1
|
Vicente-Gil S, Simón R, Nogales-Mérida S, Nuñez-Ortiz N, Fouz B, Serra C, Ordás MC, Abós B, Herranz-Jusdado JG, Morel E, Díaz-Rosales P, Tafalla C. Bacillus subtilis supplemented feeding as a method to increase IgM titers and affinity in response to fish vaccination. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110335. [PMID: 40233835 DOI: 10.1016/j.fsi.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/17/2025]
Abstract
In aquaculture, the use of probiotics in supplemented diets has been shown to be a suitable strategy to increase the immune status of fish and thereby reduce the impact of pathogens. Specifically, the immunostimulatory effects of the probiotic microorganism Bacillus subtilis have been widely confirmed both in vitro and in vivo in many aquacultured species. However, whether feeding fish with probiotic-enriched diets affects the adaptive immune response mounted to a vaccine has been scarcely addressed in fish. Therefore, in this study, we addressed this using rainbow trout (Oncorhynchus mykiss) as a model. To this aim, fish were fed a probiotic-supplemented diet or a control diet for 30 days and thereafter immunized through different administration routes with different antigenic models, including 2,4,6-trinitrophenyl lipopolysaccharide (TNP-LPS), a Yersinia ruckeri bacterin or a DNA vaccine against viral haemorrhagic septicaemia virus (VHSV). The effects of the B. subtilis-supplemented diet on the systemic specific IgM responses mounted were then established. For TNP-LPS, we also determined the effects of the diet on antibody affinity using a BIAcore instrument, which allows direct detection of antibody-antigen interactions by surface plasmon resonance (SPR) changes. The results presented reveal beneficial effects of feeding this probiotic on the vaccine-induced antibody response and point to the usefulness of designing holistic vaccination protocols that not only focus on antigen optimization or administration regimes, but also include diet composition as an important factor to influence the outcome of the immunization strategy.
Collapse
Affiliation(s)
- Samuel Vicente-Gil
- Biotechnology Department. National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040, Madrid, Spain
| | - Rocío Simón
- Animal Health Research Center (CISA-INIA), National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - Silvia Nogales-Mérida
- Animal Health Research Center (CISA-INIA), National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Biotechnology Department. National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040, Madrid, Spain
| | - Belén Fouz
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Claudia Serra
- Biology Department, Faculdade de Ciências, University of Porto, Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - M Camino Ordás
- Biology, Geology, Physics and Chemistry Department, Rey Juan Carlos University, Móstoles, 28933, Madrid, Spain
| | - Beatriz Abós
- Biotechnology Department. National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040, Madrid, Spain
| | | | - E Morel
- Biotechnology Department. National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040, Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center (CISA-INIA), National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - Carolina Tafalla
- Biotechnology Department. National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040, Madrid, Spain.
| |
Collapse
|
2
|
Xiao J, Wang H, Callahan C, O’Donnell G, Rodriguez S, Staupe RP, Balibar CJ, Citron MP. Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models. Biomedicines 2025; 13:1112. [PMID: 40426939 PMCID: PMC12109483 DOI: 10.3390/biomedicines13051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Mucosal vaccines are rare but commercially desirable because of their real and theoretical biological advantages. Spores and vegetative forms from Bacillus have been used as probiotics due to their stability under various environmental conditions, including heat, gastric acidity, and moisture. Preclinical studies have shown that Bacillus subtilis (B. subtilis) spores can serve as effective mucosal adjuvants. Our study aimed to evaluate B. subtilis spores as a mucosal adjuvant. Methods and Results: We demonstrate in rodents that the fusion protein (F) from respiratory syncytial virus (RSV), when combined with either heat-inactivated or live B. subtilis spores, elicits robust IgG binding and neutralizes antibody titers following both systemic and intranasal administration in mice. The spores facilitate TH-1 and local IgA responses, which could enhance antiviral protection. However, this vaccine failed to elicit measurable antibodies when immunized using a strict intranasal administration method in cotton rats. Conclusions: Our findings illustrate the differing immune responses between the two rodent species, highlighting the need for the careful consideration of validated methods when evaluating intranasal vaccines in preclinical studies.
