1
|
Liu Y, Lu S, Guo M, Wang Z, Hu B, Zhou B, Chen S. The dynamic immune response of the liver and spleen in leopard coral grouper ( Plectropomus leopardus) to Vibrio harveyi infection based on transcriptome analysis. Front Immunol 2024; 15:1457745. [PMID: 39450165 PMCID: PMC11499110 DOI: 10.3389/fimmu.2024.1457745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Leopard coral grouper (Plectropomus leopardus) is one of the most important cultured fish in the Pacific and Indian oceans. Vibrio harveyi is a serious pathogen causing serious skin ulceration and high mortality in P. leopardus. To gain more insight into the tissue-specific and dynamic immune regulation process of P. leopardus in response to V. harveyi infection, RNA sequencing (RNA-seq) was used to examine the transcriptome profiles in the spleen and liver at 0, 6, 12, 24, 48, and 72 h post-infection. The upregulated differentially expressed genes (DEGs) were predominantly involved in the immune response in the spleen and liver at the early infection stage (6-12 h), and downregulated DEGs were mainly involved in metabolic processes in the liver at the early and middle infection stage (6-48 h). Moreover, an overview of the immune response of P. leopardus against V. harveyi was exhibited including innate and adaptive immune-related pathways. Afterwards, the results of WGCNA analysis in the spleen indicated that TAP2, IRF1, SOCS1, and CFLAR were the hub genes closely involved in immune regulation in the gene co-expression network. This study provides a global picture of V. harveyi-induced gene expression profiles of P. leopardus at the transcriptome level and uncovers a set of key immune pathways and genes closely linked to V. harveyi infection, which will lay a foundation for further study the immune regulation of bacterial diseases in P. leopardus.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Mengqi Guo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Ziyuan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Bowen Hu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Bo Zhou
- Wanning Linlan Aquaculture Co., LTD, Wanning, Hainan, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| |
Collapse
|
2
|
Bu X, Zhao W, Zou H, Li W, Li M, Wang G. Immune response and apoptosis of gibel carp (Carassius auratus gibelio) gills to Chilodonella hexasticha infection: Insights from histopathological and multi-omics analyses. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109429. [PMID: 38342413 DOI: 10.1016/j.fsi.2024.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Gibel carp (Carassius auratus gibelio) is an important economically farmed fish in China. Chilodonella hexasticha parasitizes on the gills and fins of host fish, causing disruption to their normal respiration and movement, ultimately resulting in death of the fish. In this study, a combination of histopathological, immunohistochemical, transferase dUTP nick end labeling (TUNEL), multi-omics, and molecular approaches were employed to identify the immune reaction and cell apoptosis in gill tissue in response to C. hexasticha infection. Significant lamellae fusion, hyperplasia, hyperemia, necrosis, and desquamation of infected gibel carp gills were observed. In total, the expression of 3619 genes was higher, and 3143 lower, for gills in the infected group compared to the control group. Furthermore, 76 metabolites were significantly increased and 105 were significantly decreased in the infected group compared with the control group. From the qRT-PCR analysis results, immune system-related genes encoding IL-8, CXCL8a, and CXC11 were significantly up-regulated in infected gibel carp, while ZAP70 was significantly down-regulated. Immunohistochemical results also showed the down-regulated ZAP70 in the infected group. Apoptosis-related genes encoding CASP3 and Mcl-1b were up-regulated in response to C. hexasticha infection. These genes indicate the activation of CASP family-related apoptosis and Bim-mediated mitochondrial apoptotic pathways. TUNEL assays also revealed severe apoptosis in the infected group. Based on this study's results, it can be concluded that C. hexasticha infection leads to histopathological changes in the gills of infected fish, and induces both a significant immune response and apoptosis.
