1
|
Xiong D, Sun T, Liu M, Wang B, Guan T, Song L, Jiao X, Yang Z. Bacillus licheniformis B410 Alleviates Inflammation Induced by Lipopolysaccharide and Salmonella by Inhibiting NF-κB and IRF Signaling Pathways in Macrophages. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10440-y. [PMID: 39739164 DOI: 10.1007/s12602-024-10440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Foodborne bacterial enteritis is a common clinical disease, and its incidence has risen globally. To screen for functional Bacillus strains with anti-inflammatory properties, tolerance to acid and bile salts, and antagonism against Salmonella, 22 strains of Bacillus were employed as candidate strains in this study. An inflammatory cell model was established using J774-Dual NF-κB/IRF reporter macrophages to identify anti-inflammatory Bacillus. The candidate Bacillus strains were assessed through tolerance to acid and bile salts and antibacterial assays, and their inhibitory effects on the inflammatory responses triggered by S. Enteritidis infection were investigated. The findings demonstrated that B. licheniformis B410 was successfully screened, possessing a significant anti-inflammatory effect by suppressing the NF-κB and IRF signaling pathways. B410 exhibited excellent tolerance to acid and bile salts and displayed a favorable antibacterial effect against Salmonella. Co-incubation of B410 with RAW264.7 macrophages did not influence the cell viability. B. licheniformis B410 could significantly inhibit the expression of pro-inflammatory cytokines IL-1β and TNF-α induced by LPS and promote the expression of the anti-inflammatory cytokine IL-10. Additionally, B410 could markedly inhibit the activation of NF-κB and the production of inflammatory cytokines caused by S. Enteritidis infection in macrophages. This study successfully screened a new strain of B. licheniformis B410 that simultaneously had the capabilities of anti-inflammation, acid and bile salt tolerance, and antagonism against Salmonella, providing a new approach for the screening of functional anti-inflammatory probiotics and the development of anti-inflammatory probiotic therapeutic preparations.
Collapse
Affiliation(s)
- Dan Xiong
- College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, 225127, China
| | - Tao Sun
- College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, 225127, China
| | - Mengru Liu
- College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, 225127, China
| | - Bo Wang
- College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, 225127, China
| | - Tianzhu Guan
- College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, 225127, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
2
|
Guangxin L, Guangfeng L, Ce L, Hongling M, Yiqin D, Changhong C, Jianjun J, Sigang F, Juan F, Li L, Zhendong Q, Zhixun G. Genome sequencing analysis and validation of infestation-related functional genes of Vibrio parahaemolyticus LG2206 isolated from the hepatopancreas of diseased mud crab (Scylla paramamosain) in South China. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109854. [PMID: 39179188 DOI: 10.1016/j.fsi.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.
Collapse
Affiliation(s)
- Liu Guangxin
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liu Guangfeng
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Li Ce
- Zhaoqing Aquatic Technology Extension Center, Zhaoqing, 526060, China
| | - Ma Hongling
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Deng Yiqin
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Cheng Changhong
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jiang Jianjun
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fan Sigang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Feng Juan
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Qin Zhendong
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Guo Zhixun
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
3
|
Li Y, Yao H, Liu S, Song D, Wu C, Zhang S, Gao Q, Zhang L. The role of flagellin F in Vibrio Parahaemolyticus-induced intestinal immunity and functional domain identification. Int J Biol Macromol 2023; 244:125404. [PMID: 37327919 DOI: 10.1016/j.ijbiomac.2023.125404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The marine pathogen Vibrio parahaemolyticus has caused huge economic losses to aquaculture. Flagellin is a key bacterial virulence factor that induces an inflammatory response via activation of Toll-like receptor 5 (TLR5) signaling. Herein, to explore the inflammatory activity of V. parahaemolyticus flagellins (flaA, flaB, flaC, flaD, flaE, and flaF), we investigated their ability to induce apoptosis in a fish cell line. All six flagellins induced severe apoptosis. Moreover, treatment with V. parahaemolyticus flagellins increased TLR5 and myeloid differentiation factor 88 (MyD88) expression and the production of TNF-α and IL-8 significantly. This indicated that flagellins might induce a TLR5-meditated immune response via an MyD88-dependent pathway. FlaF exhibited the strongest immunostimulatory effect; therefore, the interaction between TLR5 and flaF was screened using the yeast two-hybrid system. A significant interaction between the two proteins was observed, indicating that flaF binds directly to TLR5. Finally, the amino acids that participate in the TLR5-flaF interaction were identified using molecular simulation, which indicated three binding sites. These results deepen our understanding of the immunogenic properties of flagellins from V. parahaemolyticus, which could be used for vaccine development in the future.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Hongqing Yao
