KEGG pathways related to pathogenesis. The specific effects of TBT on gut bacterial communities observed here are intriguing and encourage further studies to investigate the potential of this triglyceride to promote pathogen suppression in the fish gut environment, namely in the context of aquaculture.
Collapse
Affiliation(s)
- A Louvado
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J R C Coelho
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Palma
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - L J Magnoni
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - F Silva-Brito
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - R O A Ozório
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - I Viegas
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Tran NT, Liang H, Li J, Deng T, Zhang M, Li S. Health benefits of butyrate and its producing bacterium, Clostridium butyricum, on aquatic animals. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100088. [PMID: 36910329 PMCID: PMC9995936 DOI: 10.1016/j.fsirep.2023.100088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Aquaculture plays an important role in contributing to global food security and nutrition; thus, the intensification and diversification of aquaculture are increasingly considered. However, paralleling the development of the industrial scale in aquaculture, the occurrence of diseases is always an important issue that causes great losses in economics. The finding of approaches that not only improve culture production but also reduce the impact of diseases in cultured animals is crucially essential. Previously, several studies have addressed the potential application of feed additives, such as prebiotics, probiotics, synbiotics, and microbial-derived metabolites (including short-chain fatty acids-SCFAs), in aquaculture. In this review, we provide an update focusing on the health benefits of dietary supplementation with a type of SCFAs, butyrate, and its producer, Clostridium butyricum, including their effects on growth, feed utilization, body composition, intestinal structure and function, antioxidant activity, immune response, and tolerance against stress and infection in aquatic animals. The outcomes of this study may indicate more benefits of the use of C. butyricum than that of butyrate (and its forms). This review provides general knowledge of the efficacy of butyrate and C. butyricum in aquaculture.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Corresponding author at: Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China.
| |
Collapse
|
7
|
Hou D, Li M, Li P, Chen B, Huang W, Guo H, Cao J, Zhao H. Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass ( Micropterus salmoides). Front Immunol 2023; 14:1265963. [PMID: 38022555 PMCID: PMC10656595 DOI: 10.3389/fimmu.2023.1265963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-β1, IL-1β and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.
Collapse
Affiliation(s)
- Dongqiang Hou
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Min Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Peijia Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Junming Cao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Yin B, Liu H, Tan B, Deng J, Xie S. The effects of sodium butyrate (NaB) combination with soy saponin dietary supplementation on the growth parameters, intestinal performance and immune-related genes expression of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109033. [PMID: 37640123 DOI: 10.1016/j.fsi.2023.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Soy saponins are generally known to have negative effects on growth and the intestines of aquatic animals, and appropriate levels of sodium butyrate (NaB) may provide some mitigating effects. We investigated the effects of low and high levels of soy saponin and the protective effects of NaB (based on high level of soy saponin) on growth, serum cytokines, distal intestinal histopathology, and inflammation in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The experiment included four groups: fishmeal group (FM, 0.00% saponin and 0.00% NaB), low saponin group (SL, 0.30% saponin and 0.00% NaB), high saponin group (SH, 1.50% saponin and 0.00% NaB) and high saponin with NaB group (SH-NaB, 1.50% saponin and 0.13% NaB). The results showed compared to FM, the final body weight (FBW) and weight gain (WG) were significantly higher and lower in SL and SH, respectively (P < 0.05). Compared to SH, the FBW and WG were significant higher in SH-NaB (P < 0.05). In the serum, compared to FM, the interferon γ (IFN-γ) and interleukin-1β (IL-1β) levels in SH were significantly increased (P < 0.05). Compared to SH, the IFN-γ level was significantly decreased in SH-NaB (P < 0.05). In the distal intestine, based on Alcian Blue-Periodic Acid-Schiff (AB-PAS) observation, the goblet cell/μm was significantly increased and decreased in the SL and SH, respectively, compared to FM. The intestinal