1
|
Xuan J, Long G, Wu H, Liu Z, Zhang B, Yu S, Ren F, Guo F. Mitochondrial genome sequencing with ForenSeq™ mtDNA Whole Genome Kit. Forensic Sci Int Genet 2025; 78:103274. [PMID: 40117916 DOI: 10.1016/j.fsigen.2025.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Mitochondrial DNA (mtDNA) possesses unique genetic characteristics and plays a crucial role in forensic DNA analysis. Based on the massively parallel sequencing (MPS) technology alongside the short overlapping amplicon method, the ForenSeq™ mtDNA Whole Genome Kit is specifically designed for mtDNA analysis. In this study, we employ the ForenSeq™ mtDNA Whole Genome Kit on the MiSeq FGx® Sequencing System for mitochondrial genome (mtGenome) sequencing across nine consecutive runs and assess its MPS performance, such as read depth (RD), forward/reverse strand bias (SB), and mtGenome coverage. Furthermore, we conduct internal validations to evaluate its routine application in forensic sciences, including sensitivity, repeatability, concordance, degraded samples, inhibitor samples, case-type samples, and contamination. As a result, the Real-Time Analysis (RTA) and Universal Analysis Software (UAS) demonstrate proficient run metrics and MPS performance when 12-14 libraries are sequenced within a standard flow cell, achieving > 80 % of reads passing filter, > 80 % bases with ≥Q30, > 5000 × of the average RD, ∼1.0 of the average SB, > 70 % of the inter-amplicon balance, and > 99 % of the mtGenome coverage. The five most vulnerable amplicons, exhibiting low RD and high SB, are identified as nucleotide positions (nps) 1094-1177, 5858-5975, 6109-6149, 6718-6810, and 7021-7090. For tertiary data analysis, the substitutions are accurately reported by UAS, while insertions and deletions (indels), point heteroplasmies (PHPs), and/or length heteroplasmies (LHPs) still necessitate manual inspection. On average, 40 variants were found in 60 samples, ranging from 27 to 54. A total of 2426 variants are observed at 491 nps. Moreover, the workflow can yield repeatable and reproducible results, generate complete mtGenome profiles from ≥ 2 pg input gDNA for high quality samples/control DNA or ≥ 0.5 cm hair shafts, and recover more/complete mtGenome information from severely degraded samples (degradation index >10) and various types of case samples. If two rounds of purification are conducted, it can more effectively remove additional reaction components and enhance data recovery from the mtGenome, especially for low-input samples. The negative controls in three runs cover some reads, but these contaminations cannot compromise the mitochondrial analyses. In conclusion, the ForenSeq™ mtDNA Whole Genome Kit, including 234 short overlapping amplicons with an average size of 131 bp, can meet forensic needs on the whole mtGenome sequencing in real scenarios. In addition, the ten insights gained from this study may serve as a valuable reference for forensic scientists who are utilizing this kit.
Collapse
Affiliation(s)
- Jinfeng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Guannan Long
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, Liaoning 110002, PR China
| | - Haiduo Wu
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, Liaoning 110002, PR China
| | - Ze Liu
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, Liaoning 110002, PR China
| | - Biao Zhang
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, Liaoning 110002, PR China
| | - Shaobo Yu
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, Liaoning 110002, PR China.
| | - Fu Ren
- Shenyang Medical College, Shenyang, Liaoning 110034, PR China; Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang, Liaoning 110034, PR China; Shenyang Key Laboratory for Phenomics, Shenyang, Liaoning 110034, PR China.
| | - Fei Guo
- Shenyang Medical College, Shenyang, Liaoning 110034, PR China; Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang, Liaoning 110034, PR China; Shenyang Key Laboratory for Phenomics, Shenyang, Liaoning 110034, PR China.
