1
|
Yin L, Li L, Lv X, Sun F, Dai Y, Guo Y, Peng S, Ye C, Liang X, He C, Shu G, Ouyang P. Cinnamaldehyde Alleviates Salmonellosis in Chicks by Regulating Gut Health. Vet Sci 2025; 12:237. [PMID: 40266958 PMCID: PMC11946600 DOI: 10.3390/vetsci12030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025] Open
Abstract
Due to the high mortality rate in chicks caused by pullorum disease (PD) and the drawbacks of antibiotic resistance, the poultry industry is increasingly interested in using natural herbal antimicrobial agents as alternatives, with cinnamaldehyde (CA) being a focus due to its multitarget and synergistic effects. This study aimed to evaluate the effects of oral administration of CA on restoring intestinal physical integrity, intestinal microbial barrier, and intestinal metabolism in a laboratory model of Salmonella pullorum (S. pullorum) infection in chicks. Thirty-six chicks were divided into six groups. The S.P and CA groups were infected with 5 × 108 CFU/mL, 0.5 mL S. pullorum, while the CON group received an equal-volume saline injection. The CA group was treated with 100 mg/kg CA, and the others received phosphate buffer saline (PBS). Samples were collected 24 h after the last treatment. Intestinal physical integrity was assessed by H&E staining, and ELISA was used to measure inflammatory factors. In situ hybridization (ISH) and RT-qPCR were used to measure the expression of tight-junction protein mRNA. The microbiota was analyzed by 16S rRNA gene sequencing of the ileal contents, and metabolite analysis was performed on the intestinal contents. After CA treatment, the expression of IL-1β and TNF-α was reduced, and IL-10 was increased (p < 0.05). H&E staining showed that the intestinal structure was partially restored after treatment. ISH results showed that the fluorescence intensity indicating gene expression status was low in the S.P group and high in the CA group, indicating reduced intestinal permeability. RT-qPCR showed that CA up-regulated the mRNA expression of tight-junction proteins (claudin-1, occludin-1, and zo-1, p < 0.05). The 16S rRNA gene sequence analysis showed that Salmonella was significantly enriched in the S.P group (LDA score > 2.0, p < 0.05), while specific genera were significantly more abundant in the treated groups. Untargeted sequencing of intestinal contents showed that key metabolites (butyrate, alanine, glutamate, cholesterol, and propionate) in the CA group were significantly changed compared with the S.P group (p < 0.05). CA treatment was the most effective method for reducing PD intestinal colonization and maintaining better intestinal homeostasis, possibly by regulating intestinal microbiota and metabolic functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Ouyang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China; (L.Y.); (L.L.); (X.L.); (F.S.); (Y.D.); (Y.G.); (S.P.); (C.Y.); (X.L.); (C.H.); (G.S.)
| |
Collapse
|
2
|
Debnath C, Sahoo L. Harnessing the immunomodulatory potential of ashwagandha (Withania somnifera) against epizootic ulcerative syndrome: a sustainable approach for hill aquaculture. DISEASES OF AQUATIC ORGANISMS 2025; 161:11-22. [PMID: 39782093 DOI: 10.3354/dao03832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The present study evaluated the immunomodulatory and disease resistance-enhancing effects of dietary supplementation of Withania somnifera root powder in Labeo rohita (22.10 ± 3.30 g, 12.35 ± 1.15 cm), a commercially important freshwater fish species, against Aphanomyces invadans infection under the agro-climatic conditions of Tripura, Northeast India. Four isonitrogenous and isocaloric experimental diets were formulated with varying levels of W. somnifera root powder: control (0%), D1 (0.1%), D2 (0.2%), and D3 (0.3%). After a 21-d feeding period, the fish were challenged with A. invadans zoospores (1 × 104 spores ml-1; 0.1 ml fish-1) and observed for mortality and blood parameter assessment according to standard protocols. The survival rate was markedly higher at 83.33% in the 0.2% W. somnifera group compared to 31.11% in the control group 14 d post-infection. Dietary W. somnifera supplementation improved serum protein, enzymatic, and hematological parameters. Immunological parameters, including nitroblue tetrazolium activity, serum lysozyme activity, and bactericidal activity, were also significantly higher in W. somnifera-fed fish. The findings suggest that W. somnifera root powder at 0.1-0.3% inclusion levels, with 0.2% being the optimal dose, can enhance disease resistance against A. invadans in L. rohita by modulating innate immune mechanisms. Given the growing concerns over antimicrobial resistance and the need for sustainable aquaculture practices, the use of natural immunostimulants such as W. somnifera offers a promising alternative for disease management, particularly in regions prone to epizootic ulcerative syndrome outbreaks.
