1
|
Ma Y, Li Q, Wang X, Yan X, Li Z, Gu W, Ning M, Meng Q. Phosphorylated Eriocheir sinensis Rab10 regulates apoptosis and phagocytosis to defense Spiroplasma eriocheiris infection. Int J Biol Macromol 2025; 306:141527. [PMID: 40020833 DOI: 10.1016/j.ijbiomac.2025.141527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The Rab GTPases play a crucial role in the regulation of immune responses towards viruses and bacteria infection in invertebrates. The proteomic data revealed Eriocheir sinensis Rab10 (EsRab10) phosphorylation was strongly decreased following Spiroplasma eriocheiris infection. However, the regulatory mechanism by which Rab10 modulates the innate immunity of E. sinensis against S. eriocheiris infection remains to be elucidated. In the present study, the coding sequence of EsRab10 identified as 609 bp, encoding a protein of 203 amino acids. EsRab10 was highly transcribed in diverse immune-related tissues of crab, including hepatopancreas, gills, and hemocytes, with a notable downregulation observed after S. eriocheiris infection. Knockdown of EsRab10 via RNA interference (RNAi) led to a significant increase in hemocyte apoptosis and a marked reduction in the phagocytic capacity of hemocytes against S. eriocheiris. Furthermore, EsRab10 RNAi resulted in an elevated S. eriocheiris load in hemocytes and a significant decrease in crab survival rates. Overexpression of EsRab10 in Drosophila Schneider 2 (S2) cells demonstrated that phosphorylation of EsRab10 enhanced cell viability, reduced apoptosis, increased phagocytic activity, and decreased the S. eriocheiris load in S2 cells. Conversely, dephosphorylation of EsRab10 exerted opposite effects. In summary, these results demonstrated that EsRab10 played a crucial role in the resistance of E. sinensis to S. eriocheiris infection by modulating apoptosis and phagocytosis through phosphorylation.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qing Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaotong Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xinru Yan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhuoqing Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
2
|
Ma Y, Zhou Z, Luo T, Meng Q, Wang H, Li X, Gu W, Zhou J, Meng Q. Rab7 GTPase, a direct target of miR-131-3p, limits intracellular Spiroplasma eriocheiris infection by modulating phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109879. [PMID: 39244074 DOI: 10.1016/j.fsi.2024.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Spiroplasma eriocheiris is a kind of intracellular pathogen without cell wall and the causative agent of Chinese mitten crab Eriocheir sinensis "tremor disease", which causes significant economic losses in the crustacean aquaculture. However, little is known about the intracellular transport of this pathogen and host innate immune response to this pathogen. Rab GTPases are key regulators for endocytosis and intracellular pathogen trafficking. In this study, we showed that S. eriocheiris infection upregulated the transcription of Rab7 through the downregulation of miR-131-3p. Subsequently, both hemocytes transfected with miR-131-3p mimics and hemocytes derived from Rab7 knockdown crabs exhibited reduced phagocytic activities and increased susceptibility to S. eriocheiris infection. Additionally, Rab7 could interact with the cell shape-determining protein MreB3 of S. eriocheiris, and its overexpression promoted S. eriocheiris internalization and fusion with lysosomes, thereby limiting S. eriocheiris replication in Drosophila S2 cells. Overall, these results demonstrated that Rab7 facilitated host cell phagocytosis and interacted with MreB3 of S. eriocheiris to prevent S. eriocheiris infection. Moreover, miR-131-3p was identified as a negative regulator of this process through its targeting of Rab7. Therefore, targeting miR-131-3p might be an effective strategy for controlling S. eriocheiris in crab aquaculture.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Zijie Zhou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Tingyi Luo
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qian Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Hui Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Li R, Cao X, Chen J, He T, Zhang Y, Wang W, Wang Y, Wang Y, Qiu Y, Xie M, Shi K, Xu Y, Zhang S, Liu P. Deciphering the impact of MreB on the morphology and pathogenicity of the aquatic pathogen Spiroplasma eriocheiris. Biol Direct 2024; 19:98. [PMID: 39444023 PMCID: PMC11515736 DOI: 10.1186/s13062-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spiroplasma eriocheiris has been proved to be a pathogen causing tremor disease of Eriocheir sinensis, it is also infectious to other aquatic crustaceans, resulting in a serious threat on the sustainable development of the aquaculture industry. S. eriocheiris is a helical-shaped microbe without a cell wall, and its motility is related to the cytoskeleton protein MreB which belongs to the actin superfamily and has five MreB homologs. RESULTS In this study, we purified MreB3, MreB4 and MreB5, and successfully prepared monoclonal antibodies. After S. eriocheiris treated with actin stabilizator Phalloidin and inhibitors A22, we found that Phalloidin and A22 affect the S. eriocheiris morphology by altering MreB expression. We confirmed that the ability of S. eriocheiris to invade E. sinensis was increased after treatment with Phalloidin, including that the morphology of E. sinensis blood lymphocytes was deteriorated, blood lymphocytes viability was decreased, peroxidase activity and cell necrosis were increased. On the contrary, the pathogenicity of S. eriocheiris decreased after treatment with A22. CONCLUSIONS Our findings suggest that the MreB protein in S. eriocheiris plays a crucial role in its morphology and pathogenicity, providing new insights into potential strategies for the prevention and control of S. eriocheiris infections.