| |
Collapse
|
2
|
Korolija M, Sukser V, Vlahoviček K. Mitochondrial point heteroplasmy: insights from deep-sequencing of human replicate samples. BMC Genomics 2024; 25:48. [PMID: 38200446 PMCID: PMC10782721 DOI: 10.1186/s12864-024-09963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Human mitochondrial heteroplasmy is an extensively investigated phenomenon in the context of medical diagnostics, forensic identification and molecular evolution. However, technical limitations of high-throughput sequencing hinder reliable determination of point heteroplasmies (PHPs) with minor allele frequencies (MAFs) within the noise threshold. RESULTS To investigate the PHP landscape at an MAF threshold down to 0.1%, we sequenced whole mitochondrial genomes at approximately 7.700x coverage, in multiple technical and biological replicates of longitudinal blood and buccal swab samples from 11 human donors (159 libraries in total). The results obtained by two independent sequencing platforms and bioinformatics pipelines indicate distinctive PHP patterns below and above the 1% MAF cut-off. We found a high inter-individual prevalence of low-level PHPs (MAF < 1%) at polymorphic positions of the mitochondrial DNA control region (CR), their tissue preference, and a tissue-specific minor allele linkage. We also established the position-dependent potential of minor allele expansion in PHPs, and short-term PHP instability in a mitotically active tissue. We demonstrate that the increase in sensitivity of PHP detection to minor allele frequencies below 1% within a robust experimental and analytical pipeline, provides new information with potential applicative value. CONCLUSIONS Our findings reliably show different mutational loads between tissues at sub-1% allele frequencies, which may serve as an informative medical biomarker of time-dependent, tissue-specific mutational burden, or help discriminate forensically relevant tissues in a single person, close maternal relatives or unrelated individuals of similar phylogenetic background.
Collapse
Affiliation(s)
- Marina Korolija
- Biology and Fibres Department, Forensic Science Centre "Ivan Vučetić", Ministry of the Interior of the Republic of Croatia, Ilica 335, HR-10000, Zagreb, Croatia.
| | - Viktorija Sukser
- Biology and Fibres Department, Forensic Science Centre "Ivan Vučetić", Ministry of the Interior of the Republic of Croatia, Ilica 335, HR-10000, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| |
Collapse
|
3
|
Liu G, Zheng Y, Wu Q, Feng T, Xia Y, Chen D, Ren L, Bai X, Li Q, Chen D, Lv M, Liao M, Liang W, Zhang L, Qu S. Assessment of ForenSeq mtDNA Whole Genome Kit for forensic application. Int J Legal Med 2023; 137:1693-1703. [PMID: 37731065 DOI: 10.1007/s00414-023-03084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.
Collapse
Affiliation(s)
- Guihong Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yazi Zheng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiushuo Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tao Feng
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Yu Xia
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Dan Chen
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Li Ren
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Xiaogang Bai
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Qingqing Li
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Dezhi Chen
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wu YT, Huang SC, Shiao YM, Syu WC, Wei YH, Hsu YC. Identification of new variants in MTRNR1 and MTRNR2 genes using whole mitochondrial genome sequencing in a Taiwanese family with MERRF (myoclonic epilepsy with ragged-red fibers) syndrome. Hear Res 2023; 438:108876. [PMID: 37683310 DOI: 10.1016/j.heares.2023.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Mitochondrial encephalomyopathy is a multi-system disorder mostly caused by inborn errors of the oxidative phosphorylation (OXPHOS) system and usually manifested as complex neurological disorder and muscle weakness. Myoclonic epilepsy with ragged-red fibers (MERRF) syndrome is one of the major subtypes of mitochondrial disease associated with the m.8344A>G mutation in mitochondrial tRNALys gene. In addition to the symptoms in central nervous and muscle systems, a portion of the patients may develop hearing loss, which has been linked to the genetic mutations of mitochondrial DNA (mtDNA) especially in the mitochondrial ribosome RNA (rRNA) gene. Despite a great number of studies focusing on the consequences of mtDNA mutations, the mechanism of pathogenesis of these overt diseases has remained unclear, and there is no specific and effective treatment for MERRF syndromes. In this study, we developed a high-quality mtDNA sequencing method by next generation sequencing technology to search for the additional pathogenic variations of mtDNA from skin fibroblasts of four members in a Taiwanese family with MERRF syndrome. Through uncovering the signatures of all mtDNA variants in the MERRF family, we identified novel mtDNA variants in the genes encoding mitochondrial 12S and 16S rRNAs. The finding from this study will give us further insight into the molecular mechanisms driving the phenotypic variability and timing of onset of the MERRF syndrome.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan
| | | | | | - Wei-Chi Syu
- Union Clinical Laboratory, Taipei 10665, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 25245, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
5
|
Peng D, Geng J, Yang J, Liu J, Wang N, Wu R, Sun H. Whole Mitochondrial Genome Detection and Analysis of Two- to Four-Generation Maternal Pedigrees Using a New Massively Parallel Sequencing Panel. Genes (Basel) 2023; 14:genes14040912. [PMID: 37107670 PMCID: PMC10137955 DOI: 10.3390/genes14040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is an effective genetic marker in forensic practice, especially for aged bones and hair shafts. Detection of the whole mitochondrial genome (mtGenome) using traditional Sanger-type sequencing is laborious and time-consuming. Additionally, its ability to distinguish point heteroplasmy (PHP) and length heteroplasmy (LHP) is limited. The application of massively parallel sequencing in mtDNA detection helps researchers to study the mtGenome in-depth. The ForenSeq mtDNA Whole Genome Kit, which contains a total of 245 short amplicons, is one of the multiplex library preparation kits for the mtGenome. We used this system to detect the mtGenome in the blood samples and hair shafts of thirty-three individuals from eight two-generation pedigrees, one three-generation pedigree, and one four-generation pedigree. High-quality sequencing results were obtained. Ten unique mtGenome haplotypes were observed in the mothers from the ten pedigrees. A total of 26 PHPs were observed using the interpretation threshold of 6%. Eleven types of LHPs in six regions were evaluated in detail. When considering homoplasmic variants only, consistent mtGenome haplotypes were observed between the twice-sequenced libraries and between the blood and hair shafts from the same individual and among maternal relatives in the pedigrees. Four inherited PHPs were observed, and the remainder were de novo/disappearing PHPs in the pedigrees. Our results demonstrate the effective capability of the ForenSeq mtDNA Whole Genome Kit to generate the complete mtGenome in blood and hair shafts, as well as the complexity of mtDNA haplotype comparisons between different types of maternal relatives when heteroplasmy is considered.
Collapse
Affiliation(s)
- Dan Peng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Liu Z, Simayijiang H, Wang Q, Yang J, Sun H, Wu R, Yan J. DNA and protein analyses of hair in forensic genetics. Int J Legal Med 2023; 137:613-633. [PMID: 36732435 DOI: 10.1007/s00414-023-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Hair is one of the most common pieces of biological evidence found at a crime scene and plays an essential role in forensic investigation. Hairs, especially non-follicular hairs, are usually found at various crime scenes, either by natural shedding or by forcible shedding. However, the genetic material in hairs is usually highly degraded, which makes forensic analysis difficult. As a result, the value of hair has not been fully exploited in forensic investigations and trials. In recent years, with advances in molecular biology, forensic analysis of hair has achieved remarkable strides and provided crucial clues in numerous cases. This article reviews recent developments in DNA and protein analysis of hair and attempts to provide a comprehensive solution to improve forensic hair analysis.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
7
|