Collapse
Affiliation(s)
- Chandan Debnath
- ICAR Research Complex for NEH Region, Umiam, Meghalaya PIN-793103, India
| | - Lopamudra Sahoo
- ICAR Research Complex for NEH Region, Umiam, Meghalaya PIN-793103, India
| |
Collapse
|
3
|
Rairat T, Kitsanayanyong L, Keetanon A, Phansawat P, Wimanhaemin P, Chongprachavat N, Suanploy W, Chow EPY, Chuchird N. Effects of monoglycerides of short and medium chain fatty acids and cinnamaldehyde blend on the growth, survival, immune responses, and tolerance to hypoxic stress of Pacific white shrimp (Litopenaeus vannamei). PLoS One 2024; 19:e0308559. [PMID: 39116116 PMCID: PMC11309431 DOI: 10.1371/journal.pone.0308559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Free fatty acids have long been used as dietary supplements in aquaculture, but the application of monoglycerides has increased interest in more recent times. The study aimed to investigate the effects of dietary short- and medium-chain fatty acid monoglyceride and cinnamaldehyde (SMMG) on the growth performance, survival, immune responses, and tolerance to hypoxic stress of Pacific white shrimp (Litopenaeus vannamei). In Experiment 1, shrimp post-larvae were divided into 4 groups with 6 replicates and fed with diets supplemented with 0 (control), 0.3, 0.4, and 0.5% diet for 30 days. The final body weight and survival rate were determined. In Experiment 2, the juvenile shrimp from Experiment 1 were subjected to hypoxic stress conditions (dissolved oxygen level 2-2.5 mg/L) for 14 days, then the specific growth rate (SGR), survival rate, intestinal Vibrio spp. count, immune responses, and histopathological change of the hepatopancreas were analyzed. Following the 30-day feeding trial, the results revealed that the final body weight and survival of the 0.3-0.5% SMMG groups (2.81-3.06 g and 74.00-84.33%, respectively) were significantly higher than the control shrimp (1.96 g and 68.33%, respectively). In the hypoxic stress experiment, the survival rates of shrimp fed 0.4-0.5% SMMG (71.67-80.00%) were significantly higher than the control (51.67%). Although the SGR were not affected by SMMG supplementation, all immune parameters evaluated were significantly enhanced, and the intestinal Vibrio spp. counts were significantly decreased in the 0.4-0.5% SMMG-fed shrimp; the histopathological structure of the hepatopancreas was also improved in these shrimp compared to the control. Our findings indicated that SMMG as a feed additive has beneficial effects in improving shrimp health and increasing tolerance to hypoxic conditions.