diameter/plica height ratio in the SH was significantly higher than those in the FM, SL and SH-NaB (P < 0.05). The NO and ONOO- levels in the SH were significantly higher than that in FM and SL (P < 0.05). At the transcriptional level in the distal intestine, compared to FM, the mRNA levels of tumor necrosis factor (tnfα), il1β, interleukin-8 (il8) and ifnγ were significantly up-regulated in the SH (P < 0.05). Compared to the SH, tnfα, il8 and ifnγ were significantly down-regulated in the SH-NaB (P < 0.05). Compared to the FM, the mRNA levels of claudin3, claudin15, zo2 and zo3 were significantly up-regulated in the SL (P < 0.05). The mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly down-regulated in the SH compared to the FM (P < 0.05). Additionally, compared to the SH, the mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly up-regulated in the SH-NaB (P < 0.05). After the 7-day Vibrio parahaemolyticus challenge test, the survival was significantly higher and lower in the SL and SH, respectively, compared to FM (P < 0.05). Overall, low and high levels of soy saponins had positive and negative effects on growth, disease resistance, serum cytokines, and distal intestinal development and anti-inflammation, respectively, in hybrid grouper. NaB effectively increased disease resistance and improved distal intestinal inflammation in hybrid grouper, but the effects of NaB were mainly observed in improving distal intestinal tight junctions.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China; Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Agricultural Development Co., Ltd., Chengdu, 610093, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| |
Collapse
|
9
|
Lu W, Yu H, Liang Y, Zhai S. Effects of White Fish Meal Replaced by Low-Quality Brown Fish Meal with Compound Additives on Growth Performance and Intestinal Health of Juvenile American Eel ( Anguilla rostrata). Animals (Basel) 2023; 13:2873. [PMID: 37760273 PMCID: PMC10526026 DOI: 10.3390/ani13182873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
With a reduced supply and increased price of white fish meal (WFM), the exploration of a practical strategy to replace WFM is urgent for sustainable eel culture. A 70-day feeding trial was conducted to evaluate the effects of replacing WFM with low-quality brown fish meal (LQBFM) with compound additives (CAs) on the growth performance and intestinal health of juvenile American eels (Anguilla rostrata). The 300 fish (11.02 ± 0.02 g/fish) were randomly distributed in triplicate to four groups (control group, LQBFM20+CAs group, LQBFM30+CAs group and LQBFM40+CAs group). They were fed the diets with LQBFM replacing WFM at 0, 20%, 30% and 40%, respectively. The CAs were a mixture of Macleaya cordata extract, grape seed proanthocyanidins and compound acidifiers; its level in the diets of the trial groups was 0.50%. No significant differences were found in the growth performance between the control and LQBFM20+CAs groups (p > 0.05), whereas those values were significantly decreased in LQBFM30+CAs and LQBFM40+CAs groups (p < 0.05). Compared to the control group, the activity of glutamic-pyruvic transaminase was significantly increased in LQBFM30+CAs and LQBFM40+CAs groups, while lysozyme activity and complement 3 level were significantly decreased in those two groups (p < 0.05). There were decreased antioxidant potential and intestinal morphological indexes in the LQBFM30+CAs and LQBFM40+CAs groups, and no significant differences in those parameters were observed between the control group and LQBFM20+CAs group (p > 0.05). The intestinal microbiota at the phylum level or genus level was beneficially regulated in the LQBFM20+CAs group; similar results were not shown in the LQBFM40+CAs group. In conclusion, with 0.50% CA supplementation in the diet, LQBFM could replace 20% of WFM without detrimental effects on the growth and intestinal health of juvenile American eels and replacing 30% and 40%WFM with LQBFM might exert negative effects on this fish species.
Collapse
Affiliation(s)
| | | | | | - Shaowei Zhai
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China; (W.L.); (H.Y.); (Y.L.)
| |
Collapse
|
10
|
Rashidian G, Zare M, Tabibi H, Stejskal V, Faggio C. The synergistic effects of four medicinal plant seeds and chelated minerals on the growth, immunity, and antioxidant capacity of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108930. [PMID: 37419436 DOI: 10.1016/j.fsi.2023.108930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Trace minerals are essential for the normal functioning of all living organisms. In addition, the positive effects of several medicinal plants have been demonstrated in aquaculture. In the present study, we aimed to investigate the effects of a mixture of medicinal plants and test the synergistic effects of medicinal plants and chelated minerals on fish growth and immunity. Thus, in the present experiment we evaluated the combined effects of