1
|
Chang X, Wang WX. Passing the Parcels: Intercellular Nanoplastics Transfer in Mussels Perna viridis with Activated Immunomodulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8177-8188. [PMID: 40238681 DOI: 10.1021/acs.est.4c14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanoplastics (NPs) are generally considered to have a defined intracellular fate, being difficult to excrete or transport due to their stability. This study provides the first evidence of NPs intercellular transfer in the hemocytes of green mussels (Perna viridis), which subsequently activated the immunomodulation process. NPs were predominantly internalized by granulocytes, with a portion being translocated and deposited in lysosomes, whereas those retained in endosomes were subsequently transferred to new hemocytes (mainly granulocytes). The transfer direction was driven by the intracellular NP concentration gradients. Transfer kinetics was size-dependent, with smaller-sized NPs exhibiting greater potential but a lower rate, primarily due to their specific extracellular vesicle-mediated transfer pathway. Tunneling nanotubes provided the most efficient pathway for the intercellular transfer of NPs, as their continuous membrane structure allowed direct substance exchange. Crucially, NP redistribution was accompanied by a gradient-driven transfer of mitochondria to injured hemocytes. This process alleviated stress on the overburdened hemocytes and regulated reactive oxygen species production, subsequently enhancing phagocytic activity and promoting immune responses. These findings underscore that NPs exhibit far more active behavior in the immune system than previously understood and provide new insights into how immune cells maintain the health of marine organisms in the face of NP challenges.
Collapse
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Zhang N, Pan L, Liao Q, Tong R, Li Y. Potential molecular mechanism underlying the harmed haemopoiesis upon Benzo[a]pyrene exposure in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109032. [PMID: 37640119 DOI: 10.1016/j.fsi.2023.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Benzo[a]pyrene (B[a]P), a ubiquitous contamination in the marine environments, has the potential to impact the immune response of bivalves by affecting the hemocyte parameters, especially total hemocyte count (THC). THC is mainly determined by haematopoietic mechanisms and apoptosis of hemocytes. Many studies have found that B[a]P can influence the proliferation and differentiation of hemocytes. However, the link between the toxic mechanisms of haematopoietic and environmental pollutants is not explicitly stated. This study is to investigate the toxic effects of B[a]P on haematopoietic mechanisms in C. farreri. Through the tissue expression distribution experiment and EDU assay, gill is identified as a potential haematopoietic tissue in C. farreri. Subsequently, the scallops were exposed to B[a]P (0.05, 0.5, 5 μg/L) for 1d, 3d, 6d, 10d and 15d. Then BPDE content, DNA damage, gene expression of haematopoietic factors and haematopoietic related pathways were determined in gill and hemocytes. The results showed that the expression of CDK2 was significantly decreased under B[a]P exposure through three pathways: RYR/IP3-calcium, BPDE-CHK1 and Notch pathway, resulting in cell cycle arrest. In addition, B[a]P also significantly reduced the number of proliferating hemocytes by affecting the Wnt pathway. Meanwhile, B[a]P can significantly increase the content of ROS, causing a downregulation of FOXO gene expression. The gene expression of Notch pathway and ERK pathway was also detected. The present study suggested that B[a]P disturbed differentiation by multiple pathways. Furthermore, the expression of SOX11 and CD9 were significantly decreased, which directly indicated that differentiation of hemocytes was disturbed. In addition, phagocytosis, phenoloxidase activity and THC were also significant decreased. In summary, the impairment of haematopoietic activity in C. farreri further causes immunotoxicity under B[a]P exposure. This study will improve our understanding of the immunotoxicity mechanism of bivalve under B[a]P exposure.