- Songjiang Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 201699, PR China
| | - Sushuang Liu
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, PR China
| | - Dawei Song
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Choufei Wu
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Shaoyong Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| | - Liqin Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
4
|
Giovanni A, Maekawa S, Wang PC, Chen SC. Recombinant Vibrio harveyi flagellin A protein and partial deletions of middle variable region and D0 domain induce immune related genes in Epinephelus coioides and Cyprinus carpio. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104588. [PMID: 36372114 DOI: 10.1016/j.dci.2022.104588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Vibrio harveyi is a Gram-negative bacterium that causes vibriosis in various aquaculture species, including the orange-spotted grouper (Epinephelus coioides). Bacterial flagellin is a potent pathogen-associated molecule that stimulates the innate and adaptive immune systems through toll-like receptor 5 (TLR5) signaling. In this study, we isolated V. harveyi flagellin A (VhFliA) gene from V. harveyi (originated from orange-spotted grouper) and investigated the in vivo activities of recombinant VhFliA protein. Multiple sequence alignment showed that the amino acid sequence of VhFliA has conserved domains of N- and C-terminals (D0 and D1) and a middle variable (MV) region. We produced the VhFliA recombinant protein (wild type (WT)-VhFliA) by Escherichia coli and investigated its in vivo biological activity. Additionally, we prepared the VhFliA recombinant proteins with deletion of domains (ΔMV-VhFliA and ΔD0MV-VhFliA) to identify the domain for biological activity in the orange-spotted grouper. WT and ΔMV-VhFliA induced the expression of inflammatory cytokines (IFNγ, IL-1β, and IL-8) in groupers. However, ΔD0MV-VhFliA did not induce the expression of inflammatory cytokines. Additionally, to demonstrate the applicability of recombinant VhFliA to teleost species, we performed an in vivo assay of the recombinant proteins in koi carp (Cyprinus carpio). WT-VhFliA stimulates the expression of inflammatory cytokines (IL-1β, IL-6, and IL-8) in carp. ΔMV-VhFliA did not upregulate IL-1β and IL-6, whereas ΔD0MV-VhFliA induced expression in carp. These findings showed the potential of VhFliA as an effective immune stimulant adjuvant and comparative studies of flagellin - TLR5 signaling in teleosts.
Collapse
Affiliation(s)
- Andre Giovanni
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shun Maekawa
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
5
|
Deng N, Zhao Y, Xu J, Ouyang H, Wu Z, Lai W, Lu Y, Lin H, Zhang Y, Lu D. Molecular characterization and functional study of the NLRP3 inflammasome genes in Tetraodon nigroviridis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:570-581. [PMID: 36257557 DOI: 10.1016/j.fsi.2022.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important inflammasome in mammals, which is of great significance to eliminate pathogens. However, the research of the NLRP3 inflammasome in teleost is limited. Tetraodon nigroviridis has the characteristics of small genome and easy feeding, which can be used as a model for the study of fish immune function. In present study, three NLRP3 inflammasome component genes (NLRP3, ASC and caspase-1) in T. nigroviridis has been cloned. Real-time fluorescence quantitative PCR showed that TnNLRP3 (T. nigroviridis NLRP3), TnASC (T. nigroviridis ASC) and Tncaspase-1 (T. nigroviridis caspase-1) mRNA in various tissues from health T. nigroviridis were highly expressed in immune-related tissues, such as spleen, gill, head kidney and intestine. After Vibrio parahemolyticus infection, the expression of TnNLRP3, TnASC and Tncaspase-1 mRNA in spleen, gill, head kidney reached a peak at 24 h, and the expression levels of these genes in intestine were the highest at 48 h. After the transfection of TnASC-pAcGFP-N1 monomer GFP plasmid into cos-7 cells, ASC specks, the activation marker of NLRP3 inflammasome, were observed. Bimolecular fluorescence complementarity and fluorescence colocation experiment showed that TnASC and Tncaspase-1 of TnNLRP3 inflammasome were co-located near the cell nucleus, and potentially interacted with each other. NLRP3 inflammasome inducer nigericin and agonist ATP could significantly induce the expression of TnNLRP3, TnASC and Tncaspase-1 mRNA, and activation of NLRP3 inflammasome could promote the generation of mature TnIL-1β (T. nigroviridis IL-1β). These results uncover that T. nigroviridis NLRP3 inflammasome could participate in the antibacterial immune response and the generation of mature TnIL-1β after activation.
