1
|
Chang Y, Zheng F, Chen M, Liu C, Zheng L. Chlorella pyrenoidosa polysaccharides supplementation increases Drosophila melanogaster longevity at high temperature. Int J Biol Macromol 2024; 276:133844. [PMID: 39004249 DOI: 10.1016/j.ijbiomac.2024.133844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Chlorella pyrenoidos polysaccharides (CPPs) are the main active components of Chlorella pyrenoidos. They possess beneficial health properties, such as antioxidant, anti-inflammatory, and immune-enhancing. This study aims to investigate the protective function and mechanism of CPPs against high-temperature stress injury. Results showed that supplementation with 20 mg/mL CPPs significantly extended the lifespan of Drosophila melanogaster under high-temperature stress, improved its motility, and enhanced its resistance to starvation and oxidative stress. These effects were mainly attributed to the activation of Nrf2 signaling and enhanced antioxidant capacity. Additionally, it has been discovered that CPPs supplementation enhanced Drosophila resilience by preventing the disruption of the intestinal barrier and accumulation of reactive oxygen species caused by heat stress. Overall, these studies suggest that CPPs could be a useful natural therapy for preventing heat stress-induced injury.
Collapse
Affiliation(s)
- Yuanyuan Chang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Miao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Pourmoradkhani F, Sarvi Moghanlou K, Sohrabi T, Imani A, Gholizadeh V, Pourahad Anzabi M. Supplementation of Siberian sturgeon (Acipenser baerii) diet with different zinc sources: effects on growth performance, digestive enzymes activity, hemato-biochemical parameters, antioxidant response and liver histology. Vet Res Commun 2024; 48:797-810. [PMID: 37923869 DOI: 10.1007/s11259-023-10252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
An 8-week feeding trial was carried out to examine the effect of different sources of dietary Zn on some physiological responses (performance, digestive enzymes activity, hemato-biochemical parameters, antioxidant status and liver histology) of Siberian sturgeon, Acipenser baerii. For this purpose, fish with an average weight of 100 g ± 5 were randomly allocated into four groups including control, inorganic zinc (Zn-sulfate), organic zinc (Zn-gluconate), and zinc-oxide nanoparticles (ZnO-NPs) at 50 mg Zn kg- 1 feed. Improved growth indices, namely weight gain (WG) and specific growth rate (SGR) and feed conversion ratio (FCR) were observed in fish fed Zn-gluconate supplemented diet (P < 0.0.5). The highest digestive enzymes activity was recorded in fish fed Zn-gluconate supplementation (P < 0.0.5). Hematological indices significantly increased in fish fed diet containing ZnO-NPs (P < 0.0.5). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of fish fed ZnO-NPs contained diet were the highest (P < 0.0.5). The highest serum superoxide dismutase (SOD) and catalase (CAT) enzymes activity were observed in fish fed ZnO-NPs and inorganic/organic Zn contained diets, respectively. While liver tissue SOD and glutathione peroxidase (GPx) enzymes activity Zn were significantly increased in fish fed inorganic/organic Zn supplemented diet (P < 0.0.5). Based on liver histological results, a severe tissue changes such as necrosis and pyknosis were observed in fish fed with Zn-sulfate in comparison to other forms. In conclusion, the data of the present study confirmed that organic Zn (mainly) and nano-Zn (to some extent) could be more efficient Zn sources in Siberian sturgeon.