a commercial chelated mineral source (BonzaFish®) and a mixture of 4 medicinal plants including caraway (Carum carvi), green cumin (Cuminum cyminum), dill (Anethum graveolens), and anise (Pimpinella anisum). Rainbow trout (Oncorhynchus mykiss) fingerlings (n = 225) were fed with five formulated diets, including a control diet (basal diet), Bonza (basal diet + 1 g/kg BonzaFish®), Z-5 (basal diet + 1 g/kg BonzaFish® + 5 g/kg mixture of plant seeds), Z-10 (basal diet + 1 g/kg BonzaFish®+10 g/kg mixture of plant seeds), Z-20 (basal diet+1 g/kg BonzaFish®+20 g/kg mixture of plant seeds) for 6 weeks. In diets including BonzaFish®, 50% of the inorganic mineral premix was replaced by BonzaFish®. Results revealed that fish receiving the Z-20 diet showed the best performance in terms of growth parameters, followed by the Bonza treatment (P < 0.05). The highest protease activity was found in Z-5 and Z-10. RBCs were highest in Z-5, while the highest WBCs and hemoglobin were found in the Bonza treatment followed by Z-20. Stress biomarkers were lowest in the Z-20 treatment. Results showed that Z-20 could elicit the most robust immunological responses of lysozyme activity, ACH50, total Ig, C3, and C4. In conclusion, chelated minerals could be successfully used to replace 50% of mineral premix with no negative impacts on fish growth and together with four medicinal plants, could enhance rainbow trout overall growth performance and immunity.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05, České Budějovice, Czech Republic
| | - Mahyar Zare
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05, České Budějovice, Czech Republic
| | - Hamidreza Tabibi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Vlastimil Stejskal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05, České Budějovice, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
11
|
Hoseini SM, Yousefi M, Afzali-Kordmahalleh A, Pagheh E, Taheri Mirghaed A. Effects of Dietary Lactic Acid Supplementation on the Activity of Digestive and Antioxidant Enzymes, Gene Expressions, and Bacterial Communities in the Intestine of Common Carp, Cyprinus carpio. Animals (Basel) 2023; 13:1934. [PMID: 37370444 DOI: 10.3390/ani13121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The present study investigated the effects of dietary lactic acid (LA) supplementation on the growth performance, intestinal digestive/antioxidant enzymes' activities, gene expression, and bacterial communities in common carp, Cyprinus carpio. Four diets were formulated to contain 0 g/kg LA (control), at 2.5 g/kg LA (2.5LAC), 5 g/kg LA (5LAC), and 10 g/kg LA (10LAC) and offered to the fish over a period of 56 days. The results showed that dietary 5 g/kg LA supplementation improved growth performance and feed efficiency in the fish. All LA treatments exhibited significant elevations in the intestinal trypsin and chymotrypsin activities, whereas the intestinal lipase, amylase, and alkaline phosphatase activities exhibited significant elevations in the 5LAC and 10LAC treatments. All LA treatments exhibited significant elevations in the intestinal heat shock protein 70, tumor necrosis factor-alpha, interleukin-1 beta, and defensin gene expressions, and the highest expression was observed in the 5LAC treatment. Additionally, dietary LA treatment significantly increased the lysozyme expression and Lactobacillus sp. population in the intestine of the fish, and the highest values were observed in the 5LAC and 10LAC treatments. Aeromonas sp. and Vibrio sp. populations decreased in the LA treatments, and the lowest Aeromonas sp. population was observed in the 10LAC treatment. The intestinal mucin2 and mucin5 expressions, and the hepatic reduced glutathione content, significantly increased, whereas hepatic glutathione peroxidase, glutathione reductase, and malondialdehyde significantly decreased in the 5LAC and 10LAC treatments. In conclusion, dietary 5 g/kg LA is recommended for common carp feeding to improve growth rate, antioxidant capacity, and intestinal health.
Collapse
Affiliation(s)
- Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4915677555, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alireza Afzali-Kordmahalleh
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Esmaeil Pagheh
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4915677555, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| |
Collapse
|
12
|
Vargas RA, Soto-Aguilera S, Parra M, Herrera S, Santibañez A, Kossack C, Saavedra CP, Mora O, Pineda M, Gonzalez O, Gonzalez A, Maisey K, Torres-Maravilla E, Bermúdez-Humarán LG, Suárez-Villota EY, Tello M. Analysis of microbiota-host communication mediated by butyrate in Atlantic Salmon. Comput Struct Biotechnol J 2023; 21:2558-2578. [PMID: 37122632 PMCID: PMC10130356 DOI: 10.1016/j.csbj.2023.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1β and increased anti-inflammatory IL-10 and TGF-β cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.