Collapse
Affiliation(s)
- Jianying Xiao
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Hao Wang
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Cheryl Callahan
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Gregory O’Donnell
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (S.R.)
| | - Silveria Rodriguez
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (S.R.)
| | - Ryan P. Staupe
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Carl J. Balibar
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Michael P. Citron
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| |
Collapse
|
3
|
Calcagnile M, Tredici SM, Alifano P. A comprehensive review on probiotics and their use in aquaculture: Biological control, efficacy, and safety through the genomics and wet methods. Heliyon 2024; 10:e40892. [PMID: 39735631 PMCID: PMC11681891 DOI: 10.1016/j.heliyon.2024.e40892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Probiotics, defined as viable microorganisms that enhance host health when consumed through the diet, exert their effects through mechanisms such as strengthening the immune system, enhancing resistance to infectious diseases, and improving tolerance to stressful conditions. Driven by a growing market, research on probiotics in aquaculture is a burgeoning field. However, the identification of new probiotics presents a complex challenge, necessitating careful consideration of both the safety and efficacy of the microorganisms employed. This review aims to delineate the most utilized and effective methods for identifying probiotics. The most effective approach currently combines in silico analysis of genomic sequences with in vitro and in vivo experiments. Two main categories of genetic traits are analyzed using bioinformatic tools: those that could harm the host or humans (e.g., toxin production, antibiotic resistance) and those that offer benefits (e.g., production of helpful compounds, and enzymes). Similarly, in vitro experiments allow us to examine the safety of a probiotic but also its effectiveness (e.g., ability to adhere to epithelia). Finally, in vivo experiments allow us to study the effect of probiotics on fish growth and health, including the ability of the probiotic to manipulate the host's microbiota and the ability to mitigate the infections. This review comprehensively analyzes these diverse aspects, with a particular focus on the potential of studying the interaction between bacterial pathogens and probiotics through these integrated methods.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | | | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| |
Collapse
|
4
|
Xie H, Yu T, Zhou Q, Na K, Lu S, Zhang L, Guo X. Comparative Evaluation of Spores and Vegetative Forms of Bacillus subtilis and Bacillus licheniformis on Probiotic Functionality In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10407-z. [PMID: 39607632 DOI: 10.1007/s12602-024-10407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The probiotic effects of Bacillus are strain-specific and dependent on both spore and vegetative forms, but the distinct contributions of these forms to probiotic functionality are not well understood. This study aimed to evaluate and compare the impacts of vegetative forms and spores of Bacillus subtilis and Bacillus licheniformis on probiotic functions in vitro and in vivo. We systematically assessed the anaerobic metabolic capabilities and the potential to enhance the intestinal barrier function of four Bacillus strains, leading to the selection of Bacillus subtilis X22 and Bacillus licheniformis N-3 for detailed investigation. Utilizing in vitro fermentation with murine fecal microbiota, we observed that the spores form of Bacillus licheniformis N-3 noticeably positively regulated the gut microbiota under anaerobic conditions. Concurrently, both spore and vegetative forms of Bacillus licheniformis N-3 and Bacillus subtilis X22 demonstrated the ability to prevent pathogen adhesion, reduce inflammation, combat oxidative stress, and promote cellular autophagy to reduce apoptosis in response to enterotoxigenic Escherichia coli (ETEC) infection in the IPEC-J2 cell model. As a facultative anaerobe, Bacillus licheniformis N-3 exhibited a tendency toward superior regulatory capacity in enhancing the anti-infective activity of IPEC-J2 cells in vitro. In the pathogens challenge mouse model, B. licheniformis N-3 effectively preserved the integrity of jejunal tissue and enhanced the expression of glycoproteins in goblet cells. Moreover, B. licheniformis N-3 strengthened the epithelial barrier by increasing the levels of Occludin and Claudin-1 in the jejunum, thus promoting overall intestinal health. This research offers new insights into strain selection and the life cycle utilization of Bacillus probiotics.