Collapse
Affiliation(s)
- Tirawat Rairat
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | | | - Arunothai Keetanon
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | - Putsucha Phansawat
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | - Parattagorn Wimanhaemin
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | - Natnicha Chongprachavat
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | - Wiranya Suanploy
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | | | - Niti Chuchird
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Gu Y, Zhan Y, Guo Y, Hua W, Qi X, Gu Z, Cao S, Chen Y, Xue Z, Wang W. Potential Targets and Signaling Mechanisms of Cinnamaldehyde Enhancing Intestinal Function and Nutritional Regulation in Fat Greenling ( Hexagrammos otakii). AQUACULTURE NUTRITION 2024; 2024:5566739. [PMID: 39555553 PMCID: PMC11074912 DOI: 10.1155/2024/5566739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 11/19/2024]
Abstract
Cinnamaldehyde is an ideal feed additive with good immune enhancement and anti-inflammatory regulation effects. However, the anti-inflammatory regulation mechanism in fat greenling (Hexagrammos otakii, H. otakii) remains unclear. The nine targets of cinnamaldehyde were gathered in identified by the Traditional Chinese Medicine Systems Pharmacology database and Uniprot database, and 1,320 intestinal inflammation disease (IIF)-related proteins were screened from DrugBank, Online Mendelian Inheritance in Man (OMIM), Genecards, and Pharmacogenetics and Pharmacogenomics Knowledge Base (PHARMGKB) Databases. According to the Gene Ontology enrichment results and Kyoto Encyclopedia of Genes and Genomes pathway results, cinnamaldehyde may regulated the responses to bacteria, lipopolysaccharide, an inflammatory cytokine, and external stimuli via the nuclear factor kappa-B (NFκB) signaling pathway within on inflammatory network. In addition, the protein-protein interaction analysis assisted in obtaining the closely related inflammatory regulatory proteins, including the C5a anaphylatoxin chemotactic receptor 1 (C5aR1), transcription factor p65 (RELA), prostaglandin G/H synthase 2 (PTGS2), and toll-like receptor 4 (TLR4), which were confirmed as the bottleneck nodes of the network to be more deeply verified via the molecular docking. Moreover, a cinnamaldehyde feeding model was established for evaluating the anti-inflammatory effect of cinnamaldehyde in vivo. According to the current findings implied that cinnamaldehyde may play a protective role against IIF H. otakii by reducing inflammation through the C5 complement (C5)/C5aR1/interleukin-6 (IL-6) and TLR4/NFκB/PTGS2 pathway. The study focused on investigating the action mechanism of cinnamaldehyde on IIF through combining pharmacology and experimental verification in vivo, which provided a fresh perspective on the promoting effect of cinnamaldehyde on IIF in fish.
Collapse
Affiliation(s)
- Yixin Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yafeng Guo
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xin Qi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhizhi Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shengnan Cao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Kumar H, Dhalaria R, Guleria S, Sharma R, Cimler R, Dhanjal DS, Chopra C, Kumar V, Manickam S, Siddiqui SA, Kaur T, Verma N, Kumar Pathera A, Kuča K. Advances in the concept of functional foods and feeds: applications of cinnamon and turmeric as functional enrichment ingredients. Crit Rev Food Sci Nutr 2023; 65:1144-1162. [PMID: 38063355 DOI: 10.1080/10408398.2023.2289645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, India
| | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Kamil Kuča
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, Czech Republic
| |
Collapse
|
6
|
Hoa TTT, Fagnon MS, Thy DTM, Chabrillat T, Trung NB, Kerros S. Growth Performance and Disease Resistance against Vibrio parahaemolyticus of Whiteleg Shrimp ( Litopenaeus vannamei) Fed Essential Oil Blend (Phyto AquaBiotic). Animals (Basel) 2023; 13:3320. [PMID: 37958074 PMCID: PMC10649422 DOI: 10.3390/ani13213320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Acute Hepatopancreatic Necrosis Disease (AHPND) is a serious and emerging disease caused by a group of strains of Vibrio parahaemolyticus and affects farmed shrimp, particularly whiteleg shrimps (Liptopenaeus vannamei). The objective of this study is to assess the effect of dietary supplementation with two dosages of an essential oil mixture (Phyto AquaBiotic, abbreviated as PAB) on growth performance and mortality reduction after challenge against V. parahaemolyticus. PAB was mixed with basal diets at rates of 0, 1 and 2 g/kg and fed for 42 days. Each tank was stocked with 100 individuals with experimentation performed in triplicate. The results showed an improvement in growth performance in a dose-dependent manner, specifically regarding daily weight gain, specific growth rate and total biomass, which were significantly improved compared to control (p < 0.05). Further, PAB significantly reduced mortalities when challenged against Vibrio parahaemolyticus (p < 0.05) and decreased Vibrio spp. count in the hepatopancreas of infected shrimp. Overall, PAB was efficient in reducing mortalities in cases of disease outbreaks at a rate of 2 g/kg.