Collapse
|
13
|
Deng F, Wang D, Chen F, Lu T, Li S. Molecular characterization and expression analysis of claudin-4-like in rainbow trout involved in Flavobacterium psychrophilum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:244-251. [PMID: 36122640 DOI: 10.1016/j.fsi.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The claudin family of proteins are pivotal components of tight junction (TJ) participating in the epithelial barrier function in fish. Our previous studies indicated that one of the claudins, claudin-4-like (OmCLDN4L) was differentially expressed in rainbow trout (Oncorhynchus mykiss) spleen post infection of Flavobacterium psychrophilum, which is the causative pathogen of bacterial coldwater disease (BCWD). However, little is known about the function of OmCLDN4L in rainbow trout against bacterial infection. In the present study, the OmCLDN4L was identified and functionally characterized from rainbow trout. The OmCLDN4L has an open reading frame (ORF) of 668 bp, encoding a 22.86 kDa four-transmembrane protein with function of bicellular tight junction and apical tight junction. OmCLDN4L has the highest similarity with CLDN28a, CLDN28b and CLDN30 in amino acid sequence. Phylogenetic analysis showed that all of CLDN4 and CLDN4-like from fish clustered together but diverged from their counterparts in mammals, with main differences lying in their N-terminus. RT-qPCR results indicated that OmCLDN4L was constitutively expressed in all tissues investigated under healthy conditions, primarily in mucus, liver, skin and intestine. The expression of OmCLDN4L in rainbow trout intestine was slightly down-regulated at day 1 while up-regulated at day 3 and day 7 post F. psychrophilum infection, with the similar profiling of CLDN30 and CLDN10e. The expression level of inflammatory cytokines TNF-α, IL4/13A, IL-6 and pattern recognition receptor TLR-2 showed the same trend with OmCLDN4L in the intestine at day 3 and day 7 post F. psychrophilum infection. Collectively, these findings demonstrate that OmCLDN4L participates in the immune response to bacterial infection, offering new insights into the molecular mechanism of intestinal barrier in rainbow trout against F. psychrophilum infection.
Collapse
Affiliation(s)
- Furong Deng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Fuguang Chen
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
14
|
Monier MN, Abd El-Naby AS, Samir F, Abdel-Tawwab M. Positive effects of dietary nanosized sodium butyrate on growth performance, immune, antioxidant indices, and resistance of Nile tilapia to waterborne copper toxicity. AQUACULTURE REPORTS 2022; 26:101323. [DOI: 10.1016/j.aqrep.2022.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Mahboub HH, Rashidian G, Hoseinifar SH, Kamel S, Zare M, Ghafarifarsani H, Algharib SA, Moonmanee T, Van Doan H. Protective effects of Allium hirtifolium extract against foodborne toxicity of Zinc oxide nanoparticles in Common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109345. [PMID: 35429652 DOI: 10.1016/j.cbpc.2022.109345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
Abstract
The use of nano-sized materials is increasingly growing, while consequent health and environmental risks are still disputed. On the other hand, plant extracts have been reported to improve fish general health status and enhance antioxidant capacity. Thus, the present study was aimed to assess potential effects of Allium hirtifolium extract (AHE) to fortify antioxidant responses of Common carp (Cyprinus carpio) exposed to foodborne Zinc oxide nanoparticles (ZnO-NPs). Five hundred and forty fish were randomly allocated into 18 tanks and received six diets including a basal diet (as control), basal diet incorporated with either 13 mg/kg (ZnO-25) or 26 mg/kg (ZnO-50) of ZnO-NPs, 1.5% AHE (AHE-1.5), and similar concentrations of ZnO-NPs plus AHE (ZnO-25-AHE) and (ZnO-50-AHE) for a period of 30 days. Results revealed that blood indices, stress biomarkers (glucose and cortisol), and antioxidant parameters and genes in AHE-1.5 group were significantly modulated and improved when compared to other groups (P < 0.05). In AHE-enriched groups, serum and liver tissue antioxidative parameters were enhanced as reflected in a noticeable decrease in malondialdehyde value and an increase in catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. However, current results showed that diets incorporated with ZnO-NPs elevated the stress parameters besides a significant reduction for most measured biochemical parameters and AHE supplementation ameliorated these effects in terms of improving antioxidant parameters. In ZnO-25-AHE, and ZnO-50-AHE, the values for expression of GPx were found significantly (P < 0.05) different from that of ZnO-25 and ZnO-50. On the contrary, SOD showed a non-significant difference (P > 0.05) among control, ZnO-25, and ZnO-50-AHE, also in-between ZnO-25 and ZnO-25-AHE. The present results indicate that AHE supplementation could trigger antioxidant responses both at tissue and molecular levels suggesting its outstanding protective effects against foodborne toxicity of ZnO-NPs in Common carp.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356 Noor, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Samar Kamel
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Mahyar Zare
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356 Noor, Iran; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand..