Collapse
Affiliation(s)
- Rong Li
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, 226007, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Tingting He
- Shaoxing Center for Disease Control and Prevention, 276 Century Street, Shaoxing, Zhejiang Province, 312000, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Jiangsu, China
| | - Yaqi Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yifei Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yanyan Qiu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Mengji Xie
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Kailin Shi
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yuhua Xu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Luan H, Lu J, Shi W, Lu Y. Four amino acids play an important role in the allergenicity of hemocyanin allergen. Int J Biol Macromol 2024; 275:133704. [PMID: 38972655 DOI: 10.1016/j.ijbiomac.2024.133704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
To identify the key amino acids (AAs) affecting the allergenicity of hemocyanin (HC) allergens from Chinese mitten crabs, in this study, two epitopes, P1-SHFTGSKSNPEQR and P2-LSPGANTITR were employed and four potential key AAs (P1: F3 and N9 and P2: N6 and R10) were predicted. Mast cell and mouse models revealed that four mutants induced lower levels of immunoglobulin E (IgE) and Th2 type cytokines (15.47-49.89 %), proving that F3, N9, N6, and R10 were the key AAs of two epitopes. Mutants reduce allergic responses via the Th2 pathway. However, the roles of every key AA affecting allergenicity were different (P1-F3 > N9 and P2-N6 > R10). In addition, lower transport and higher efflux were observed in the mutants during transport absorption by Caco-2 cells. The allergenicity of HC was stronger when the transport absorption efficiency of epitopes and mutants was higher and their efflux was lower. Our study provides a novel method for revealing the allergenic molecular mechanisms of food allergens.
Collapse
Affiliation(s)
- Hongwei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| | - Jiada Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
5
|
You Y, Xiao J, Chen J, Li Y, Li R, Zhang S, Jiang Q, Liu P. Integrated Information for Pathogenicity and Treatment of Spiroplasma. Curr Microbiol 2024; 81:252. [PMID: 38953991 DOI: 10.1007/s00284-024-03730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/05/2024] [Indexed: 07/04/2024]
Abstract
Spiroplasma, belonging to the class Mollicutes, is a small, helical, motile bacterium lacking a cell wall. Its host range includes insects, plants, and aquatic crustaceans. Recently, a few human cases of Spiroplasma infection have been reported. The diseases caused by Spiroplasma have brought about serious economic losses and hindered the healthy development of agriculture. The pathogenesis of Spiroplasma involves the ability to adhere, such as through the terminal structure of Spiroplasma, colonization, and invasive enzymes. However, the exact pathogenic mechanism of Spiroplasma remains a mystery. Therefore, we systematically summarize all the information about Spiroplasma in this review article. This provides a reference for future studies on virulence factors and treatment strategies of Spiroplasma.