Collapse
Affiliation(s)
| | | | - Tooraj Sohrabi
- International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Organization (AREEO), Tehran, Iran , Rasht, Iran
| | - Ahmad Imani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Vahid Gholizadeh
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | | |
Collapse
|
3
|
Su X, Zhu X, Liang Z, Bao Z, Zhang J, Guo J, Guo H. Biochemical, histological and transcriptional response of intestines in Litopenaeus vannamei under chronic zinc exposure. CHEMOSPHERE 2024; 354:141646. [PMID: 38452979 DOI: 10.1016/j.chemosphere.2024.141646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Zinc (Zn) is an essential trace element for the normal physiological function of aquatic organisms, but it could become toxic to organisms when the concentration increased in water. As the first line of defense, the shrimp intestines are the most susceptible organ to environmental stress. In this study, the chronic toxicity of 0 (control, IC), 0.01(IL), 0.1(IM) and 1 mg/L (IH) Zn in intestines of Litopenaeus vannamei was investigated from the perspectives of biochemical, histological and transcriptional changes after exposure for 30 days. The results showed that the intestinal tissue basement membrane is swollen in the IM and IH groups and detached in the IH group. The total antioxidant capacities (T-AOC) were reduced while the content of malondialdehyde (MDA) were increased significantly in IM and IH groups. The production of reactive oxygen species (ROS) was increased significantly in IH group. Many differentially expressed genes (DEGs) were identified in IL, IM and IH groups, respectively. GO and KEGG enrichment analyses were conducted on the DEGs to obtain the underlying biological processes and pathways. The gene modules related to the sample were identified by weighted gene co-expression network analysis (WGCNA), and genes in modules highly corelated with IH group were mainly enriched in immune related pathways. Nine DEGs were selected for validation by quantitative real time PCR (qRT-PCR) and the expression profiles of these DEGs kept a well consistent with the high-throughput data, which confirmed reliability of transcriptome results. Additionally, 10 DEGs were screened to detect the changes of expression level in different groups. All these results indicated that Zn exposure could damage the intestinal barrier, provoke oxidative stress, reduce the immune function, increase the susceptibility to bacterial infections of L. vannamei and cause inflammation, ultimately result in cell apoptosis. Our study provides more perspective on the stress response of crustacean under Zn exposure.
Collapse
Affiliation(s)
- Xianbin Su
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, China
| | - Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhiming Bao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Jiayuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Jieyu Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, China.
| |
Collapse
|
4
|
Zhong GF, Zhang LF, Zhuang Y, Li Q, Huang H, Cao C, Zhu ZY, Huang ZY, Wang NA, Yuan K. Effects of Brown Fishmeal on Growth Performance, Digestibility, and Lipid Metabolism of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:28-36. [PMID: 38165638 DOI: 10.1007/s10126-023-10274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
The aim of this study was to evaluate the effect of brown fishmeal in replacement of white fishmeal in the diet of Chinese soft-shelled turtles and to find the optimal amount of brown fishmeal to add. Five experimental groups were set up and fed to animals, and they were composed by different proportions of white and brown fishmeal: G1 (30% white and 25% brown fishmeal), G2 (25% white and 30% brown fishmeal), G3 (20% white and 35% brown fishmeal), G4 (15% white and 40% brown fishmeal), G5 (10% white and 45% brown fishmeal). G1 is regarded as the control group. Turtles were randomly divided into five experimental groups with four replicates each. The experiment lasted 72 days. The results showed that the WGR, SGR, FCR, and HSI of the G3 group were not significantly different from those of the control group (P > 0.05). In addition, brown fishmeal can increase the crude protein content in the muscles of them. Among the serum biochemical indices, there was no significant difference between the G3 group and the G1 group, except for the level of TG (P > 0.05). Meanwhile, the activities of AST, ALT, and CAT in the liver of the G3 group did not differ significantly from those of the G1 group (P > 0.05). However, the activities of ACP, AKP, and T-AOC were significantly decreased in the G3 group (P < 0.05). In addition, the alteration of fishmeal did not affect the digestive enzyme activities in the stomach, liver, and intestine, and there is no significant difference (P > 0.05). Importantly, with increasing brown fishmeal addition, the expression of Fas, Pparγ, Scd, and Stat3 showed a significant increase, while the expression of Bmp4 decreased significantly (P < 0.05). In this study, the addition of 20% white fishmeal and 35% brown fishmeal to the diet of Chinese soft-shelled turtles did not adversely affect growth performance. Therefore, 20% white fishmeal and 35% brown fishmeal are the most practical feed formulations for Chinese soft-shelled turtles in this study.