Collapse
Affiliation(s)
- Xialian Bu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weishan Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| |
Collapse
|
3
|
Sun P, Zhang D, Li N, Li XF, Ma YH, Li H, Tian Y, Wang T, Siddiquid SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Transcriptomic insights into the immune response of the intestine to Aeromonas veronii infection in northern snakehead (Channa argus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114825. [PMID: 36989948 DOI: 10.1016/j.ecoenv.2023.114825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation is a protective response that is implicated in bacterial enteritis triggered by gastrointestinal infection. The immune mechanisms elicited in teleost against the infection of Aeromonas veronii are largely unknown. In this study, we performed a de novo northern snakehead (Channa argus) transcriptome assembly using Illumina sequencing platform. On this basis we performed a comparative transcriptomic analysis of northern snakehead intestine from A. veronii-challenge and phosphate buffer solution (PBS)-challenge fish, and 2076 genes were up-regulated and 1598 genes were down-regulated in the intestines infected with A. veronii. The Gene Ontology (GO) enrichment analysis indicated that the differentially expressed genes (DEGs) were enriched to 27, 21 and 20 GO terms in biological process, cellular component, and molecular function, respectively. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 420 DEGs were involved in 194 pathways. Moreover, 33 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results reflected the consistency of the expression levels between qRT-PCR and RNA-seq data. In addition, a time-course analysis of the mRNA expression of 33 immune-related genes further indicated that the intestinal inflammation to A. veronii infection simultaneously regulated gene expression alterations. The present study provides transcriptome data of the teleost intestine, allowing us to understand the mechanisms of intestinal inflammation triggered by bacterial pathogens. DATA AVAILABILITY STATEMENT: All data supporting the findings of this study are available within the article and Supplementary files. The RNA-seq raw sequence data are available in NCBI short read archive (SRA) database under accession number PRJNA615958.
Collapse
Affiliation(s)
- Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang 157020, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
5
|
Comprehensive transcriptomics and proteomics analysis of Carassius auratus gills in response to Aeromonas hydrophila. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100077. [PMID: 36589261 PMCID: PMC9798182 DOI: 10.1016/j.fsirep.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the mucosal barriers, fish gills represent the first line of defense against pathogen infection. However, the exact mechanism of gill mucosal immune response to bacterial infection still needs further investigation in fish. Here, to investigate pathological changes and molecular mechanisms of the mucosal immune response in the gills of crucian carp (Carassius auratus) challenged by Aeromonas hydrophila, the transcriptomics and proteomics were performed by using multi-omics analyses of RNA-seq coupled with iTRAQ techniques. The results demonstrated gill immune response were mostly related to the activation of complement and coagulation cascades, antigen processing and presentation, phagosome, NOD-like receptor (NLR) and nuclear factor κB (NFκB) signaling pathway. Selected 21 immune-related DEGs (ie., Clam, nfyal, snrpf, acin1b, psme, sf3b5, rbm8a, rbm25, prpf18, g3bp2, snrpd3l, tecrem-2, cfl-A, C7, lysC, ddx5, hsp90, α-2M, C9, C3 and slc4a1a) were verified for their immune roles in the A. hydrophila infection via using qRT-PCR assay. Meanwhile, some complement (C3, C7, C9, CFD, DF and FH) and antigen presenting (HSP90, MHC Ⅱ, CALR, CANX and PSME) proteins were significantly participated in the process of defense against infections in gill tissues, and protein-protein interaction (PPI) network displayed the immune signaling pathways and interactions among these DEPs. The correlation analysis indicated that the iTRAQ and qRT-PCR results was significantly correlated (Pearson's correlation coefficient = 0.70, p < 0.01). To our knowledge, the transcriptomics and proteomics of gills firstly identified by multi-omics analyses contribute to understanding on the molecular mechanisms of local mucosal immunity in cyprinid species.