Collapse
Affiliation(s)
- Yixue You
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianmin Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yuxin Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Rong Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
6
|
Ma Y, Yao Y, Meng X, Fu H, Li J, Luan X, Liu M, Liu H, Gu W, Hou L, Meng Q. Hemolymph exosomes inhibit Spiroplasma eriocheiris infection by promoting Tetraspanin-mediated hemocyte phagocytosis in crab. FASEB J 2024; 38:e23433. [PMID: 38226893 DOI: 10.1096/fj.202302182r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Exosomes released from infected cells are thought to play an important role in the dissemination of pathogens, as well as in host-derived immune molecules during infection. As an intracellular pathogen, Spiroplasma eriocheiris is harmful to multiple crustaceans. However, the immune mechanism of exosomes during Spiroplasma infection has not been investigated. Here, we found exosomes derived from S. eriocheiris-infected crabs could facilitate phagocytosis and apoptosis of hemocytes, resulting in increased crab survival and suppression of Spiroplasma intracellular replication. Proteomic analysis revealed the altered abundance of EsTetraspanin may confer resistance to S. eriocheiris, possibly by mediating hemocyte phagocytosis in Eriocheir sinensis. Specifically, knockdown of EsTetraspanin in E. sinensis increased susceptibility to S. eriocheiris infection and displayed compromised phagocytic ability, whereas overexpression of EsTetraspanin in Drosophila S2 cells inhibited S. eriocheiris infection. Further, it was confirmed that intramuscular injection of recombinant LEL domain of EsTetraspanin reduced the mortality of S. eriocheiris-infected crabs. Blockade with anti-EsTetraspanin serum could exacerbate S. eriocheiris invasion of hemocytes and impair hemocyte phagocytic activity. Taken together, our findings prove for the first time that exosomes modulate phagocytosis to resist pathogenic infection in invertebrates, which is proposed to be mediated by exosomal Tetraspanin, supporting the development of preventative strategies against Spiroplasma infection.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yu Yao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiang Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hui Fu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jiaying Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Min Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hongli Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, PR China
| | - Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, PR China
| |
Collapse
|
7
|
Hou L, Wang M, Zhu L, Ning M, Bi J, Du J, Kong X, Gu W, Meng Q. Full-length transcriptome sequencing and comparative transcriptome analysis of Eriocheir sinensis in response to infection by the microsporidian Hepatospora eriocheir. Front Cell Infect Microbiol 2022; 12:997574. [PMID: 36530442 PMCID: PMC9754153 DOI: 10.3389/fcimb.2022.997574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
As a new generation of high-throughput sequencing technology, PacBio Iso-Seq technology (Iso-Seq) provides a better alternative sequencing method for the acquisition of full-length unigenes. In this study, a total of 22.27 gigabyte (Gb) subread bases and 128,614 non-redundant unigenes (mean length: 2,324 bp) were obtained from six main tissues of Eriocheir sinensis including the heart, nerve, intestine, muscle, gills and hepatopancreas. In addition, 74,732 unigenes were mapped to at least one of the following databases: Non-Redundant Protein Sequence Database (NR), Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), KEGG Orthology (KO) and Protein family (Pfam). In addition, 6696 transcription factors (TFs), 28,458 long non-coding RNAs (lncRNAs) and 94,230 mRNA-miRNA pairs were identified. Hepatospora eriocheir is the primary pathogen of E. sinensis and can cause hepatopancreatic necrosis disease (HPND); the intestine is the main target tissue. Here, we attempted to identify the key genes related to H. eriocheir infection in the intestines of E. sinensis. By combining Iso-Seq and Illumina RNA-seq analysis, we identified a total of 12,708 differentially expressed unigenes (DEUs; 6,696 upregulated and 6,012 downregulated) in the crab intestine following infection with H. eriocheir. Based on the biological analysis of these DEUs, several key processes were identified, including energy metabolism-related pathways, cell apoptosis and innate immune-related pathways. Twelve selected genes from these DEUs were subsequently verified by quantitative real-time PCR (qRT-PCR) analysis. Our findings enhance our understanding of the E. sinensis transcriptome and the specific association between E. sinensis and H. eriocheir infection.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mengdi Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mingxiao Ning
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jingxiu Bi
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China,*Correspondence: Qingguo Meng,
| |
Collapse
|