1
|
Li J, Song F, Lang M, Xie M. Comprehensive insights into the genetic background of Chinese populations using Y chromosome markers. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230814. [PMID: 37736526 PMCID: PMC10509572 DOI: 10.1098/rsos.230814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
China is located in East Asia. With a high genetic and cultural diversity, human migration in China has always been a hot topic of genetics research. To explore the origins and migration routes of Chinese males, 3333 Chinese individuals (Han, Hui, Mongolia, Yi and Kyrgyz) with 27 Y-STRs and 143 Y-SNPs from published literature were analysed. Our data showed that there are five dominant haplogroups (O2-M122, O1-F265, C-M130, N-M231, R-M207) in China. Combining analysis of haplogroup frequencies, geographical positions and time with the most recent common ancestor (TMRCA), we found that haplogroups C-M130, N-M231 and R1-M173 and O1a-M175 probably migrated into China via the northern route. Interestingly, we found that haplogroup C*-M130 in China may originate in South Asia, whereas the major subbranches C2a-L1373 and C2b-F1067 migrated from northern China. The results of BATWING showed that the common ancestry of Y haplogroup in China can be traced back to 17 000 years ago, which was concurrent with global temperature increases after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Min Lang
- Sichuan University Law School, Sichuan University, Chengdu, People's Republic of China
| | - Mingkun Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
2
|
Rath K, Käßner A, Melisch C, Powers N, Tichomirowa M, Nagy M, Friedrich R, Riege J, Rothe J. Genetic and isotope analysis of a triple burial from medieval St. Peter’s cemetery in Cölln/Berlin. Forensic Sci Int Genet 2022; 59:102718. [DOI: 10.1016/j.fsigen.2022.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
|
3
|
Testing the Ion AmpliSeq™ HID Y-SNP Research Panel v1 for performance and resolution in admixed South Americans of haplogroup Q. Forensic Sci Int Genet 2022; 59:102708. [DOI: 10.1016/j.fsigen.2022.102708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
|
4
|
Siddique N, Shahid AA, Sughra K. Diversification of Pakistani Amelogenin-Y-Null Male Haplotypes. SCIENTIFICA 2021; 2021:5521411. [PMID: 34035976 PMCID: PMC8116151 DOI: 10.1155/2021/5521411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Amelogenin is a common sex typing marker encountered in forensic case work. Phenotypically normal males have been reported in the literature who exhibit anomalous amelogenin allele. These males express only a single amelogenin peak representing AMEL-X and are called as AMEL-Y-null males. Gender misclassification of such individuals is an obvious consequence of this mutation, as a male sample would falsely appear to be a female sample. This study was aimed to attribute the AMEL-Y-null male DNA profiles encountered in forensic casework in the Pakistani population to appropriate phylogenetic clade based on shared ancestry. A total of 18 null AMEL-Y males were screened out of the sample pool of 5000 male individuals, reflecting mutational frequency of 0.36%. A common phylogenetic ancestor is suggested for 17 individuals, based on computational analysis of the Y-STR haplotypes, shown to be belonging to the J haplogroup while only one sample belonged to the R group. The samples in J groups showed homology with subclades J2b2a M241 and J2b2a PH1648, while R group individual showed 100% homology with R1a. Data are reported after haplotype network development of AMEL-Y-null Pakistani males using Network 10.0 for the study of evolutionary distances and emergence of nodes.
Collapse
Affiliation(s)
- Nasir Siddique
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Pakistan
- DNA and Serology Section, Punjab Forensic Science Agency, Lahore, Pakistan
| | - Ahmad Ali Shahid
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kalsoom Sughra
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
5
|
Baeta M, Prieto-Fernández E, Núñez C, Kleinbielen T, Villaescusa P, Palencia-Madrid L, Alvarez-Gila O, Martínez-Jarreta B, de Pancorbo MM. Study of 17 X-STRs in Native American and Mestizo populations of Central America for forensic and population purposes. Int J Legal Med 2021; 135:1773-1776. [PMID: 33742257 DOI: 10.1007/s00414-021-02536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
In the present work, an extensive analysis of the X-chromosomal pool of Native American and Mestizo groups of Central America (Guatemala, El Salvador, Nicaragua, and Panama) has been carried out. Allele and haplotype frequency databases, as well as other forensic parameters for these populations, are presented. The admixture analysis supports the tri-hybrid composition in terms of ancestry in the Mestizo populations, with a predominant Native American contribution (54-69%), followed by European (19-28%) and African contributions (12-19%). Pairwise FST genetic distances highlight the genetic proximity between the northernmost Central American populations, especially among admixed populations. The unique and complex nature of this area, where populations from different origins intercrossed, as well as the informativity of X-STR data, highpoint the great interest of this genetic study. Furthermore, the X-chromosome databases for Central American populations here provided will be not only useful for forensic and population purposes not only in the target countries but also in the host countries.