| |
Collapse
|
17
|
The Dietary Effects of Nutmeg (Myristica fragrans) Extract on Growth, Hematological Parameters, Immunity, Antioxidant Status, and Disease Resistance of Common Carp (Cyprinus carpio) against Aeromonas hydrophila. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030325] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Medicinal plants are increasingly used in aquaculture owing to their beneficial impacts on the health status of farmed fish. The current study was conducted to investigate the effect of nutmeg (Myristica fragrans) extract on growth, immunity, antioxidant parameters, and resistance of common carp (Cyprinus carpio) against Aeromonas hydrophila. In addition, in vitro antibacterial activity of the skin mucus of fish fed on nutmeg extract was evaluated against three major fish pathogenic bacteria through the standard disk diffusion method. Fish (17.27 ± 0.11 g) were divided into four groups and fed on experimental diets containing different levels of nutmeg extract, including zero (control), 0.5% (M1), 1% (M2), and 2% (M3) per kg diet. Results showed that nutmeg significantly enhanced growth parameters after a four-week feeding trial. Feed conversion ratio was remarkably reduced with the lowest value reported for the M3 group, whereas weight gain was notably increased in M2 and M3. No significant effect was found on the hematological profile, including mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular volume, and hematocrit, while the highest levels of red blood cells and white blood cells were found in the M3 group. Stress biomarkers, including glucose and cortisol, were the lowest in the M3 group. Serum and skin mucus immunological and antioxidant parameters were significantly higher in M3, followed by M2, where the highest resistance was also observed. In addition, skin mucus samples effectively inhibited Streptococcus iniae, Yersinia ruckeri, and Aeromonas hydrophila. Overall, the present results suggest that dietary nutmeg (20 g/kg diet) could be used as a growth promotor and immunostimulant in common carp.
Collapse
|
18
|
Abdel-Latif HMR, Hendam BM, Shukry M, El-Shafai NM, El-Mehasseb IM, Dawood MAO, Abdel-Tawwab M. Effects of sodium butyrate nanoparticles on the hemato-immunological indices, hepatic antioxidant capacity, and gene expression responses in Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2021; 119:516-523. [PMID: 34718125 DOI: 10.1016/j.fsi.2021.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Recently, nanotechnology has been greatly developed to provide the aquaculture industry with new beneficial nanomaterials to improve the health and welfare of aquatic animals. Herein, an eight-week experiment was designed to examine the dietary impacts of sodium butyrate nanoparticles (SB-NPs) on the hematological profile, blood proteins, immunological indices, antioxidant capacity, and expression analysis of cytokines and antioxidant-related genes in Oreochromis niloticus. Fish were randomly assigned into 5 experimental groups (3 replicates per group) and were fed diets supplemented with 5 levels of SB-NPs as 0.0 (control), 0.5, 1.0, 1.5, and 2.0 mg kg-1. The results revealed that supplementing diets with SB-NPs (1.0-2.0 mg kg-1) significantly elevated erythrocyte and leukocyte counts, hemoglobin concentrations, hematocrit values, total albumin, globulin, serum lysozyme activities, and total immunoglobulin M values compared with the control group. Notably, the highest levels of the parameters mentioned above were noticed in the group fed diet supplemented with 1.5 mg kg-1 SB-NPs. Moreover, dietary SB-NPs modulated the fish's antioxidant defense mechanisms, whereas there was a significant increase in hepatic superoxide dismutase, catalase, and glutathione peroxidase enzyme activities along with a significant decline in hepatic malondialdehyde concentrations in fish groups fed diets supplemented with SB-NPs (1.0-2.0 mg kg-1). A significant upregulation of antioxidant enzyme genes (gpx and sod), anti-inflammatory cytokine (il-10), and pro-inflammatory cytokines (il-1β and il-8) were noticed in liver tissues of SB-NPs groups (0.5-1.5 mg kg-1). The highest mRNA expression folds of the above genes were recorded in the fish group fed diet supplemented with 1.5 mg kg-1 SB-NPs. In this context, we hypothesized that dietary supplementation with SB-NPs can boost the antioxidant status and immunity of O. niloticus. However, further research studies are still recommended.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
19
|