Collapse
Affiliation(s)
- Tran Thi Tuyet Hoa
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Campus II, 3/2 Street, Can Tho City 90000, Vietnam; (D.T.M.T.)
| | | | - Dang Thuy Mai Thy
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Campus II, 3/2 Street, Can Tho City 90000, Vietnam; (D.T.M.T.)
| | | | - Nguyen Bao Trung
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Campus II, 3/2 Street, Can Tho City 90000, Vietnam; (D.T.M.T.)
| | | |
Collapse
|
7
|
Yang L, Liu X, Lu H, Zhang C, Chen J, Shi Z. Cinnamaldehyde Inhibits Postharvest Gray Mold on Pepper Fruits via Inhibiting Fungal Growth and Triggering Fruit Defense. Foods 2023; 12:3458. [PMID: 37761167 PMCID: PMC10530028 DOI: 10.3390/foods12183458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gray mold infected with Botrytis cinerea frequently appears on fruits and vegetables throughout the supply chain after harvest, leading to economic losses. Biological control of postharvest disease with phytochemicals is a promising approach. CA (cinnamaldehyde) is a natural phytochemical with medicinal and antimicrobial activity. This study evaluated the effect of CA in controlling B. cinerea on fresh pepper fruit. CA inhibited B. cinerea growth in vitro significantly in a dose- (0.1-0.8 mM) and time-dependent (6-48 h) manner, with an EC50 (median effective concentration) of 0.5 mM. CA induced the collapse and breakdown of the mycelia. CA induced lipid peroxidation resulting from ROS (reactive oxygen species) accumulation in mycelia, further leading to cell leakage, evidenced by increased conductivity in mycelia. CA induced mycelial glycerol accumulation, resulting in osmotic stress possibly. CA inhibited sporulation and spore germination resulting from ROS accumulation and cell death observed in spores. Spraying CA at 0.5 mM induced a defense response in fresh pepper fruits, such as the accumulation of defense metabolites (flavonoid and total phenols) and an increase in the activity of defense enzymes (PAL, phenylalanine ammonia lyase; PPO, polyphenol oxidase; POD, peroxidase). As CA is a type of environmentally friendly compound, this study provides significant data on the activity of CA in the biocontrol of postharvest gray mold in peppers.
Collapse
Affiliation(s)
- Lifei Yang
- Hexian New Countryside Development Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (X.L.)
| | - Xiaoli Liu
- Hexian New Countryside Development Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (X.L.)
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Haiyan Lu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Jian Chen
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Zhiqi Shi
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| |
Collapse
|
8
|
Akshaya BS, Premraj K, Iswarya C, Muthusamy S, Ibrahim HIM, Khalil HE, Gunasekaran V, Vickram S, Senthil Kumar V, Palanisamy S, Thirugnanasambantham K. Cinnamaldehyde inhibits Enterococcus faecalis biofilm formation and promotes clearance of its colonization by modulation of phagocytes in vitro. Microb Pathog 2023:106157. [PMID: 37268049 DOI: 10.1016/j.micpath.2023.106157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
The nosocomial pathogen, Enterococcus faecalis plays a crucial role in the pathogenesis of variety of infections including endocarditis, urinary tract, and recurrent root canal infections. Primary virulence factors of E. faecalis such as biofilm formation, gelatinase production and suppression of host innate immune response can severely harm host tissue. Thus, novel treatments are needed to prevent E. faecalis biofilm development and pathogenicity due to the worrisome rise in enterococcal resistance to antibiotics. The primary phytochemical in cinnamon essential oils, cinnamaldehyde, has shown promising efficacy against a variety of infections. Here, we looked into how cinnamaldehyde affected the growth of biofilms, the activity of the enzyme gelatinase, and gene expression in E. faecalis. In addition, we looked at the influence of cinnamaldehyde on RAW264.7 macrophages' interaction with biofilm and planktonic E. faecalis in terms of intracellular bacterial clearance, NO generation, and macrophage migration in vitro. According to our research, cinnamaldehyde attenuated the biofilm formation potential of planktonic E. faecalis and gelatinase activity of the biofilm at non-lethal concentrations. The expression of the quorum sensing fsr locus and its downstream gene gelE in biofilms were also found to be significantly downregulated by cinnamaldehyde. Results also demonstrated that cinnamaldehyde treatment increased NO production, intracellular bacterial clearance, and migration of RAW264.7 macrophages in presence of both biofilm and planktonic E. faecalis. Overall these results suggest that cinnamaldehyde has the ability to inhibit E. faecalis biofilm formation and modulate host innate immune response for better clearance of bacterial colonization.