Collapse
|
6
|
Maor-Landaw K, Smirnov M, Brekhman V, Ofek-Lalzar M, Yahav T, Lotan T. Infection by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) Suppresses the Immune System of Hybrid Tilapia. Microorganisms 2022; 10:1893. [PMID: 36296170 PMCID: PMC9607408 DOI: 10.3390/microorganisms10101893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 05/02/2025] Open
Abstract
Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jordan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways indicated immune system activation in gills at severe infection, whereas in the head kidney a broad immune suppression included deactivation of cytokines and GATA3 transcription factor responsible for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B were downregulated and insulin, which may function as an immunomodulatory hormone inducing systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Maya Ofek-Lalzar
- Bioinformatic Unit, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Tal Yahav
- Bioinformatic Unit, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| |
Collapse
|
7
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
8
|
Wu H, Gao J, Xie M, Xiang J, Zuo Z, Tian X, Song R, Yuan X, Wu Y, Ou D. Histopathology and transcriptome analysis reveals the gills injury and immunotoxicity in gibel carp following acute deltamethrin exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113421. [PMID: 35304335 DOI: 10.1016/j.ecoenv.2022.113421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
More and more evidences proved that deltamethrin (Del) exposure induced adverse effects and damaged immune function to the aquatic animals in the parasite killing process with increasing insecticide application. However, little is currently known of the negative effect on mucosal immunity, especially in gills tissue. Therefore, this study was aimed to reveal the tissue injury and immunotoxicity in the gill of gibel carp following acute deltamethrin exposure. The LC50 of deltamethrin on gibel carp at 96 h was determined to be 6.194 μg/L, and then juvenile gibel carp (Carassius auratus gibelio) (8.8 ± 1.0 g) were exposed to four Del exposure groups (0.61, 1.22, 2.44, and 4.88 μg/L) for 12 h and 24 h. We measured the lysozyme (LYZ) contents and myeloperoxidase (MPO) activities and found that with increased concentration of Del exposure, the LYZ contents were found to increase in the 1.22 μg/L Del group initially significantly and then gradually significantly decrease in the 4.88 μg/L Del group. And the activities of MPO were significantly lifted in a dose-dependent manner. The histological analysis showed that Del exposure caused serious desquamation and necrosis in the surface of epithelial cells, accompanied by interlamellar cellular mass degenerative. In addition, the mucous cells were significantly decreased in the high Del concentration group (2.44 μg/L and 4.88 μg/L Del group) by AB-PAS staining. Additionally, totally 2857 DEGs (including 1624 up-regulated and 1233 down-regulated genes) were identified between the control group and 4.88 μg/L Del exposure group using transcriptional analysis. Among these, some genes involved in innate immune molecules, complement activation, apoptosis-related molecules, cytokine, and adaptive immune molecules, were also down-regulated. Importantly, we found immune system process and tumor necrosis factor receptor (superfamily) binding pathways were downregulated based on the GO and KEGG enrichment analysis. Meanwhile, we detected the expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-8), anti-inflammatory cytokines (TGF-β), LYZ, IgM, and Hsp70 in the gills tissue at 12 h and 24 h after Del exposure, which were consistent with our sequencing results. Collectively, these results demonstrated that the gills injury and immunotoxicity were induced by Del exposure and provided novel insight for explaining to some extent why Del-exposure fish are more susceptible to concurrent or secondary viral or bacterial infections.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jin Xiang
- Aquatic Products Seed Stock Station in Hunan Province, Changsha 410153, China.
| | - Zhiliang Zuo
- Aquatic Products Seed Stock Station in Hunan Province, Changsha 410153, China.
| | - Xing Tian
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
9
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
10
|
Barrett DE, Estensoro I, Sitjà-Bobadilla A, Bartholomew JL. Intestinal Transcriptomic and Histologic Profiling Reveals Tissue Repair Mechanisms Underlying Resistance to the Parasite Ceratonova shasta. Pathogens 2021; 10:1179. [PMID: 34578212 PMCID: PMC8467531 DOI: 10.3390/pathogens10091179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Myxozoan parasites infect fish worldwide causing significant disease or death in many economically important fish species, including rainbow trout and steelhead trout (Oncorhynchus mykiss). The myxozoan Ceratonova shasta is a parasite of salmon and trout that causes ceratomyxosis, a disease characterized by severe inflammation in the intestine resulting in hemorrhaging and necrosis. Populations of O. mykiss that are genetically fixed for resistance or susceptibility to ceratomyxosis exist naturally, offering a tractable system for studying the immune response to myxozoans. The aim of this study was to understand how steelhead trout that are resistant to the disease respond to C. shasta once it has become established in the intestine and identify potential mechanisms of resistance. RESULTS Sequencing of intestinal mRNA from resistant steelhead trout with severe C. shasta infections identified 417 genes differentially expressed during the initial stage of the infection compared to uninfected control fish. A strong induction of interferon-gamma and interferon-stimulated genes was evident, along with genes involved in cell adhesion and migration. A total of 11,984 genes were differentially expressed during the late stage of the infection, most notably interferon-gamma, interleukin-6, and immunoglobulin transcripts. A distinct hardening of the intestinal tissue and a strong inflammatory reaction in the intestinal submucosa including severe hyperplasia and inflammatory cell infiltrates were observed in response to the infection. The massive upregulation of caspase-14 early in the infection, a protein involved in keratinocyte differentiation might reflect the rapid onset of epithelial repair mechanisms, and the collagenous stratum compactum seemed to limit the spread of C. shasta within the intestinal layers. These observations could explain the ability of resistant fish to eventually recover from the infection. CONCLUSIONS Our results suggest that resistance to ceratomyxosis involves both a rapid induction of key immune factors and a tissue response that limits the spread of the parasite and the subsequent tissue damage. These results improve our understanding of the myxozoan-host dialogue and provide a framework for future studies investigating the infection dynamics of C. shasta and other myxozoans.