Rashidian G, Moosazadeh Moghaddam M, Mirnejad R, Mohammadi Azad Z. Supplementation of zebrafish (Danio rerio) diet using a short antimicrobial peptide: Evaluation of growth performance, immunomodulatory function, antioxidant activity, and disease resistance. FISH & SHELLFISH IMMUNOLOGY 2021; 119:42-50. [PMID: 34597813 DOI: 10.1016/j.fsi.2021.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Short-chain bioactive peptides are new and promising antimicrobial, immune moderating, and antioxidant agents. Therefore, the present study was conducted to evaluate in vitro antibacterial activity of CM11, a short antimicrobial peptide (AMP), against Streptococcus iniae and Yersinia ruckeri as fish pathogenic bacteria using standard disk diffusion and microdilution assays. In addition, in vivo effects of CM11 on fish growth, immunity, antioxidant activity, and disease resistance were evaluated using zebrafish (Danio rerio) as an animal model. For in vivo study, based on in vitro susceptibility results, four diets were designed to include zero (as control), 10, 20, and 50 μg of CM11 per g diet referred to as control, P1, P2, and P3 treatments, respectively. After eight weeks of dietary trial, fish were challenged with Streptococcus iniae, and the survival rate was calculated for a period of two weeks. Results showed that CM11 effectively inhibited the growth of S. iniae and Y. ruckeri on agar plates at a concentration of eight μg/ml. Minimum inhibitory and minimum bactericidal concentrations of CM11 were measured at 8 and 32 μg/ml for S. iniae and 16 and 64 μg/ml Y. ruckeri, respectively. In vivo results showed no noticeable effects on fish growth parameters, however, feed conversion ratio (FCR) was found lower in P3 and P2 compared to control (P < 0.05). Immunological and antioxidant responses were found strongly affected by CM11 in all treatment groups in which the highest values were found in the P3 treated group. Key immune and antioxidant genes were up-regulated particularly in fish receiving the highest level of CM11 (P3). Fish receiving the CM11 peptide showed better survival when challenged with S. iniae. These findings suggest the potential of CM11 for use in aquaculture as an antibacterial and immunostimulant agent.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356, Noor, Iran
| | | | - Reza Mirnejad
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi Azad
- Department of Microbiology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Yu G, Ou W, Ai Q, Zhang W, Mai K, Zhang Y. In vitro study of sodium butyrate on soyasaponin challenged intestinal epithelial cells of turbot (Scophthalmus maximus L.) refer to inflammation, apoptosis and antioxidant enzymes. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100031. [PMID: 36420502 PMCID: PMC9680047 DOI: 10.1016/j.fsirep.2021.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 01/14/2023] Open
Abstract
The study is aimed to investigate the protective effect and potential mechanisms of sodium butyrate (NaBT) on soyasaponins (SA) induced intestinal epithelial cells (IECs) injury in vitro. The primary IECs of turbot were developed and treated with 0.4, 1 and 4 mM NaBT in the presence of 0.4 mg/mL SA for 6 h to explore the protective effects of NaBT. The results showed that the addition of NaBT significantly down-regulated gene expression of inflammatory cytokine TNF-α, IL-1β and IL-8, pro-apoptosis relevant gene BAX, caspase-3, caspase-7 and caspase-9 induced by SA, while up-regulated anti-apoptosis gene Bcl-2. SA stimulation did not induce reactive oxygen species production, but elevated gene expression of antioxidant enzyme heme oxygenase-1 and superoxide dismutase. Moreover, the gene expression of those antioxidant enzyme was further up-regulated in NaBT groups. Furthermore, NaBT supplementation decreased the acid phosphatase and alkaline phosphatase activities and suppressed phosphorylation of p38 and c-Jun N-terminal kinase (JNK). In conclusion, NaBT could mitigate SA-induced inflammation and apoptosis and elevate gene expression of antioxidant enzymes on IECs of turbot and p38 and JNK signaling pathway participated in those processes.
Collapse
|
21
|
Hoseinifar SH, Rashidian G, Ghafarifarsani H, Jahazi MA, Soltani M, Doan HV, El-Haroun E, Paolucci M. Effects of Apple ( Malus pomila) Pomace-Derived Pectin on the Innate Immune Responses, Expressions of Key Immune-Related Genes, Growth Performance, and Digestive Enzyme Activity of Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2021; 11:ani11072117. [PMID: 34359245 PMCID: PMC8300127 DOI: 10.3390/ani11072117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present study investigated possible administration of pectin derived from apple pomace as a beneficial and cost-effective feed additive to be used in trout culture. To achieve the aim, a range of parameters were measured including immune parameters (both at physiological and molecular levels), growth performance and digestive enzyme activity. The results showed promising effects on the measured parameters and hence we can suggest administration of this feed additive in trout culture. Abstract Pectins are a group of carbohydrates found in structural parts of terrestrial plants with wide industrial and biomedical applications. This study was designed to investigate the dietary effects of apple pomace-derived pectin (APDP) in rainbow trout (Oncorhynchus mykiss). Four formulated diets were provided with different inclusion levels of APDP for 30 days: 0, 5, 10, and 20 g kg−1; referred to as control, P1, P2, and P3, respectively. In this study, 300 fish (3.56 ± 0.007 g) were randomly distributed into twelve fiberglass tanks and fed 3% of their respective body weight four times a day. At the end of the experiment, growth parameters, including weight gain, specific growth rate, and