Collapse
Affiliation(s)
- Balasubramanian Sennammal Akshaya
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India
| | - Kumar Premraj
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India
| | - Christian Iswarya
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India
| | - Hairul-Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Biological Science College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Vaishnavi Gunasekaran
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Venugopal Senthil Kumar
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Tamil Nadu State Council for Science and Technology, DOTE Campus, Chennai, 600025, Tamil Nadu, India
| | - Senthilkumar Palanisamy
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
9
|
Radhakrishnan A, Prabakaran DS, Ramesh T, Sakthivel R, Ramasamy K, Han HS, Jeyachandran S. Innate Immune Response Assessment in Cyprinus carpio L. upon Experimental Administration with Artemia salina Bio-Encapsulated Aeromonas hydrophila Bacterin. Vaccines (Basel) 2023; 11:vaccines11040877. [PMID: 37112789 PMCID: PMC10144060 DOI: 10.3390/vaccines11040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to analyze the enhancement of innate immune responses in juvenile-stage common carp (Cyprinus carpio L.), upon the administration of heat-killed Aeromonas hydrophila at a dosage of 1 × 107 CFU ml-1 through bio-encapsulation in the aquatic crustacean, Artemia salina. This work emphasizes the modulation of innate immune response when administered with the bio-encapsulated heat-killed antigen that acts as an inactivated vaccine against Motile Aeromonas Septicemia disease. Bio-encapsulated oral administration of antigens promotes innate immunity in juvenile-stage fishes. The optimization of effective bio-encapsulation of bacterin in Artemia salina nauplii was carried out and the best optimal conditions were chosen for immunization. The functional immune parameters such as myeloperoxidase, lysozyme, alkaline phosphatase, antiprotease and respiratory burst activity in serum, blood and intestinal tissue samples were analyzed along with blood differential leukocyte count and tissue histopathology studies. Both humoral and cellular immune responses analyzed were substantially induced or enhanced in the treatment groups in comparison with the control group. The results showed a significant variation in the bio-encapsulation group than the control group and also were comparable to the protection conferred with immersion route immunization under similar conditions. Thus, most of the innate non-specific immune responses are inducible, despite being constitutive of the fish immune system, to exhibit a basal level of protection and a road to better vaccination strategy in Cyprinus carpio L. aquaculture worldwide.