Collapse
Affiliation(s)
- Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| | - Liang-Fa Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qi Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - He Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Cong Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhan-Ying Zhu
- Zhejiang Huzhou Haihuang Bio-Technology Co., Ltd., Huzhou, 313000, China
| | - Zhong-Yuan Huang
- Zhejiang Huzhou Haihuang Bio-Technology Co., Ltd., Huzhou, 313000, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Kun Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Luan R, Luo M, Ding D, Su X, Yang J. Zinc deficiency increases lung inflammation and fibrosis in obese mice by promoting oxidative stress. Biochim Biophys Acta Gen Subj 2024; 1868:130518. [PMID: 37951369 DOI: 10.1016/j.bbagen.2023.130518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Zinc deficiency can lead to multiple organ damage. In this study, we investigated the effects of zinc deficiency on obesity-related lung damage. METHODS C57BL/6 J mice were fed a diet with differing amounts of zinc and fat over a 6-month period. Palmitic acid was used to stimulate A549 cells to construct a high-fat alveolar epithelial cell model. Western blotting and histopathological staining were performed on animal tissues. Nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) was detected in cultured cells. A reactive oxygen species (ROS) assay kit was used to detect intracellular ROS. Furthermore, Nrf2 siRNA was used to examine zinc deficiency effects on A549 cells. RESULTS Pathological results showed significant damage to the lung structure of mice in the high-fat and low-zinc diet group, with a significant increase in the expression of inflammatory (IL-6, TNF-α) and fibrosis (TGFβ1, PAI-1) factors, combined with a decrease in the expression of Nrf2, HO-1 and NQO1 in the antioxidant pathway. In A549 cells, high fat and low zinc levels aggravated ROS production. Western blot and immunofluorescence results showed that high fat and zinc deficiency inhibited Nrf2 expression. After Nrf2-specific knockout in A549 cells, the protective effect of zinc on oxidant conditions induced by high fat was reduced. Phosphorylated Akt and PI3K levels were downregulated on the high-fat and low-zinc group compared with the high-fat group. CONCLUSIONS Zinc attenuated lung oxidative damage in obesity-related lung injury and Nrf2 activation is one of the important mechanisms of this effect. GENERAL SIGNIFICANCE Regulating zinc homeostasis through dietary modifications or supplemental nutritional therapy can contribute to the prevention and treatment of obesity-related lung injury.
Collapse
Affiliation(s)
- Rumei Luan
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dongyan Ding
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Su
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Kou H, Liu X, Hu J, Lin G, Zhang Y, Lin L. Impact of dietary zinc on the growth performance, histopathological analysis, antioxidant capability, and inflammatory response of largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109025. [PMID: 37625733 DOI: 10.1016/j.fsi.2023.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Zinc plays a crucial role in the antioxidant capacity, and inflammatory response of aquatic species, but its impact on largemouth bass Micropterus salmoides is rarely reported. Therefore, this paper aimed to investigate the effects of different levels of zinc on the growth performance, histopathology, antioxidant capacity, and inflammatory cytokines of largemouth bass Micropterus salmoides. Fish with an initial weight of 7.84 ± 0.06 g were cultured for 10 weeks. Five experimental diets were prepared with supplemented proteinate Zn (Bioplex Zn, Alltech) (0, 30, 60, 90, and 120 mg/kg), which were named the Zn-42, Zn-73, Zn-103, Zn-133, and Zn-164 groups. No evident difference was found between the dietary zinc level and the survival rate, the crude lipid content of the whole fish, or the visceral somatic index. Weight gain, condition factor, whole-body crude protein content, interleukin-10, and transforming growth factor beta gene expression were gradually enhanced with up to 102.68 mg/kg zinc and decreased at higher levels. The hepatosomatic index, feed conversion ratio, malondialdehyde level in the liver, aspartate aminotransferase, and alanine transaminase activity in the serum, gradually decreased up to 102.68 mg/kg zinc, and gradually increased beyond this. Activation of the nuclear factor erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 signaling pathway gradually up-regulated the mRNA levels and activities of glutathione peroxidase, total antioxidant capacity, catalase, and superoxide dismutase in the liver, this antioxidant ability was lower when the zinc was greater than 102.68 mg/kg. The gene expressions of nuclear factor-k-gene binding and pro-inflammation cytokines (interleukin-1β, interleukin-15, tumor necrosis factor alpha, and interleukin-8) were up-regulated up to 102.68 mg/kg zinc and then gradually repressed. In conclusion, using broken line analysis to estimate weight gain and Zn proteinate as the zinc source, the recommended dietary zinc for largemouth bass is 66.57 mg/kg zinc.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gang Lin