Collapse
Affiliation(s)
- Miriam Baeta
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Endika Prieto-Fernández
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carolina Núñez
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Tamara Kleinbielen
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Oscar Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
6
|
Guevara EK, Palo JU, Översti S, King JL, Seidel M, Stoljarova M, Wendt FR, Bus MM, Guengerich A, Church WB, Guillén S, Roewer L, Budowle B, Sajantila A. Genetic assessment reveals no population substructure and divergent regional and sex-specific histories in the Chachapoyas from northeast Peru. PLoS One 2020; 15:e0244497. [PMID: 33382772 PMCID: PMC7774974 DOI: 10.1371/journal.pone.0244497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Many native populations in South America have been severely impacted by two relatively recent historical events, the Inca and the Spanish conquest. However decisive these disruptive events may have been, the populations and their gene pools have been shaped markedly also by the history prior to the conquests. This study focuses mainly on the Chachapoya peoples that inhabit the montane forests on the eastern slopes of the northern Peruvian Andes, but also includes three distinct neighboring populations (the Jívaro, the Huancas and the Cajamarca). By assessing mitochondrial, Y-chromosomal and autosomal diversity in the region, we explore questions that have emerged from archaeological and historical studies of the regional culture (s). These studies have shown, among others, that Chachapoyas was a crossroads for Coast-Andes-Amazon interactions since very early times. In this study, we examine the following questions: 1) was there pre-Hispanic genetic population substructure in the Chachapoyas sample? 2) did the Spanish conquest cause a more severe population decline on Chachapoyan males than on females? 3) can we detect different patterns of European gene flow in the Chachapoyas region? and, 4) did the demographic history in the Chachapoyas resemble the one from the Andean area? Despite cultural differences within the Chachapoyas region as shown by archaeological and ethnohistorical research, genetic markers show no significant evidence for past or current population substructure, although an Amazonian gene flow dynamic in the northern part of this territory is suggested. The data also indicates a bottleneck c. 25 generations ago that was more severe among males than females, as well as divergent population histories for populations in the Andean and Amazonian regions. In line with previous studies, we observe high genetic diversity in the Chachapoyas, despite the documented dramatic population declines. The diverse topography and great biodiversity of the northeastern Peruvian montane forests are potential contributing agents in shaping and maintaining the high genetic diversity in the Chachapoyas region.
Collapse
Affiliation(s)
- Evelyn K. Guevara
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (EKG); (AS)
| | - Jukka U. Palo
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Genetics Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sanni Översti
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jonathan L. King
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Maria Seidel
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Stoljarova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Frank R. Wendt
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Magdalena M. Bus
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anna Guengerich
- Eckerd College, Saint Petersburg, Florida, United States of America
| | - Warren B. Church
- Department of Earth and Space Sciences, Columbus State University, Columbus, Georgia, United States of America
| | | | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- * E-mail: (EKG); (AS)
| |
Collapse
|
7
|
Villaescusa P, Seidel M, Nothnagel M, Pinotti T, González-Andrade F, Alvarez-Gila O, M de Pancorbo M, Roewer L. A Y-chromosomal survey of Ecuador's multi-ethnic population reveals new insights into the tri-partite population structure and supports an early Holocene age of the rare Native American founder lineage C3-MPB373. Forensic Sci Int Genet 2020; 51:102427. [PMID: 33254102 DOI: 10.1016/j.fsigen.2020.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Ecuador is a multiethnic and pluricultural country with a complex history defined by migration and admixture processes. The present study aims to increase our knowledge on the Ecuadorian Native Amerindian groups and the unique South American Y-chromosome haplogroup C3-MPB373 through the analysis of up to 23 Y-chromosome STRs (Y-STRs) and several Y-SNPs in a sample of 527 Ecuadorians from 7 distinct populations and geographic areas, including Kichwa and non-Kichwa Native Amerindians, Mestizos and Afro-Ecuadorians. Our results reveal the presence of C3-MPB373 both in the Amazonian lowland Kichwa with frequencies up to 28 % and, for the first time, in notable proportions in Kichwa populations from the Ecuadorian highlands. The substantially higher frequencies of C3-MPB373 in the Amazonian lowlands found in Kichwa and Waorani individuals suggest a founder effect in that area. Notably, estimates for the time to the most recent common ancestor (TMRCA) in the range of 7.2-9.0 kya point to an ancient origin of the haplogroup and suggest an early Holocene expansion of C3-MPB373 into South America. Finally, the pairwise genetic distances (RST) separate the Kichwa Salasaka from all the other Native Amerindian and Ecuadorian groups, indicating a so far hidden diversity among the Kichwa-speaking populations and suggesting a more southern origin of this population. In sum, our study provides a more in-depth knowledge of the male genetic structure of the multiethnic Ecuadorian population, as well as a valuable reference dataset for forensic use.