Collapse
Affiliation(s)
- Hua Xie
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Qiwen Zhou
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
5
|
Lu S, Liao X, Lu W, Zhang L, Na K, Li X, Guo X. L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA. Probiotics Antimicrob Proteins 2024; 16:1399-1410. [PMID: 37439954 DOI: 10.1007/s12602-023-10121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Bacillus species, which have two cell-type forms (vegetative cells and spores), demonstrate a variety of probiotic functions in animal feed additives and human nutrition. We previously found that the probiotic effect of Bacillus subtilis S-2 spores with high germination response to L-alanine was specifically enhanced by the L-alanine pretreatment. The germination response of Bacillus is highly associated with the germination receptors of spores. However, how L-alanine-induced germination of spores exerts anti-infectious effect in epithelial cells remains unclear. In this study, we constructed the mutant strain of B. subtilis S-2 with germination receptor gerAA knockout to further explore the role of spore germination in resisting pathogen infection to cells. The differential probiotic effects of B. subtilis S-2 and S-2ΔgerAA spores pretreated with L-alanine were evaluated in intestinal porcine epithelial cells (IPEC-J2) or Caco2 cells infected with enterotoxigenic Escherichia coli (ETEC) or following IL-1β stimulation. The results showed that the germination response of the S-2ΔgerAA spores to L-alanine was significantly reduced. Compared with the S-2ΔgerAA spores, the L-alanine-induced germination of B. subtilis S-2 spores significantly increased the activity of anti-adhesion of ETEC to IPEC-J2 cells and reduced the expression of inflammatory factors and cell receptors. L-alanine induction also significantly promoted the expression of autophagy-related proteins in the B. subtilis S-2 spores. These findings demonstrate that the gerAA germination receptor is essential for the probiotic function of Bacillus spores and that L-alanine treatment promotes the anti-infectious properties of the germinated spores in porcine intestinal epithelial IPEC-J2 cells. The result suggests the importance of germination receptor gerAA in helping spore germination and enhancing anti-infectious activity. The findings in the study benefit to screening of potential Bacillus probiotics and increasing probiotic efficacy induced by L-alanine as an adjuvant.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xianying Liao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Wei Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xiangyu Li
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China.
| |
Collapse
|
6
|
Vicente-Gil S, Nuñez-Ortiz N, Morel E, Serra CR, Docando F, Díaz-Rosales P, Tafalla C. Immunomodulatory properties of Bacillus subtilis extracellular vesicles on rainbow trout intestinal cells and splenic leukocytes. Front Immunol 2024; 15:1394501. [PMID: 38774883 PMCID: PMC11106384 DOI: 10.3389/fimmu.2024.1394501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.
Collapse
Affiliation(s)
- Samuel Vicente-Gil
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Cláudia R. Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Hissen KL, He W, Wu G, Criscitiello MF. Immunonutrition: facilitating mucosal immune response in teleost intestine with amino acids through oxidant-antioxidant balance. Front Immunol 2023; 14:1241615. [PMID: 37841275 PMCID: PMC10570457 DOI: 10.3389/fimmu.2023.1241615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response. Instead of targeting the pathogen itself, a preferred approach for managing fish health is through nutrient supplementation, as it is noninvasive and less labor intensive than vaccine administrations while still modulating immune properties. Amino acids (AAs) regulate metabolic processes, oxidant-antioxidant balance, and physiological requirements to improve immune response. Thus, nutritionists can develop sustainable aquafeeds through AA supplementation to promote specific immune responses, including the intestinal mucosa immune system. We propose the use of dietary supplementation with functional AAs to improve immune response by discussing teleost fish immunology within the intestine and explore how oxidative burst is used as an immune defense mechanism. We evaluate immune components and immune responses in the intestine that use oxidant-antioxidant balance through potential selection of AAs and their metabolites to improve mucosal immune capacity and gut integrity. AAs are effective modulators of teleost gut immunity through oxidant-antioxidant balance. To incorporate nutrition as an immunoregulatory means in teleost, we must obtain more tools including genomic, proteomic, nutrition, immunology, and macrobiotic and metabonomic analyses, so that future studies can provide a more holistic understanding of the mucosal immune system in fish.
Collapse
Affiliation(s)
- Karina L. Hissen
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Wenliang He
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
8
|
Saengrung J, Bunnoy A, Du X, Huang L, An R, Liang X, Srisapoome P. Effects of ribonucleotide supplementation in modulating the growth of probiotic Bacillus subtilis and the synergistic benefits for improving the health performance of Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108983. [PMID: 37541637 DOI: 10.1016/j.fsi.2023.108983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In aquaculture, due to the requirements for high-density culture, the diseases caused by bacterial pathogens have become a serious issue. To solve this problem, we performed synbiotic application of RNA and Bacillus subtilis as a sustainable and eco-friendly approach to improve the health and immunity of Asian seabass (Lates calcarifer) during cultivation without using any harmful antibiotics or chemicals. Among various forms of nucleic acids, such as mononucleotides and DNA, RNA was found to be most effective in promoting the growth performance of probiotic B. subtilis in all the tested minimal medium conditions. Accordingly, we used the synbiotic combination of B. subtilis and RNA for Asian seabass cultivation. After feed supplementation for fourteen days, the fish that received the combination treatment exhibited a significant increase in innate cellular and humoral immune parameters, including phagocytic activity, phagocytic index, respiratory burst, serum lysozyme and bactericidal activities, as well as upregulated expression of immune-related genes, including HEPC1, A2M, C3, CC, CLEC, LYS, HSP70, and HSP90. Furthermore, significant increases were observed in the ileal villus height and goblet cell numbers in the intestinal villi in all fish treatment groups. The combination treatment did not cause histopathological abnormalities in the intestine and liver, suggesting that the synbiotic treatment is safe for use in fish. The treated Asian seabass also exhibited a significantly increased survival rate after Aeromonas hydrophila challenge. These results indicate that the synbiotic mixture of B. subtilis and RNA can be considered a beneficial feed additive and immunostimulant for Asian seabass cultivation.