- Alltech Biological Products (China) Co, Ltd, Beijing, 100060, China
| | - Yufan Zhang
- Alltech Biological Products (China) Co, Ltd, Beijing, 100060, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
7
|
Jiang JY, Wen H, Jiang M, Tian J, Dong LX, Shi ZC, Zhou T, Lu X, Liang HW. Dietary Curcumin Supplementation Could Improve Muscle Quality, Antioxidant Enzyme Activities and the Gut Microbiota Structure of Pelodiscus sinensis. Animals (Basel) 2023; 13:2626. [PMID: 37627417 PMCID: PMC10451759 DOI: 10.3390/ani13162626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This experiment aimed to assess the impact of different dietary curcumin (CM) levels on growth, muscle quality, serum-biochemical parameters, antioxidant-enzyme activities, gut microbiome, and liver transcriptome in Chinese soft-shelled turtles (Pelodiscus sinensis). Five experimental diets were formulated to include graded levels of curcumin at 0 (control, CM0), 0.5 (CM0.5), 1 (CM1), 2 (CM2) and 4 g/kg (CM4). Each diet was randomly distributed to quadruplicate groups of turtles (164.33 ± 5.5 g) for 6 weeks. Our findings indicated that dietary curcumin supplementation did not have a significant influence on growth performance (p > 0.05); however, it significantly improved the muscular texture profiles (p < 0.05). Serum total superoxide dismutase (SOD), liver catalase (CAT), and total antioxidant capacity (T-AOC) activities increased significantly as dietary curcumin levels rose from 0.5 to 4 g/kg (p < 0.05). Dietary curcumin supplementation improved gut microbiota composition, as evidenced by an increase in the proportion of dominant bacteria such as Lactobacillus and Flavobacterium. Liver transcriptome analysis revealed that curcumin altered metabolic pathways in the liver. In conclusion, based on the evaluation of the activities of SOD in serum and CAT in liver under current experimental design, it was determined that the appropriate dietary curcumin supplementation for Chinese soft-shelled turtles is approximately 3.9 g/kg.
Collapse
Affiliation(s)
- Jia-Yuan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Li-Xue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ze-Chao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Hong-Wei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| |
Collapse
|
8
|
Tao W, Ou J, Wu D, Zhang Q, Han X, Xie L, Li S, Zhang Y. Heat wave induces oxidative damage in the Chinese pond turtle (Mauremys reevesii) from low latitudes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1053260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IntroductionGlobal warming has led to frequent heat waves, causing global organisms to face severe survival challenges. However, the way in which heat waves threaten the fitness and survival of animals remains largely unclear. Oxidative damage and immunity are widely considered the link between heat waves and threats to animals.MethodsTo evaluate the oxidative damage caused by heat waves and to reveal the physiological resistance to heat waves by the antioxidant defense of animals from different latitudes, we exposed both high-latitude (Zhejiang) and low-latitude (Hainan) populations of Chinese pond turtle (Mauremys reevesii) to simulate heat waves and a moderate thermal environment for 1 week, respectively. Next, we compared the oxidative damage by malondialdehyde (MDA) and antioxidant capacity by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC) in the liver tissues and evaluated the innate immunity by serum complement protein levels (C3, C4) and lysozyme activity in plasma of turtles.Results and discussionWe found that heat waves significantly increased the content of MDA and the activity of CAT, whereas it decreased the activity of SOD, T-AOC, and GSH/GSSG in turtles from low latitudes. Furthermore, heat waves increased CAT activity but decreased GSH/GSSG in turtles from high latitudes. Although the turtles from high latitudes had higher levels of innate immunity, the heat waves did not affect the innate immunity of C3, C4, or lysozyme in either population. These results indicate that the low-latitude population suffered higher oxidative damage with lower antioxidant capacities. Therefore, we predict that Chinese pond turtles from low latitudes may be more vulnerable to heat waves caused by climate warming. This study reveals the physiological and biochemical resistance to heat waves in Chinese pond turtles from different latitudes and highlights the importance of integrative determination of fitness-related responses in evaluating the vulnerability of ectotherms from different latitudes to climate warming.