Collapse
Affiliation(s)
- Damien E. Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA;
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Castellón, Spain; (I.E.); (A.S.-B.)
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Castellón, Spain; (I.E.); (A.S.-B.)
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA;
| |
Collapse
|
11
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Jin W, Li Z, Ran F, Huang S, Huo K, Li J, Han Q, Wang G, Wang Z, Jian S, Li K, Li C. Transcriptome analysis provides insights into copper toxicology in piebald naked carp (Gymnocypris eckloni). BMC Genomics 2021; 22:416. [PMID: 34090338 PMCID: PMC8178853 DOI: 10.1186/s12864-021-07673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Background Copper was used for many years in aquaculture operations as an effective algaecide or a parasite treatment of fish. It is an essential nutrient with numerous functions in organisms, but is toxic at high concentrations. However, the toxicity of copper to fish remains unclear. In this study, we used the piebald naked carp, Gymnocypris eckloni, as a model. RNA-seq data from different tissues, including gills, kidney, and liver, were used to investigate the underlying mechanism of copper toxicology in G. eckloni. Results We compared the transcriptomes from different tissues with different time durations of copper ion treatment. After 72 h copper ion treatment, the number of genes with different expression in gills and liver changed dramatically, but not in kidneys. In KEGG functional enrichment, the pattern of differentially expressed genes (DEGs) was also similar in the gills and liver. The most enriched pathway of DEGs was “Ribosome” in both tissues. Furthermore, we analyzed the expression levels of genes involved in oxidative stress response and protein synthesis using qPCR and RNA-seq data. Our results showed that several genes involved in oxidative stress response were up-regulated both in gills and liver. Up-regulation of these genes indicated that copper treatment caused oxidative stress, which is likely to result in ribosome damage. In addition, our results showed that the expression of Eef1b2, a transcription elongation factor, was decreased in the liver under oxidative stress, and the expression of translation initiation factors Eif4ebp1 and eIF2α, and elongation factor eEF2 was up-regulated. These results supported the idea that oxidative stress inhibits protein synthesis in cells. Conclusions Our results indicate that copper exposure caused different responses in different tissues, since the gene expression patterns changed substantially either in the gills or liver, while the effect on the kidney was relatively weak. Furthermore, our results indicated that the expression pattern of the genes involved in the ribosome, which is a complex molecular machine orchestrating protein synthesis in the cell, together with translation initiation factor and elongation factors, were affected by copper exposure both in the gills and liver of piebald naked carp. This result leads us to speculate that the downregulation of global protein synthesis is an acute response strategy of fish to metal-induced oxidative stress. Moreover, we speculate that this strategy not only exists in the selective translation of proteins but also exists in the specific translation of functional proteins in tissues and cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07673-4.
Collapse
Affiliation(s)
- Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 521 Ningda Road, Chengbei District, Xining, 810016, China
| | - Zixuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Fengxia Ran
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Shen Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Kefan Huo
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Jianjuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Qingshuo Han
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Guojie Wang
- Fisheries Environmental Monitoring Station, Xining, 810016, China
| | - Zhenji Wang
- Fisheries Environmental Monitoring Station, Xining, 810016, China
| | - Shenlong Jian
- Fisheries Environmental Monitoring Station, Xining, 810016, China
| | - Kemao Li
- Fisheries Environmental Monitoring Station, Xining, 810016, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China. .,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 521 Ningda Road, Chengbei District, Xining, 810016, China.