food conversion ratio (FCR) were significantly improved in P1 and P2 treatments compared to those of the other treatments. Results from proximate composition analysis showed that protein content increased, and lipid decreased in the P2 and P3 groups. Serum lysozyme, complement activity, total immunoglobulin levels, and total protein were significantly enhanced in all treatments compared to those of the control group. Gene expression results showed no significant difference in regulation of interleukin-1β (IL-1β); however, up-regulation of lysozyme, interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) was observed in both P1 and P2. Unlike lipase, the activity of protease and amylase significantly increased in fish receiving different levels of APDP compared to the control (p < 0.05). In conclusion, the present findings suggest APDA as a promising feed additive for rainbow trout.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, 49189-43464 Gorgan, Iran;
- Correspondence:
| | - Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 4641776489, Iran;
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, 5756151818 Urmia, Iran;
| | - Mohammad Amin Jahazi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, 49189-43464 Gorgan, Iran;
| | - Mehdi Soltani
- Department of Aquatic Animal Health Faculty of Veterinary Medicine, University of Tehran, 1419963111 Tehran, Iran;
- Centre for Sustainable Aquatic Ecosystems, University of Murdoch, Murdoch, WA 6150, Australia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Department of Animal Production, Faculty of Agriculture, Cairo University, Cairo 12411, Egypt;
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy;
| |
Collapse
|
22
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
23
|
Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout ( Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease. Mar Drugs 2021; 19:md19020072. [PMID: 33572960 PMCID: PMC7911277 DOI: 10.3390/md19020072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Bio-nanotechnology employing bio-sourced nanomaterial is an emerging avenue serving the field of fish medicine. Marine-sourced chitosan nanoparticles (CSNPs) is a well-known antimicrobial and immunomodulatory reagent with low or no harm side effects on fish or their human consumers. In this study, in vitro skin mucus and serum antibacterial activity assays along with intestinal histology, histochemical, and gene expression analyses were performed to evaluate the impact of dietary CSNPs (5 g kg−1 dry feed) on rainbow trout resistance against ‘enteric redmouth’ disease. Two treatment conditions were included; short-term prophylactic-regimen for 21 days before the bacterial challenge, and long-term therapeutic-regimen for 21 days before the challenge and extended for 28 days after the challenge. Our results revealed higher antibacterial defense ability and positive intestinal histochemical and molecular traits of rainbow trout after dietary CSNPs. The prophylactic-regimen improved trout health while the therapeutic regimen improved their disease resistance and lowered their morbidity. Therefore, it is anticipated that CSNPs is an effective antibacterial and immunomodulatory fish feed supplement against the infectious threats. However, the CSNPs seem to be more effective in the therapeutic application rather than being used for short-term prophylactic applications.
Collapse
|
24
|
Supplementation of AQUAGEST® as a Source of Medium-Chain Fatty Acids and Taurine Improved the Growth Performance, Intestinal Histomorphology, and Immune Response of Common Carp (Cyprinus carpio) Fed Low Fish Meal Diets. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Four diets were prepared to include a mixture of medium-chain fatty acids and taurine as a digestive/ metabolic enhancer (DME, AQUAGEST®) at 0, 1, 2, and 3 g DME/kg diet and fed to common carp (initial weight, 4.55±0.03 g) for 70 days. Dietary DME significantly increased the final weight, weight gain, specific growth rate, feed intake, and protein efficiency and decreased feed conversion ratio in a dose-dependent manner (P<0.05). The body lipid composition was significantly improved by feeding DME at 2 g/kg diet (P=0.0141). The intestine villus length and the number of goblet cells were significantly increased in fish fed 2 g DME/kg diet (P<0.05). The intestinal villi displayed increased length, branching, and density by supplementing DME to common carp diets. Fish fed DME at 2 g/kg diet displayed markedly decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT ) (P=0.025 and P=0.043) and increased total protein and globulin (P =0.002 and P=0.003). Additionally, fish fed 2 and 3 g DME/kg levels displayed significantly increased albumin levels (P=0.006). Lysozyme and phagocytic activities were increased by feeding DME at 2 g/kg diet, while the phagocytic index increased by 2 and 3 g/kg diet (P<0.05). The optimal supplementation level of DME is 1.63 to 2.05 g/kg for common carp based on the polynomial regression analysis. In conclusion, common carp fed diets with a mixture of medium-chain fatty acids and taurine displayed improved growth, digestion activity, and immune response.