Collapse
|
9
|
Kou H, Hu J, Liu X, Zhao L, Zhang K, Pan X, Wang A, Miao Y, Lin L. Dietary protein improves flesh quality by enhancing antioxidant ability via the NF-E2-related factor 2/Kelch-like ECH-associated protein 1 signaling pathway in softshell turtle ( Pelodiscus sinensis). Front Nutr 2022; 9:1030583. [PMID: 36438722 PMCID: PMC9685656 DOI: 10.3389/fnut.2022.1030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 08/13/2023] Open
Abstract
An 8-week feeding trial was performed to assess the influence of a gradient of protein levels (14.38-45.23%) on flesh quality, skin color, amino acid profile, collagen, antioxidant capability, and antioxidant-related signaling molecule expression of the softshell turtle (Pelodiscus sinensis). Hardness, gumminess, chewiness, and yellowness values in the plastron and carapace, along with collagen, superoxide dismutase, catalase, total antioxidant capacity, and glutathione peroxidase, all improved with elevating dietary protein up to 26.19%, after which they leveled off. Additionally, total amino acids, flavor amino acids, essential amino acids, and non-essential amino acids in the muscle, as well as the expression of copper/zinc superoxide dismutase, glutathione peroxidase, catalase, manganese superoxide dismutase, NF-E2-related factor 2 were all enhanced by increasing the dietary protein level but not changed by higher protein levels. When dietary protein levels were less than 26.19%, the mRNA expression of Kelch-like ECH-associated protein 1, malondialdehyde, and redness values in the carapace and plastron were reduced, as was the lightness values of the carapace, all of which plateaued at higher protein levels. Using catalase activity and malondialdehyde as the indicators and applying a broken-line analysis, the optimal dietary protein level for P. sinensis was inferred to be 26.07 and 26.06% protein, respectively. In summary, an optimal protein input improved turtle flesh quality by strengthening antioxidant capacity in muscle tissue and by regulating the expression of antioxidant-related enzymes via the Nrf2/keap1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kai Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xunbin Pan
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
10
|
Mechanisms Underlying the Protective Effect of Maternal Zinc (ZnSO4 or Zn-Gly) against Heat Stress-Induced Oxidative Stress in Chicken Embryo. Antioxidants (Basel) 2022; 11:antiox11091699. [PMID: 36139773 PMCID: PMC9495990 DOI: 10.3390/antiox11091699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial morphology, liver antioxidant capacity and the expression of related genes involved in liver oxidative mechanisms in heat-stressed broilers. A total of 300 36-week-old Lingnan Yellow broiler breeders were randomly divided into three treatments: (1) control (basal diet, 24 mg zinc/kg); (2) inorganic ZnSO4 group (basal diet +80 mg ZnSO4/kg); (3) organic Zn-Gly group (basal diet +80 mg Zn-Gly/kg). The results show that maternal zinc alleviated heat stress-induced chicken embryo hepatocytes’ oxidative stress by decreasing the content of ROS, MDA, PC, 8-OHdG, and levels of HSP70, while enhancing T-SOD, T-AOC, CuZn-SOD, GSH-Px, CTA activities and the content of MT. Maternal zinc alleviated oxidative stress-induced mitochondrial damage in chick embryo hepatocytes by increasing mitochondrial membrane potential and UCP gene expression; and Caspase-3-mediated apoptosis was alleviated by increasing CuZn-SOD and MT gene expression and decreasing Bax gene expression and reducing the activity of caspase 3. Furthermore, maternal zinc treatment significantly increased Nrf2 gene expression. The results above suggest that maternal zinc can activate the Nrf2 signaling pathway in developing chick embryos, enhance its antioxidant function and reduce the apoptosis-effecting enzyme caspase-3 activities, thereby slowing oxidative stress injury and tissue cell apoptosis.