Collapse
Affiliation(s)
- Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Maria Seidel
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany; University Hospital Cologne, Cologne, Germany
| | - Thomaz Pinotti
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Mahal DG. Y-DNA genetic evidence reveals several different ancient origins in the Brahmin population. Mol Genet Genomics 2020; 296:67-78. [PMID: 32978661 DOI: 10.1007/s00438-020-01725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The ancient geographical origins of Brahmins-a prominent ethnic group in the Indian subcontinent-have remained controversial for a long time. This study employed the AMOVA (analysis of molecular variance) test to evaluate genetic affinities of this group with thirty populations of Central Asia and Europe. A domestic comparison was performed with fifty non-Brahmin groups in India. The results showed that Brahmins had genetic affinities with several foreign populations and also shared their genetic heritage with several domestic non-Brahmin groups. The study identified the deep ancient origins of Brahmins by tracing their Y-chromosome haplogroups and genetic markers on the Y-DNA phylogenetic tree. It was confirmed that the progenitors of this group emerged from at least 12 different geographic regions of the world. The study concluded that about 83% of the Brahmins in the dataset belonged to four major haplogroups, of which two emerged from Central Asia, one from the Fertile Crescent, and one was of an indigenous Indian origin.
Collapse
Affiliation(s)
- David G Mahal
- DGM Associates, Pacific Palisades, CA, USA. .,Institut Avrio de Geneve, Geneva, Switzerland.
| |
Collapse
|
9
|
Zieger M, Utz S. The Y-chromosomal haplotype and haplogroup distribution of modern Switzerland still reflects the alpine divide as a geographical barrier for human migration. Forensic Sci Int Genet 2020; 48:102345. [PMID: 32622325 DOI: 10.1016/j.fsigen.2020.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/09/2022]
Abstract
A sample of 606 Swiss individuals has been characterized for 27 Y-STR and 34 Y-SNPs, defining major European haplogroups. For the first time, a subsample from the southernmost part of Switzerland, the Italian speaking canton Ticino, has been included. The data reveals significant intra-national differences in the distribution of haplogroups R1b-U106, R1b-U152, I1 and J2a north and south of the alpine divide, with R1b-U152 being the most frequent haplogroup among all Swiss subpopulations, reaching 26 % in average and 53 % in the Ticino sample. In addition, a high percentage of haplogroup E1b1b-M35 in Eastern Switzerland corresponds well with data reported from Western Austria. In general, we detected a low level of differentiation between the subgroups north of the alpine divide. The dataset also revealed a variety of microvariants. Some of them were previously known to be associated with particular haplogroups. However, we discovered one microvariant in DYS533 that seems to be closely associated with haplogroup I2-P215 (xM223). This association had not yet been reported to date. The concordance study with two STR-kits suggests that the DYS533 microvariant is due to an InDel in the flanking regions of the marker. One individual carried a large deletion, frequently detected in people of East Asian ancestry, encompassing the amelogenin locus. To our knowledge, this is the first time that such a deletion has been observed within European haplogroup R1b-U152. This is the first comprehensive Y chromosomal dataset for Switzerland, demonstrating significant population substructure due to an intra-national geographical barrier.