| |
Collapse
|
13
|
A tale of two fish: Comparative transcriptomics of resistant and susceptible steelhead following exposure to Ceratonova shasta highlights differences in parasite recognition. PLoS One 2021; 16:e0234837. [PMID: 33621237 PMCID: PMC7901748 DOI: 10.1371/journal.pone.0234837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Diseases caused by myxozoan parasites represent a significant threat to the health of salmonids in both the wild and aquaculture setting, and there are no effective therapeutants for their control. The myxozoan Ceratonova shasta is an intestinal parasite of salmonids that causes severe enteronecrosis and mortality. Most fish populations appear genetically fixed as resistant or susceptible to the parasite, offering an attractive model system for studying the immune response to myxozoans. We hypothesized that early recognition of the parasite is a critical factor driving resistance and that susceptible fish would have a delayed immune response. RNA-seq was used to identify genes that were differentially expressed in the gills and intestine during the early stages of C. shasta infection in both resistant and susceptible steelhead (Oncorhynchus mykiss). This revealed a downregulation of genes involved in the IFN-γ signaling pathway in the gills of both phenotypes. Despite this, resistant fish quickly contained the infection and several immune genes, including two innate immune receptors were upregulated. Susceptible fish, on the other hand, failed to control parasite proliferation and had no discernible immune response to the parasite, including a near-complete lack of differential gene expression in the intestine. Further sequencing of intestinal samples from susceptible fish during the middle and late stages of infection showed a vigorous yet ineffective immune response driven by IFN-γ, and massive differential expression of genes involved in cell adhesion and the extracellular matrix, which coincided with the breakdown of the intestinal structure. Our results suggest that the parasite may be suppressing the host’s immune system during the initial invasion, and that susceptible fish are unable to recognize the parasite invading the intestine or mount an effective immune response. These findings improve our understanding of myxozoan-host interactions while providing a set of putative resistance markers for future studies.
Collapse
|
14
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
15
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
16
|
Yang J, Tian T, Xiao K, Zeng Q, Tan C, Du H. Pathogenic infection and immune-related gene expression of Chinese sturgeon (Acipenser sinensis) challenged by Citrobacter freundii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103872. [PMID: 32949686 DOI: 10.1016/j.dci.2020.103872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Citrobacter freundii is one of the important bacterial diseases responsible for disease outbreaks to wild and cultured fishes globally. However, no known empirical research has focused on exploring relationships between immune response after C. freundii infection in sturgeons. In this study, C. freundii was isolated and identified from artificially breeding Chinese sturgeon, and global measurement of transcriptome response to C. freundii infection in head-kidney and spleen of A. sinensis were conducted to the acknowledgement of the potential mechanisms of pathogen-host interaction triggered by the bacterial infection. In total, differentially expressed genes which significantly associated with immune responses were found to be participated in antigen processing and presentation (MHC I, MHC II, HspA1, Hsp90A, Hsp70, CTSL, and CTSE), and acute phase response (serotransferrin and CP), as well as changing of other immune-related cytokine, such as chemokine and interferon, which proving their reacting and regulatory role during the response of thehost against C. freundii infection in fish. C. freundii can cause serious disease in sturgeon species was first reported in this study, and innate immune responses to C. freundii infection in this study will be conducive to understand the defense mechanisms and making appropriate prevention strategies in A. sinensis aquaculture operations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Tian Tian
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Kan Xiao
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Qingkai Zeng
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Chun Tan
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Hejun Du
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| |
Collapse
|
17
|
Molecular insights into the mechanisms of susceptibility of Labeo rohita against oomycete Aphanomyces invadans. Sci Rep 2020; 10:19531. [PMID: 33177569 PMCID: PMC7658212 DOI: 10.1038/s41598-020-76278-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome, is one of the most destructive pathogens of freshwater fishes. To date, the disease has been reported from over 160 fish species in 20 countries and notably, this is the first non-salmonid disease that has resulted in major impacts globally. In particular, Indian major carps (IMCs) are highly susceptible to this disease. To increase our knowledge particularly with regards to host immune response against A. invadans infection in a susceptible host, the gene expression profile in head kidney of A. invadans-infected and control rohu, Labeo rohita was investigated using RNA sequencing. Time course analysis of RNA-Seq data revealed 5608 differentially expressed genes, involved among others in Antigen processing and presentation, Leukocyte transendothelial migration, IL-17 signaling, Chemokine signaling, C-type lectin receptor signaling and Toll-like receptor signaling pathways. In the affected pathways, a number of immune genes were found to be downregulated, suggesting an immune evasion strategy of A. invadans in establishing the infection. The information generated in this study offers first systematic mechanistic understanding of the host–pathogen interaction that might underpin the development of new management strategies for this economically devastating fish-pathogenic oomycete A. invadans.
Collapse
|