Collapse
Affiliation(s)
- Akshaya Radhakrishnan
- Department of Biotechnology & Microbiology, National College (Autonomous), Trichy 620001, Tamil Nadu, India
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi 626124, Tamil Nadu, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Ramalingam Sakthivel
- School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kavikumar Ramasamy
- School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyo-Shim Han
- Department of Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
Immunomodulatory Potency of Eclipta alba (Bhringaraj) Leaf Extract in Heteropneustes fossilis against Oomycete Pathogen, Aphanomyces invadans. J Fungi (Basel) 2023; 9:jof9020142. [PMID: 36836257 PMCID: PMC9963822 DOI: 10.3390/jof9020142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Aphanomyces invadans is an aquatic oomycete pathogen and the causative agent of epizootic ulcerative syndrome (EUS) in fresh and brackish water fish, which is responsible for severe mortalities and economic losses in aquaculture. Therefore, there is an urgent need to develop anti-infective strategies to control EUS. An Oomycetes, a fungus-like eukaryotic microorganism, and a susceptible species, i.e., Heteropneustes fossilis, are used to establish whether an Eclipta alba leaf extract is effective against the EUS-causing A. invadans. We found that treatment with methanolic leaf extract, at concentrations between 50-100 ppm (T4-T6), protects the H. fossilis fingerlings against A. invadans infection. These optimum concentrations induced anti-stress and antioxidative response in fish, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) levels in treated animals, as compared with the controls. We further demonstrated that the A. invadans-protective effect of methanolic leaf extract was caused by its immunomodulatory effect and is linked to the enhanced survival of fingerlings. The analysis of non-specific and specific immune factors confirms that methanolic leaf extract-induced HSP70, HSP90 and IgM levels mediate the survival of H. fossilis fingerlings against A. invadans infection. Taken together, our study provides evidence that the generation of anti-stress and antioxidative responses, as well as humoral immunity, may play a role in protecting H. fossilis fingerlings against A. invadans infection. It is probable that E. alba methanolic leaf extract treatment might become part of a holistic strategy to control EUS in fish species.
Collapse
|
11
|
Gu Y, Han J, Wang W, Zhan Y, Wang H, Hua W, Liu Y, Guo Y, Xue Z, Wang W. Dietary Cinnamaldehyde Enhances Growth Performance, Digestion, Immunity, and Lipid Metabolism in Juvenile Fat Greenling ( Hexagrammos otakii). AQUACULTURE NUTRITION 2022; 2022:2132754. [PMID: 36860471 PMCID: PMC9973157 DOI: 10.1155/2022/2132754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 06/18/2023]
Abstract
Fat greenling (Hexagrammos otakii) is a kind of economic fish that is widely consumed by human, and its intensive farming technology is making important progress. However, high-density farming may cause the occurrence of diseases in H. otakii. Cinnamaldehyde (CNE) is a new feed additive for aquatic animals and has a positive effect on disease resistance. In the study, dietary CNE was evaluated on the growth performance, digestion, immune response, and lipid metabolism of juvenile H. otakii (6.21 ± 0.19 g). Six experimental diets were formulated containing CNE at levels of 0, 200, 400, 600, 800, and 1000 mg/kg for 8 weeks. The percent weight gain (PWG), specific growth rate (SGR), survival (SR), and feeding rate (FR) were significantly increased by including CNE in fish diets regardless of the inclusion level (P < 0.05). The feed conversion ratio (FCR) was significantly decreased among the groups fed CNE supplemented diets (P < 0.05). A significant decrease in hepatosomatic index (HSI) was observed in fish fed 400 mg/kg-1000 mg/kg CNE compared to the control diet (P < 0.05). Fish-fed diets containing 400 mg/kg and 600 mg/kg CNE had a higher level of crude protein in muscles than the control diet (P < 0.05). Moreover, the activities of lipase (LPS) and pepsin (PEP) in the intestinal were markedly increased in juvenile H. otakii-fed dietary CNE (P < 0.05). Apparent digestibility coefficient (ADC) of dry matter, protein, and lipid was significantly increased with CNE supplement (P < 0.05). The activities of catalase (CAT) and acid phosphatase (ACP) in the liver were markedly enhanced by including CNE in juvenile H. otakii diets compared with the control (P < 0.05). The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) in the liver were markedly enhanced in juvenile H. otakii treated with CNE supplements 400 mg/kg-1000 mg/kg (P < 0.05). Additionally, the levels of total protein (TP) in