Collapse
Affiliation(s)
- Jureerat Saengrung
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Xinmei Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Lili Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Prapansak Srisapoome
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
9
|
Liu ZY, Yang HL, Wei CY, Cai GH, Ye JD, Zhang CX, Sun YZ. Commensal Bacillus siamensis LF4 induces antimicrobial peptides expression via TLRs and NLRs signaling pathways in intestinal epithelial cells of Lateolabrax maculatus. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108634. [PMID: 36828198 DOI: 10.1016/j.fsi.2023.108634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in modulating intestinal microbiota, and our previous study showed that autochthonous Baccilus siamensis LF4 could shape the intestinal microbiota of spotted seabass (Lateolabrax maculatus). In the present study, a spotted seabass intestinal epithelial cells (IECs) model was used to investigate whether autochthonous B. siamensis LF4 could modulate the expression of AMPs in IECs. And then, the IECs were treated with active, heat-inactivated LF4 and its supernatant to illustrate their AMPs inducing effects and the possible signal transduction mechanisms. The results showed that after 3 h of incubation with 108 CFU/mL B. siamensis LF4, lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic propylic transaminase (GPT) activities in supernatant decreased significantly and obtained minimum values, while supernatant alkaline phosphatase (AKP) activity, β-defensin protein level and IECs Na+/K+-ATPase activity, AMPs (β-defensin, hepcidin-1, NK-lysin, piscidin-5) genes expression increased significantly and obtained maximum values (P < 0.05). Further study demonstrated that the active, heat-inactivated LF4 and its supernatant treatments could effectively decrease the LDH, GOT, and GPT activities in IECs supernatant, increase AKP activity and β-defensin (except LF4 supernatant treatment) protein level in IECs supernatant and Na+/K+-ATPase and AMPs genes expression in IECs. Treatment with active and heat-inactivated B. siamensis LF4 resulted in significantly up-regulated the expressions of TLR1, TLR2, TLR3, TLR5, NOD1, NOD2, TIRAP, MyD88, IRAK1, IRAK4, TRAF6, TAB1, TAB2, ERK, JNK, p38, AP-1, IKKα, IKKβ and NF-κB genes. Treatment with B. siamensis LF4 supernatant also resulted in up-regulated these genes, but not the genes (ERK, JNK, p38, and AP-1) in MAPKs pathway. In summary, active, heat-inactivated and supernatant of B. siamensis LF4 can efficiently induce AMPs expression through activating the TLRs/NLRs-MyD88-dependent signaling, active and heat-inactivated LF4 activated both the downstream MAPKs and NF-κB pathways, while LF4 supernatant only activated NF-κB pathway.
Collapse
Affiliation(s)
- Zi-Yan Liu
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Cheng-Ye Wei
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guo-He Cai
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Dan Ye
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Chun-Xiao Zhang
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yun-Zhang Sun
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China.