Collapse
Affiliation(s)
- Martin Zieger
- Institute of Forensic Medicine, Forensic Molecular BiologyDpt., University of Bern, Sulgenauweg 40, 3007, Bern, Switzerland.
| | - Silvia Utz
- Institute of Forensic Medicine, Forensic Molecular BiologyDpt., University of Bern, Sulgenauweg 40, 3007, Bern, Switzerland.
| |
Collapse
|
10
|
Villaescusa P, Blázquez P, Martínez-Jarreta B, Jiménez S, Álvarez-Gila O, de Pancorbo MM. The impact of haplogroup R1b-DF27 in Hispanic admixed populations from Latin America. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Jankova R, Seidel M, Videtič Paska A, Willuweit S, Roewer L. Y-chromosome diversity of the three major ethno-linguistic groups in the Republic of North Macedonia. Forensic Sci Int Genet 2019; 42:165-170. [PMID: 31351212 DOI: 10.1016/j.fsigen.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
A total of 314 individuals representing the three major ethno-linguistic groups (ethnic Macedonians, Albanians and Turks) in the Republic of North Macedonia were analyzed for Y-SNPs and Y-STRs using minisequencing and fragment analysis. The haplogroup composition differed remarkably between the three groups with dominance of haplogroup I2 in ethnic Macedonians (28.1%), E1b in Albanians (35.3%) and J2a (34.9%) in Turks, respectively. The haplotype analysis using the YFilerPlus kit disclosed a significant reduction in diversity values (DC, GD) for the Turkish subgroup compared to the Macedonian and Albanian speaking populations. The Y-STR based population analysis revealed a similarity of ethnic Macedonians with neighboring Serbians and Bulgarians. The same holds true for the Albanian speakers from Macedonia and Albania, whereas the Turkish minority in North Macedonia stands apart from the population in Turkey.
Collapse
Affiliation(s)
- Renata Jankova
- Institute for Forensic Medicine, Criminalistic and Medical Deontology, University "Ss. Cyril and Methodius", Medical Faculty, Str. Vodnjanska No 19, 1000 Skopje, North Macedonia
| | - Maria Seidel
- Department Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alja Videtič Paska
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sascha Willuweit
- Department Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lutz Roewer
- Department Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
12
|
Arrieta-Bolaños E, Madrigal-Sánchez JJ, Stein JE, Moreira-Espinoza MJ, Paredes-Carias E, Vanegas-Padilla Y, Salazar-Sánchez L, Madrigal JA, Marsh SGE, Shaw BE. 4-Locus high-resolution HLA allele and haplotype frequencies in admixed population from Nicaragua. Hum Immunol 2019; 80:417-418. [PMID: 31122740 DOI: 10.1016/j.humimm.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022]
Abstract
A total of 155 Nicaraguan Mestizos from across the country were genotyped at high-resolution for the human leukocyte antigen loci HLA-A, -B, -C, and -DRB1 using sequence-based typing methods. The respective allele and extended haplotype frequencies, as well as Hardy-Weinberg proportions were calculated. The most frequent extended haplotype identified was A*24:02:01-B*40:02:01-C*03:05-DRB1*04:07:01G, with an estimated frequency of 2.26%. No deviation from Hardy-Weinberg Equilibrium was detected at any of the loci studied. The HLA genotypic data of the population sample reported here are available publicly in the Allele Frequencies Net Database under the population name "Nicaragua Mestizo" and the identifier AFN3610.