Collapse
|
11
|
Huang Q, Wang X, Liu J, Wang H, Miao Y, Zhang C, Zhang M, Qin C, Qin J, Chen L. Effect of Vitamin A Supplementation on Growth Performance, Lipid Deposition, Antioxidant Ability, and Immunity in Juvenile Chinese Mitten Crab Eriocheir sinensis Fed Diet with Fish Oil Totally Replaced by Palm Oil. AQUACULTURE NUTRITION 2022; 2022:1-19. [DOI: 10.1155/2022/3746245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This research evaluated the protective effect of vitamin A (VA) on the adverse effect of fish oil (FO) substitution with palm oil (PO) in an economical crab Eriocheir sinensis. Three diets of FO, PO, and
VA as the main lipid sources were fed to crabs, respectively, for 8 weeks. Compared to crabs fed FO diet, crabs fed PO diet showed reduced hemolymph VA concentration, feed utilization efficiency, and growth performance. Besides, crabs fed PO diet showed elevated lipid content in hepatopancreas and body and triglyceride content in hepatopancreas, leading to decreased antioxidant enzyme and immune parameters activities from biochemical analysis, enzymatic determination, and quantitative polymerase chain reaction. In contrast, compared to crabs fed PO only, VA supplementation in PO improved the growth performance and utilization of fatty acids and reduced lipid deposition in the hepatopancreas. In addition, VA supplementation suppressed gene expression related to triglyceride synthesis (dgat1) and positively affected gene expression related to lipid catabolism (cpt1a, cpt1b, cpt2, and caat). Furthermore, VA supplementation upregulated antioxidant genes (CuZnSOD and CAT) through downregulating gene expression of upstream regulator Keap1. Furthermore, VA supplementation upregulated immune genes (Lzm and proPO) expression and reduced proinflammatory genes (LITAF, ADAM17, and IL-16) expression related to Toll2/MyD88/Relish signaling pathway. This study shows the necessity of VA addition in the feed with FO totally replaced by PO because it can relieve PO’s adverse effects and improve the growth of crabs.
Collapse
Affiliation(s)
- Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Han Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Miao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Kou H, Hu J, Wang AL, Pan X, Vijayaraman SB, Miao Y, Lin L. Effects of dietary protein on water quality, growth performance, RNA/DNA ratio and haemato-immunological indices of soft-shelled turtle (Pelodiscus sinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 123:127-135. [PMID: 35202804 DOI: 10.1016/j.fsi.2022.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In aquatic animals, dietary protein plays a crucial role in their growth and immunity. A feeding trial was conducted on soft-shelled turtles (Pelodiscus sinensis) to assess the effects of various levels of protein on the specific growth rate (SGR), ambient water quality (total ammonia nitrogen (TAN), total nitrogen (TN) and total phosphorus (TP)), hematological parameters (respiratory burst (RB), red blood cell count (RBC), albumin content (Alb), hemoglobin level (Hb) and osmolality), plasma immunoglobulin M (IgM) levels and lysozyme activity. Soft-shelled turtles weighing about 4.02 g were fed fish meal-based diets with 14.38%, 20.41%, 26.19%, 32.23%, 37.63% and 45.23% protein for 8 weeks. SGR, RBC, Hb, Alb, RB, IgM and lysozyme activity were enhanced as the dietary protein was increased from 14.38% to 26.19%, then reached a plateau. For identical feeding times, TAN and TN were increased with elevating dietary protein levels. While, no statistically significant differences were observed among the 26.19%, 32.23% and 37.63% groups. When the turtles were cultivated for 56 days and fed with 45.23% protein, the TP in the culturing water was higher than that in the other groups. An increase in dietary protein level up to 26.19% increased the RNA/DNA ratio, which subsequently plateaued at a steady level. The levels of dietary protein had no impact on osmolality or alkaline phosphatase (AKP) activity. On the basis of broken-line analyses derived from SGR, the optimum dietary protein level for soft-shelled turtles was found to be 27.11% protein.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - An-Li Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xunbin Pan
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Sarath Babu Vijayaraman
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
13
|
Biofunctionalization of Endolysins with Oligosacharides: Formulation of Therapeutic Agents to Combat Multi-Resistant Bacteria and Potential Strategies for Their Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field. Derived from years of analysis, endolysins have recently been considered as potential alternative therapeutic antibacterial agents, due to their attributes and ability to combat multi-resistant bacterial cells when applied externally. On the other hand, although the aquaculture sector has been characterized by its high production rates, serious infectious diseases have led to significant economic losses that persist to this day. Although there are currently interesting data from studies under in vitro conditions on the application of endolysins in this sector, there is little or no information on in vivo studies. This lack of analysis can be attributed to the relatively low stability of endolysins in marine conditions and to the complex gastrointestinal conditions of the organisms. This review provides updated information regarding the application of endolysins against multi-resistant bacteria of clinical and nutritional interest, previously addressing their important characteristics (structure, properties and stability). In addition, regarding the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field.
Collapse
|