| |
Collapse
|
10
|
Ding XY, Wei CY, Liu ZY, Yang HL, Han F, Sun YZ. Autochthonous Bacillus subtilis and Enterococcus faecalis improved liver health, immune response, mucosal microbiota and red-head disease resistance of yellow drum (Nibea albiflora). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108575. [PMID: 36736639 DOI: 10.1016/j.fsi.2023.108575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Yellow drum (Nibea albiflora), a commercially important fish species in the coastal regions of southeast China, is highly susceptible to red-head disease caused by Vibrio harveyi B0003. Probiotics have been shown to enhance disease resistance in fish, but whether commensal probiotics could improve of the resistance to red-head disease in yellow drum and possible mechanisms has yet not been reported. A six-week feeding trial was conducted to investigate the red-head disease resistance potentials of five probiotic candidates (Bacillus megaterium B1M2, B. subtilis B0E9, Enterococcus faecalis AT5, B. velezensis DM5 and B. siamensis B0E14), and the liver health, serum and skin immunities, gut and skin mucosal microbiota of yellow drum were determined to illustrate the possible mechanisms. The results showed that autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5, P < 0.05) effectively improved red-head disease resistance in yellow drum. Furthermore, B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) efficiently improve liver health by improving liver morphology and decreasing serum glutamic oxaloacetic transaminase and glutamic propylic transaminase activities pre and post challenged with V. harveyi B0003 (P < 0.05). B. subtilis B0E9 and E. faecalis AT5 led to significant improvement (P < 0.05) in the serum complement 3 content (un-detected after challenged with V. harveyi B0003), lysozyme activity and skin mucosal immunity (such as IL-6, IL-10 and lysozyme expression) pre and post challenged with V. harveyi B0003, which was generally consistent with the cumulative mortality after challenged with V. harveyi B0003. This induced activations of serum and skin mucosal immunities were consistent with the microbiota data showing that B. subtilis B0E9 and E. faecalis AT5 modulated the overall structure of intestinal and skin mucosal microbiota, and in particular, the relative abundance of potentially pathogenic Achromobacter decreased while beneficial Streptococcus, Rothia, and Lactobacillus increased in fish fed with B. subtilis B0E9 and E. faecalis AT5. Overall, autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) can improve liver health, serum and skin immunities (especially up-regulated lysozyme activity and inflammation-related genes expression), positively shape gut and skin mucosal microbiota, and enhance red-head disease resistance of yellow drum.
Collapse
Affiliation(s)
- Xi-Yue Ding
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Cheng-Ye Wei
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zi-Yan Liu
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Fang Han
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Yun-Zhang Sun
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China.
| |
Collapse
|
11
|
Contente D, Díaz-Rosales P, Feito J, Díaz-Formoso L, Docando F, Simón R, Borrero J, Hernández PE, Poeta P, Muñoz-Atienza E, Cintas LM, Tafalla C. Immunomodulatory effects of bacteriocinogenic and non-bacteriocinogenic Lactococcus cremoris of aquatic origin on rainbow trout ( Oncorhynchus mykiss, Walbaum). Front Immunol 2023; 14:1178462. [PMID: 37153602 PMCID: PMC10159052 DOI: 10.3389/fimmu.2023.1178462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Lactic Acid Bacteria (LAB) are a group of bacteria frequently proposed as probiotics in aquaculture, as their administration has shown to confer positive effects on the growth, survival rate to pathogens and immunological status of the fish. In this respect, the production of antimicrobial peptides (referred to as bacteriocins) by LAB is a common trait thoroughly documented, being regarded as a key probiotic antimicrobial strategy. Although some studies have pointed to the direct immunomodulatory effects of these bacteriocins in mammals, this has been largely unexplored in fish. To this aim, in the current study, we have investigated the immunomodulatory effects of bacteriocins, by comparing the effects of a wild type nisin Z-expressing Lactococcus cremoris strain of aquatic origin to those exerted by a non-bacteriocinogenic isogenic mutant and a recombinant nisin Z, garvicin A and Q-producer multi-bacteriocinogenic strain. The transcriptional response elicited by the different strains in the rainbow trout intestinal epithelial cell line (RTgutGC) and in splenic leukocytes showed significant differences. Yet the adherence capacity to RTgutGC was similar for all strains. In splenocyte cultures, we also determined the effects of the different strains on the proliferation and survival of IgM+ B cells. Finally, while the different LAB elicited respiratory burst activity similarly, the bacteriocinogenic strains showed an increased ability to induce the production of nitric oxide (NO). The results obtained reveal a superior capacity of the bacteriocinogenic strains to modulate different immune functions, pointing to a direct immunomodulatory role of the bacteriocins, mainly nisin Z.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Félix Docando
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Rocío Simón
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Carolina Tafalla,
| |
Collapse
|
12
|
Sumon MAA, Sumon TA, Hussain MA, Lee SJ, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge. J Microbiol Biotechnol 2022; 32:681-698. [PMID: 35722672 PMCID: PMC9628892 DOI: 10.4014/jmb.2202.02032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.
Collapse
Affiliation(s)
- Md Afsar Ahmed Sumon
- Department of Marine Biology, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Su-Jeong Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - S. M. Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher L. Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md. Tawheed Hasan
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh,Corresponding author Phone: +880-821-761952 Fax: + 880-821-761980 E-mail:
| |
Collapse
|