Collapse
Affiliation(s)
- Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital, Essen, Germany; Anthony Nolan Research Institute, Royal Free Hospital, London, UK; Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Jeremy E Stein
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | | | - Edel Paredes-Carias
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Yondra Vanegas-Padilla
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | | | - J Alejandro Madrigal
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Bronwen E Shaw
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
13
|
Alonso Morales LA, Casas-Vargas A, Rojas Castro M, Resque R, Ribeiro-dos-Santos ÂK, Santos S, Gusmão L, Usaquén W. Paternal portrait of populations of the middle Magdalena River region (Tolima and Huila, Colombia): New insights on the peopling of Central America and northernmost South America. PLoS One 2018; 13:e0207130. [PMID: 30439976 PMCID: PMC6237345 DOI: 10.1371/journal.pone.0207130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 11/18/2022] Open
Abstract
The valley of the Magdalena River is one of the main population pathways in Colombia. The gene pool and spatial configuration of human groups in this territory have been outlined throughout three historical stages: the Native pre-Hispanic world, Spanish colonization, and XIX century migrations. This research was designed with the goal of characterizing the diversity and distribution pattern of Y-chromosome lineages that are currently present in the Tolima and Huila departments (middle Magdalena River region). Historic cartography was used to identify the main geographic sites where the paternal lineages belonging to this area have gathered. Twelve municipalities were chosen, and a survey that included genealogical information was administered. Samples collected from 83 male volunteers were analyzed for 48 Y-SNPs and 17 Y-STRs. The results showed a highly diverse region characterized by the presence of 16 sublineages within the major clades R, Q, J, G, T and E and revealed that 93% (n = 77) of haplotypes were different. Among these haplogroups, European-specific R1b-M269 lineages were the most representative (57.83%), with six different subhaplogroups and 43 unique haplotypes. Native American paternal ancestry was also detected based on the presence of the Q1a2-M3*(xM19, M194, M199) and Q1a2-M346*(xM3) lineages. Interestingly, all Q1a2-M346*(xM3) samples (n = 7, with five different haplotypes) carried allele six at the DYS391 locus. This allele has a worldwide frequency of 0.169% and was recently associated with a new Native subhaplogroup. An in-depth phylogenetic analysis of these samples suggests the Tolima and Huila region to be the principal area in all Central and South America where this particular Native lineage is found. This lineage has been present in the region for at least 1,809 (+/- 0,5345) years.
Collapse
Affiliation(s)
- Luz Angela Alonso Morales
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| | - Andrea Casas-Vargas
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Madelyn Rojas Castro
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rafael Resque
- Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Ândrea Kelly Ribeiro-dos-Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Sidney Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| |
Collapse
|
14
|
Assessment of a subset of Slowly Mutating Y-STRs for forensic and evolutionary studies. Forensic Sci Int Genet 2018; 34:e7-e12. [DOI: 10.1016/j.fsigen.2018.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/22/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022]
|
15
|
Mahal DG, Matsoukas IG. The Geographic Origins of Ethnic Groups in the Indian Subcontinent: Exploring Ancient Footprints with Y-DNA Haplogroups. Front Genet 2018; 9:4. [PMID: 29410676 PMCID: PMC5787057 DOI: 10.3389/fgene.2018.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/04/2018] [Indexed: 02/05/2023] Open
Abstract
Several studies have evaluated the movements of large populations to the Indian subcontinent; however, the ancient geographic origins of smaller ethnic communities are not clear. Although historians have attempted to identify the origins of some ethnic groups, the evidence is typically anecdotal and based upon what others have written before. In this study, recent developments in DNA science were assessed to provide a contemporary perspective by analyzing the Y chromosome haplogroups of some key ethnic groups and tracing their ancient geographical origins from genetic markers on the Y-DNA haplogroup tree. A total of 2,504 Y-DNA haplotypes, representing 50 different ethnic groups in the Indian subcontinent, were analyzed. The results identified 14 different haplogroups with 14 geographic origins for these people. Moreover, every ethnic group had representation in more than one haplogroup, indicating multiple geographic origins for these communities. The results also showed that despite their varied languages and cultural differences, most ethnic groups shared some common ancestors because of admixture in the past. These findings provide new insights into the ancient geographic origins of ethnic groups in the Indian subcontinent. With about 2,000 other ethnic groups and tribes in the region, it is expected that more scientific discoveries will follow, providing insights into how, from where, and when the ancestors of these people arrived in the subcontinent to create so many different communities.