the serum were markedly increased by including CNE in juvenile H. otakii diets compared with the control (P < 0.05). In the CNE200, CNE400, and CNE600 groups, albumin (ALB) levels in the serum were markedly higher compared with that in the control (P < 0.05). In the CNE200 and CNE400 groups, the levels of immunoglobulin G (IgG) in the serum were significantly increased compared with that the control group (P < 0.05). The juvenile H. otakii-fed dietary CNE had lower triglycerides (TG) and total cholesterol (TCHO) levels in the serum than fish-fed CNE-free diets (P < 0.05). The gene expression of peroxisome proliferator-activated receptor alpha (PPAR-α), hormone-sensitive lipase (HSL), and carnitine O-palmitoyltransferase 1 (CPT1) in the liver was significantly increased by including CNE in fish diets regardless of the inclusion level (P < 0.05). However, fatty acid synthase (FAS), peroxisome proliferator-activated receptor gamma (PPAR-γ), and acetyl-CoA carboxylase alpha (ACCα) in the liver were markedly decreased with CNE supplements 400 mg/kg-1000 mg/kg (P < 0.05). The glucose-6-phosphate1-dehydrogenase (G6PD) gene expression levels in the liver were markedly decreased compared with the control (P < 0.05). The optimal supplementation level of CNE was shown by curve equation analysis to be 590.90 mg/kg.
Collapse
Affiliation(s)
- Yixin Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wenjie Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Huijie Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yue Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yafeng Guo
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
12
|
Kumar V, Das BK, Swain HS, Chowdhury H, Roy S, Bera AK, Das R, Parida SN, Dhar S, Jana AK, Behera BK. Outbreak of Ichthyophthirius multifiliis associated with Aeromonas hydrophila in Pangasianodon hypophthalmus: The role of turmeric oil in enhancing immunity and inducing resistance against co-infection. Front Immunol 2022; 13:956478. [PMID: 36119096 PMCID: PMC9478419 DOI: 10.3389/fimmu.2022.956478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ichthyophthirius multifiliis, a ciliated parasite causing ichthyophthiriasis (white spot disease) in freshwater fishes, results in significant economic loss to the aquaculture sector. One of the important predisposing factors for ichthyophthiriasis is low water temperature (i.e., below 20°C), which affects the health and makes freshwater fishes more susceptible to parasitic infections. During ichthyophthiriasis, fishes are stressed and acute immune reactions are compromised, which enables the aquatic bacterial pathogens to simultaneously infect the host and increase the severity of disease. In the present work, we aimed to understand the parasite–bacteria co-infection mechanism in fish. Later, Curcuma longa (turmeric) essential oil was used as a promising management strategy to improve immunity and control co-infections in fish. A natural outbreak of I. multifiliis was reported (validated by 16S rRNA PCR and sequencing method) in Pangasianodon hypophthalmus from a culture facility of ICAR-CIFRI, India. The fish showed clinical signs including hemorrhage, ulcer, discoloration, and redness in the body surface. Further microbiological analysis revealed that Aeromonas hydrophila was associated (validated by 16S rRNA PCR and sequencing method) with the infection and mortality of P. hypophthalmus, confirmed by hemolysin and survival assay. This created a scenario of co-infections, where both infectious agents are active together, causing ichthyophthiriasis and motile Aeromonas septicemia (MAS) in P. hypophthalmus. Interestingly, turmeric oil supplementation induced protective immunity in P. hypophthalmus against the co-infection condition. The study showed that P. hypophthalmus fingerlings supplemented with turmeric oil, at an optimum concentration (10 ppm), exhibited significantly increased survival against co-infection. The optimum concentration induced anti-stress and antioxidative response in fingerlings, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) in treated animals as compared with the controls. Furthermore, the study indicated that supplementation of turmeric oil increases both non-specific and specific immune response, and significantly higher values of immune genes (interleukin-1β, transferrin, and C3), HSP70, HSP90, and IgM were observed in P. hypophthalmus treatment groups. Our findings suggest that C. longa (turmeric) oil modulates stress, antioxidant, and immunological responses, probably contributing to enhanced protection in P. hypophthalmus. Hence, the application of turmeric oil treatment in aquaculture might become a management strategy to control co-infections in fishes. However, this hypothesis needs further validation.