Collapse
|
25
|
Estruch G, Martínez-Llorens S, Tomás-Vidal A, Monge-Ortiz R, Jover-Cerdá M, Brown PB, Peñaranda DS. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). J Proteomics 2020; 216:103672. [PMID: 32004726 DOI: 10.1016/j.jprot.2020.103672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
Abstract
The digestive tract, particularly the intestine, represents one of the main sites of interactions with the environment, playing the gut mucosa a crucial role in the digestion and absorption of nutrients, and in the immune defence. Previous researches have proven that the fishmeal replacement by plant sources could have an impact on the intestinal status at both digestive and immune level, compromising relevant productive parameters, such as feed efficiency, growth or survival. In order to evaluate the long-term impact of total fishmeal replacement on intestinal mucosa, the gut mucosa proteome was analysed in fish fed with a fishmeal-based diet, against plant protein-based diets with or without alternative marine sources inclusion. Total fishmeal replacement without marine ingredients inclusion, reported a negative impact in growth and biometric parameters, further an altered gut mucosa proteome. However, the inclusion of a low percentage of marine ingredients in plant protein-based diets was able to maintain the growth, biometrics parameters and gut mucosa proteome with similar values to FM group. A total fishmeal replacement induced a big set of underrepresented proteins in relation to several biological processes such as intracellular transport, assembly of cellular macrocomplex, protein localization and protein catabolism, as well as several molecular functions, mainly related with binding to different molecules and the maintenance of the cytoskeleton structure. The set of downregulated proteins also included molecules which have a crucial role in the maintenance of the normal function of the enterocytes, and therefore, of the epithelium, including permeability, immune and inflammatory response regulation and nutritional absorption. Possibly, the amino acid imbalance presented in VM diet, in a long-term feeding, may be the main reason of these alterations, which can be prevented by the inclusion of 15% of alternative marine sources. SIGNIFICANCE: Long-term feeding with plant protein based diets may be considered as a stress factor and lead to a negative impact on digestive and immune system mechanisms at the gut, that can become apparent in a reduced fish performance. The need for fishmeal replacement by alternative ingredients such as plant sources to ensure the sustainability of the aquaculture sector has led the research assessing the intestinal status of fish to be of increasing importance. This scientific work provides further knowledge about the proteins and biologic processes altered in the gut in response to plant protein based diets, suggesting the loss of part of gut mucosa functionality. Nevertheless, the inclusion of alternative marine ingredients was able to reverse these negative effects, showing as a feasible option to develop sustainable aquafeeds.
Collapse
Affiliation(s)
- Guillem Estruch
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Raquel Monge-Ortiz
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, 47907 West Lafayette, IN, USA
| | - David S Peñaranda
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
26
|
Dawood MAO, Eweedah NM, Elbialy ZI, Abdelhamid AI. Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J Therm Biol 2019; 88:102500. [PMID: 32125987 DOI: 10.1016/j.jtherbio.2019.102500] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/09/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022]
Abstract
The present study investigated the effects of sodium butyrate (SB) on the growth performance, histomorphology, immune response, and stress related markers of Nile tilapia subjected to heat stress. SB was incorporated at 0, 0.5, 1, 1.5, and 2 g per kg diet and fed to fish for 8 weeks. The obtained results revealed significantly improved growth performance with a decreased feed conversion ratio in the fish fed SB (P < 0.05). In the anterior, middle, and distal parts of the intestine, villus length and width and internal villi distance as well as the number of goblet cells were increased in the fish fed SB (P < 0.05). The blood total protein, hemoglobin, and white and red blood cell counts showed a significant quadratic influence (P < 0.05). The survival rate for Nile tilapia exposed to heat stress for 48 h revealed that the SB fed groups had noticeably higher survival rates. Dietary SB significantly increased the phagocytic index and lysozyme and phagocytic activities both before and after heat stress (P < 0.05). After heat stress, blood glucose decreased significantly with SB feeding at 0.5, 1, or 1.5 g per kg diet, while cortisol was reduced in fish fed 1.5 or 2 g per kg diet (P < 0.05). Additionally, in fish fed SB, superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were significantly increased both before and after heat stress, while malondialdehyde was decreased by SB feeding (P < 0.05). Liver heat shock protein 70 and SOD gene expression were significantly upregulated in fish fed on SB at 1 g per kg diet (P < 0.05). Thus, supplementation with SB at 1-2 g per kg diet can be used effectively in tilapia diets for improving growth, feed efficiency, and immune response as well as for tolerance to heat stress.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Nabil M Eweedah
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Egypt
| | - Amr I Abdelhamid
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| |
Collapse
|