Collapse
Affiliation(s)
- David G Mahal
- School of Sport and Biomedical Sciences, University of Bolton, Bolton, United Kingdom.,Extension Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ianis G Matsoukas
- School of Sport and Biomedical Sciences, University of Bolton, Bolton, United Kingdom
| |
Collapse
|
16
|
Li R, Zhang C, Li H, Wu R, Li H, Tang Z, Zhen C, Ge J, Peng D, Wang Y, Chen H, Sun H. SNP typing using the HID-Ion AmpliSeq™ Identity Panel in a southern Chinese population. Int J Legal Med 2017; 132:997-1006. [DOI: 10.1007/s00414-017-1706-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023]
|
17
|
Mahal DG, Matsoukas IG. Y-STR Haplogroup Diversity in the Jat Population Reveals Several Different Ancient Origins. Front Genet 2017; 8:121. [PMID: 28979290 PMCID: PMC5611447 DOI: 10.3389/fgene.2017.00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/30/2017] [Indexed: 11/19/2022] Open
Abstract
The Jats represent a large ethnic community that has inhabited the northwest region of India and Pakistan for several thousand years. It is estimated the community has a population of over 123 million people. Many historians and academics have asserted that the Jats are descendants of Aryans, Scythians, or other ancient people that arrived and lived in northern India at one time. Essentially, the specific origin of these people has remained a matter of contention for a long time. This study demonstrated that the origins of Jats can be clarified by identifying their Y-chromosome haplogroups and tracing their genetic markers on the Y-DNA haplogroup tree. A sample of 302 Y-chromosome haplotypes of Jats in India and Pakistan was analyzed. The results showed that the sample population had several different lines of ancestry and emerged from at least nine different geographical regions of the world. It also became evident that the Jats did not have a unique set of genes, but shared an underlying genetic unity with several other ethnic communities in the Indian subcontinent. A startling new assessment of the genetic ancient origins of these people was revealed with DNA science.
Collapse
Affiliation(s)
- David G Mahal
- School of Sport and Biomedical Sciences, University of BoltonBolton, United Kingdom.,Extension Division, University of California, Los AngelesLos Angeles, CA, United States
| | - Ianis G Matsoukas
- School of Sport and Biomedical Sciences, University of BoltonBolton, United Kingdom
| |
Collapse
|
18
|
Y-chromosomal haplogroup distribution in the Tuzla Canton of Bosnia and Herzegovina: A concordance study using four different in silico assignment algorithms based on Y-STR data. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2016; 67:471-483. [DOI: 10.1016/j.jchb.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022]
|
19
|
Gurkan C, Sevay H, Demirdov DK, Hossoz S, Ceker D, Teralı K, Erol AS. Turkish Cypriot paternal lineages bear an autochthonous character and closest resemblance to those from neighbouring Near Eastern populations. Ann Hum Biol 2016; 44:164-174. [DOI: 10.1080/03014460.2016.1207805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cemal Gurkan
- Turkish Cypriot DNA Laboratory, Committee on Missing Persons in Cyprus Turkish Cypriot Member Office, Nicosia (North Cyprus), Turkey
| | - Huseyin Sevay
- Department of Information Systems Engineering, Near East University, Nicosia (North Cyprus), Turkey
| | - Damla Kanliada Demirdov
- Turkish Cypriot DNA Laboratory, Committee on Missing Persons in Cyprus Turkish Cypriot Member Office, Nicosia (North Cyprus), Turkey
| | - Sinem Hossoz
- Department of Anthropology, Ankara University, Ankara, Turkey
| | - Deren Ceker
- Department of Anthropology, Ankara University, Ankara, Turkey
| | - Kerem Teralı
- Turkish Cypriot DNA Laboratory, Committee on Missing Persons in Cyprus Turkish Cypriot Member Office, Nicosia (North Cyprus), Turkey
| | - Ayla Sevim Erol
- Department of Anthropology, Ankara University, Ankara, Turkey
| |
Collapse
|
20
|
Grugni V, Battaglia V, Perego UA, Raveane A, Lancioni H, Olivieri A, Ferretti L, Woodward SR, Pascale JM, Cooke R, Myres N, Motta J, Torroni A, Achilli A, Semino O. Exploring the Y Chromosomal Ancestry of Modern Panamanians. PLoS One 2015; 10:e0144223. [PMID: 26636572 PMCID: PMC4670172 DOI: 10.1371/journal.pone.0144223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama’s population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations.