Collapse
Affiliation(s)
- Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haofeng Ouyang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
6
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
7
|
Gao F, Pang J, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. TLR5 recognizes Aeromonas hydrophila flagellin and interacts with MyD88 in Nile tilapia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104409. [PMID: 35405183 DOI: 10.1016/j.dci.2022.104409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Toll-like receptor 5 (TLR5) is responsible for bacterial flagellin recognition in vertebrates. In the present study, TLR5M was identified in the Nile tilapia Oreochromis niloticus (OnTLR5), containing a conserved LRR domain, a transmembrane region and a C-terminal TIR domain, similar to that of other fishes and mammals. OnTLR5 was broadly expressed in all the tissues examined, presenting the highest expression levels in the blood and the lowest in the kidney. OnTLR5 was detected from 2 d postfertilization (dpf) to 8 dpf during embryonic development. Moreover, expression levels of OnTLR5 were clearly altered in all five tissues examined in response to Streptococcus agalactiae infection in vivo. Overexpression of OnTLR5 in HEK293T cells revealed that OnTLR5 was distributed in the cytoplasm and significantly increased NF-κB activation. In response to cotransfection with OnMyd88, OnTLR5 significantly upregulated OnMyd88-induced NF-κB activation. Pulldown assays showed that OnTLR5 interacts with OnMyd88 and revealed an interaction between TLR5 and Aeromonas hydrophila flagellin. Taken together, these findings suggest that OnTLR5 plays important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Jicai Pang
- Shandong Vocational Animal Science and Veterinary College, Weifang, 261021, Shandong Province, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
8
|
Gu Y, Chen K, Xi B, Xie J, Bing X. Paeonol increases the antioxidant and anti-inflammatory capacity of gibel carp (Carassius auratus gibelio) challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 123:479-488. [PMID: 35314333 DOI: 10.1016/j.fsi.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Paeonol, a naturally occurring polyphenol isolated from medical plant, has been known to exhibit anti-oxidative and anti-inflammatory effects. In order to evaluate the effect of paeonol on Carassius auratus gibelio infected by pathogenic bacteria Aeromonas hydriphila. 750 fish were randomly divided into 5 groups, which separately treated with 0.85% sterile saline (blank), A. hydriphila (negative control), A. hydriphila with paeonol (4 mg/kg, 64 mg/kg), and A. hydriphila with enrofloxacin (12 mg/kg, positive control). Fish were anaesthetized with MS-222 (100 mg/L), and samples were collected at 6 and 72 h after A. hydriphila challenge. The results showed that compared with the negative group, the survival in paeonol groups marked increased by 14.75% and 18.94%. The plasma immunoglobulin M (IgM) was notably increased, and low density lipoprotein (LDL) was significantly decreased in paeonol groups at 6 h (P < 0.05). The antioxidative enzymes catalase (CAT), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) were significantly increased in paeonol groups at 6 h, while malondialdehyde (MDA) and myeloperoxidase (MPO) contents were lower (P < 0.05). The inflammatory related genes MyD88 and TLR-5 were significantly downregulated, and the TLR-3 was significantly increased in paeonol groups at 72 h (P < 0.05). In addition, histopathological analyses showed that the lesion in liver, spleen and caudal kidney were considerably attenuated in paeonol groups. In conclusion, paeonol could increase the survival rate, mitigate oxidative damage, inflammation, tissue lesions, and improve the immunity of gibel carp challenged with A. hydrophila.
Collapse
Affiliation(s)
- Yipeng Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|