Collapse
Affiliation(s)
- Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
3
|
Liu J, Wang W, Kong N, Yu S, Dong M, Yang W, Li Y, Zhou X, Wang L, Song L. A pattern recognition receptor CgTLR3 involves in regulating the proliferation of haemocytes in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104762. [PMID: 37353060 DOI: 10.1016/j.dci.2023.104762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity, and they also play significant roles in regulating cell proliferation and differentiation. In the present study, the binding activity of CgTLR3 to PAMPs and CgMyD88-2, and its role in mediating the proliferation of haemocytes was investigated. The recombinant proteins of the extracellular six LRR domains (rCgTLR3-LRR) and intracellular TIR domain (rCgTLR3-TIR) of CgTLR3 were obtained respectively. rCgTLR3-LRR exhibited binding activity to lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C), with the highest affinity for LPS. While rCgTLR3-TIR displayed binding activity to the recombinant protein of rCgMyD88-2, with KD value of 7.22 × 10-7 M. The CgTLR3 mRNA and protein were detected in three subpopulations of oyster haemocytes, and they were mainly concentrated in granulocytes, which was 7.27-fold (p < 0.05) of that in semi-granulocytes and 8.51-fold (p < 0.01) of that in agranulocytes. The percentage of CgTLR3 positive cells (FITC+ haemocytes) in granulocytes was 4.45-fold (p < 0.01) and 2.57-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. After Vibrio splendidus stimulation, the mRNA expression level of CgTLR3 in haemocytes significantly upregulated at 6 h and 12 h, which was 2.93-fold (p < 0.05) and 4.15-fold (p < 0.05) of that in the control group. After the expression of CgTLR3 was inhibited by the injection of si-CgTLR3, the expression levels of transcription factors associated with hematopoiesis (CgGATA, CgRunx), cell cycle-related genes (CgPCNA, CgCDC-45, CgCDK-2), the agranulocyte marker CgCD-9, the granulocyte marker CgAATase, and the inflammatory factor CgIL17-1 significantly decreased (p < 0.05) after the V. splendidus stimulation, which were 0.43-fold, 0.83-fold, 0.48-fold, 0.44-fold, 0.53-fold, 0.7-fold, 0.62-fold, and 0.47-fold of that in NC + V. s group in vivo, respectively. Meanwhile, the percentage of EdU+ haemocytes in si-CgTLR3+V. s group was significantly reduced by 0.54-fold (p < 0.05) compared to the control group (2.7%). These results collectively indicated that CgTLR3 was involved in modulating the proliferation of haemocytes by regulating the expression of proliferation-related genes and inflammatory factor in oyster C. gigas.
Collapse
Affiliation(s)
- Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxu Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Gu X, Qiao X, Yu S, Song X, Wang L, Song L. Histone lysine-specific demethylase 1 regulates the proliferation of hemocytes in the oyster Crassostrea gigas. Front Immunol 2022; 13:1088149. [PMID: 36591234 PMCID: PMC9797820 DOI: 10.3389/fimmu.2022.1088149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Background Lysine-specific demethylase 1 (LSD1) is an essential epigenetic regulator of hematopoietic differentiation, which can specifically mono-methylate H3K4 (H3K4me1) and di-methylate H3K4 (H3K4me2) as a transcriptional corepressor. Previous reports have been suggested that it participated in hematopoiesis and embryonic development process. Here, a conserved LSD1 (CgLSD1) with a SWIRM domain and an amino oxidase (AO) domain was identified from the Pacific oyster Crassostrea gigas. Methods We conducted a comprehensive analysis by various means to verify the function of CgLSD1 in hematopoietic process, including quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, immunofluorescence assay, RNA interference (RNAi) and flow cytometry. Results The qRT-PCR analysis revealed that the transcripts of CgLSD1 were widely expressed in oyster tissues with the highest level in the mantle. And the transcripts of CgLSD1 were ubiquitously expressed during larval development with the highest expression level at the early D-veliger larvae stage. In hemocytes after Vibrio splendidus stimulation, the transcripts of CgLSD1 were significantly downregulated at 3, 6, 24, and 48 h with the lowest level at 3 h compared to that in the Seawater group (SW group). Immunocytochemical analysis showed that CgLSD1 was mainly distributed in the nucleus of hemocytes. After the CgLSD1 was knocked down by RNAi, the H3K4me1 and H3K4me2 methylation level significantly increased in hemocyte protein. Besides, the percentage of hemocytes with EdU-positive signals in the total circulating hemocytes significantly increased after V. splendidus stimulation. After RNAi of CgLSD1, the expression of potential granulocyte markers CgSOX11 and CgAATase as well as oyster cytokine-like factor CgAstakine were increased significantly in mRNA level, while the transcripts of potential agranulocyte marker CgCD9 was decreased significantly after V. splendidus stimulation. Conclusion The above results demonstrated that CgLSD1 was a conserved member of lysine demethylate enzymes that regulate hemocyte proliferation during the hematopoietic process.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China,*Correspondence: Linsheng Song,
| |
Collapse
|