Collapse
Affiliation(s)
- Viola Grugni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luca Ferretti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Ancestry, Provo, Utah, United States of America
| | - Jorge Motta
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
21
|
Geppert M, Ayub Q, Xue Y, Santos S, Ribeiro-dos-Santos Â, Baeta M, Núñez C, Martínez-Jarreta B, Tyler-Smith C, Roewer L. Identification of new SNPs in native South American populations by resequencing the Y chromosome. Forensic Sci Int Genet 2015; 15:111-4. [DOI: 10.1016/j.fsigen.2014.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022]
|
22
|
Cárdenas JM, Heinz T, Pardo-Seco J, Álvarez-Iglesias V, Taboada-Echalar P, Sánchez-Diz P, Carracedo Á, Salas A. The multiethnic ancestry of Bolivians as revealed by the analysis of Y-chromosome markers. Forensic Sci Int Genet 2015; 14:210-8. [DOI: 10.1016/j.fsigen.2014.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
23
|
van Oven M, Toscani K, van den Tempel N, Ralf A, Kayser M. Multiplex genotyping assays for fine-resolution subtyping of the major human Y-chromosome haplogroups E, G, I, J, and R in anthropological, genealogical, and forensic investigations. Electrophoresis 2013; 34:3029-38. [PMID: 23893838 DOI: 10.1002/elps.201300210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 12/20/2022]
Abstract
Inherited DNA polymorphisms located within the nonrecombing portion of the human Y chromosome provide a powerful means of tracking the patrilineal ancestry of male individuals. Recently, we introduced an efficient genotyping method for the detection of the basal Y-chromosome haplogroups A to T, as well as an additional method for the dissection of haplogroup O into its sublineages. To further extend the use of the Y chromosome as an evolutionary marker, we here introduce a set of genotyping assays for fine-resolution subtyping of haplogroups E, G, I, J, and R, which make up the bulk of Western Eurasian and African Y chromosomes. The marker selection includes a total of 107 carefully selected bi-allelic polymorphisms that were divided into eight hierarchically organized multiplex assays (two for haplogroup E, one for I, one for J, one for G, and three for R) based on the single-base primer extension (SNaPshot) technology. Not only does our method allow for enhanced Y-chromosome lineage discrimination, the more restricted geographic distribution of the subhaplogroups covered also enables more fine-scaled estimations of patrilineal bio-geographic origin. Supplementing our previous method for basal Y-haplogroup detection, the currently introduced assays are thus expected to be of major relevance for future DNA studies targeting male-specific ancestry for forensic, anthropological, and genealogical purposes.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Núñez C, Baeta M, Aznar JM, Sosa C, Casalod Y, Bolea M, Martínez de Pancorbo M, Martínez Jarreta B. Genetic diversity of 10 X chromosome STRs in an admixed population of Nicaragua. Forensic Sci Int Genet 2013; 7:e95-6. [PMID: 23523364 DOI: 10.1016/j.fsigen.2013.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
25
|
Simms TM, Wright MR, Martinez E, Regueiro M, McCartney Q, Herrera RJ. Y-STR diversity and sex-biased gene flow among Caribbean populations. Gene 2012. [PMID: 23178184 DOI: 10.1016/j.gene.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we report, for the first time, the allele and haplotype frequencies of 17 Y-STR (Y-filer) loci in the populations of Haiti, Jamaica and the Bahamas (Abaco, Eleuthera, Exuma, Grand Bahama, Long Island and New Providence). This investigation was undertaken to assess the paternal genetic structure of the abovementioned Caribbean islands. A total of 607 different haplotypes were identified among the 691 males examined, of which 537 (88.5%) were unique. Haplotype diversities (HD) ranged from 0.989 in Long Island to 1.000 in Grand Bahama, with limited haplotype sharing observed among these Caribbean collections. Discriminatory capacity (DC) values were also high, ranging from 79.1% to 100% in Long Island and Grand Bahama, respectively, illustrating the capacity of this set of markers to differentiate between patrilineal related individuals within each population. Phylogenetic comparison of the Bahamian, Haitian and Jamaican groups with available African, European, East Asian and Native American populations reveals strong genetic ties with the continental African collections, a finding that corroborates our earlier work using autosomal STR and Y-chromosome binary markers. In addition, various degrees of sex-biased gene flow exhibiting disproportionately higher European paternal (as compared to autosomal) influences were detected in all Caribbean islands genotyped except for Abaco and Eleuthera. We attribute the presence or absence of asymmetric gene flow to unique, island specific demographic events and family structures.
Collapse
Affiliation(s)
- Tanya M Simms
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|