Collapse
Affiliation(s)
- V. Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Das
- Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| | - H. S. Swain
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - H. Chowdhury
- Reservoir and Wetland Fisheries (RWF) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Bera
- Fisheries Resource Assessment and Informatics (FRAI) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - R. Das
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. N. Parida
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Dhar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Jana
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| |
Collapse
|
13
|
Zhang W, Zhao J, Ma Y, Li J, Chen X. The effective components of herbal medicines used for prevention and control of fish diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 126:73-83. [PMID: 35609759 DOI: 10.1016/j.fsi.2022.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for fish consumption has promoted the rapid development of fish aquaculture. With the continuous expansion of culture scale and the deterioration of culture environment, various diseases have broken out frequently, leading to huge economic losses to fish farming. Antibiotics and chemicals are common options to prevent and control of fish diseases, but their use is now restricted or even banned due to serious problems such as drug residues, pathogen resistance, and environmental pollution. Herbs and their extracts have increasingly become promising supplements and alternatives, because of their effectiveness, safety, environmental friendliness and less drug resistance. The application of herbal medicines in prevention and control of fish diseases is mainly attributed to the powerful immune enhancement, antioxidation or direct anti-pathogenic efficacies of their effective components, including mainly polyphenols, polysaccharides, saponins, flavonoids, alkaloids, and essential oils. Recently these herbal active ingredients have been extensively studied for their efficacies in prevention and control of viral, bacterial, parasitic, and fungal diseases in fish. In the present paper, we comprehensively summarize the research progress of the active ingredients of herbal medicines used for prevention and control of fish diseases, especially of their action mechanisms, and highlight the potential application of the herbal medicines in fish aquaculture.
Collapse
Affiliation(s)
- Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jinpeng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yufang Ma
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
14
|
Kondera E, Bojarski B, Ługowska K, Kot B, Witeska M. Hematological and Hematopoietic Effects of Bactericidal Doses of Trans-Cinnamaldehyde and Thyme Oil on Cyprinus carpio Juveniles. Front Physiol 2021; 12:771243. [PMID: 34899393 PMCID: PMC8652124 DOI: 10.3389/fphys.2021.771243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of two potential antibacterial agents of plant origin: trans-cinnamaldehyde (TC) and thyme oil (TO) on the peripheral blood parameters and cellular composition of hematopoietic tissue of Cyprinus carpio were studied. Both phytochemicals were used in the doses based on the bactericidal concentrations against Aeromonas spp. developed earlier in in vitro study. The fish were fed for 2 weeks on a commercial feed supplemented with 10 μl/kg of TC or 20 μl/kg of TO. Groups TC1 and TO1 were fed diets containing phytochemicals daily, while groups TC2 and TO2 every 2 days. Control group and groups TC2 and TO2 on the remaining days were fed plain feed. Peripheral blood and head kidney hematopoietic tissue were sampled from all the fish at the end of the experiment. In all the groups, hematological values were within the reference ranges for the healthy common carp juveniles. However, blood hemoglobin (Hb) concentration and mean corpuscular hemoglobin concentration (MCHC) were significantly lower in all the groups exposed to TC and TO, while MCH in TC1, TO1, and TO2 compared to the control. TC and TO did not affect leukocyte count [white blood cell (WBC)], differential leukocyte count, the oxidative activity of phagocytes [nitroblue tetrazolium (NBT)], or thrombocyte count (Thro). No significant alterations were observed in the hematopoietic tissue. The results showed that TC and TO exhibited no considerable hematotoxic effects and trials of their use in the treatment of fish infected with Aeromonas spp. may be undertaken.
Collapse
Affiliation(s)
- Elżbieta Kondera
- Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Bartosz Bojarski
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Zaborze, Poland
| | - Katarzyna Ługowska
- Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Barbara Kot
- Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Małgorzata Witeska
- Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|