Kwon YL, Lee EY, Kim BM, Joo SM, Jeong KS, Chun BW, Lee YH, Park KW, Shin KJ. Application of a custom haplotype caller to analyze sequence-based data of 56 microhaplotypes. Forensic Sci Int Genet 2022; 61:102778. [PMID: 36166997 DOI: 10.1016/j.fsigen.2022.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Microhaplotypes (microhaps) are recently introduced markers that aim to complement the limitations of conventional forensic markers such as short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs). With the potential of microhaps in forensics becoming clearer through massively parallel sequencing (MPS), MPS-based studies on microhaps are being actively reported. However, simpler workflow schemes for the generation and analysis of MPS data are still required to facilitate the practical application of MPS in forensics. In this study, we developed an in-house MPS panel that simultaneously amplifies 56 microhaps and a custom haplotype caller, Visual Microhap. The developed tool works on a web browser and provides four analysis options to extract SNP-based haplotypes from sequence-based data obtained by STRait Razor 3.0. To demonstrate the utility of the MPS panel and data analysis workflow scheme, we also analyzed 56 microhaps of 286 samples from four populations (African-American, Caucasian, Hispanic, and Korean). The average effective number of alleles (Ae) for the four groups was 3.45, ranging from 1.74 to 6.98. Forensic statistical parameters showed that this microhap panel is more powerful than conventional autosomal STRs for human identification. Meanwhile, the 56-plex panel mostly comprised microhaps with high Ae; however, the four populations were grossly distinguishable from each other by cluster analysis. Consequently, the developed in-house MPS panel for 56 microhaps and the adopted workflow using open-source tools can increase the utility of microhap MPS in forensic research and practice.
Collapse
Affiliation(s)
- Ye-Lim Kwon
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
| | - Eun Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea. -silver02-@hanmail.net
| | - Bo Min Kim
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
| | - Su Min Joo
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
| | - Kyu Sik Jeong
- Forensic DNA division, National Forensic Service, Wonju-si, Gangwon-do 26460, Republic of Korea.
| | - Byung Won Chun
- DNA analysis Division, National Forensic Service Daejeon Institute, Daejeon 34054, Republic of Korea.
| | - Yang Han Lee
- Forensic DNA division, National Forensic Service, Wonju-si, Gangwon-do 26460, Republic of Korea.
| | - Ki Won Park
- Forensic DNA division, National Forensic Service, Wonju-si, Gangwon-do 26460, Republic of Korea.
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Xin Y, Jia R, Zhang S, Guo F. Mitochondrial genome sequencing with short overlapping amplicons on MiSeq FGx system. Forensic Sci Res 2021; 7:142-153. [PMID: 35784421 PMCID: PMC9246037 DOI: 10.1080/20961790.2021.1963514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022] Open
Abstract
With the development and maturation of massively parallel sequencing (MPS) technology, the mitochondrial genome (mitogenome) sequencing is increasingly applied in the forensic field. In this study, we employed the strategy of short overlapping amplicons for the whole mitogenome, library preparation with tagmentation using the Nextera® XT DNA Library Preparation Kit, sequencing on the MiSeq FGxTM Forensic Genomics System and analyzing data using the mitochondrial(mtDNA) MSR Plug-in and the mtDNA Variant Analyzer. A total of 27 libraries and 56 libraries were sequenced in a run using MiSeq Reagent Kit v2 and v3, respectively. Results showed more than 1800 × of averaged depth of coverage (DoC) at each position. Concordant haplotypes of 9947 A and 2800 M were obtained at 32 variants. Cross-reactivity was observed with 1 ng primate DNA and 10 ng non-primate DNA but could be easily distinguished. Full and accurate variants were obtained from at least 50 pg input DNA and from minor contributors between 19:1 and 1:19 mixed ratios with known reference profiles. More than 86% variants were detected from ≥200-bp degraded samples but its haplotype was assigned to more ancestral haplogroup. Further, a total of 3 962 variants were observed at 613 nucleotide positions from 103 Xibe mitogenomes with 25:1 ratio of transitions to transversions. Two new transversions (C13735A and A14755C) and two tri-alleles at nps 9824 and 16092 were identified. There were 103 unique mitogenome haplotypes from 103 Chinese Xibe that were assigned to 79 haplogroups. Haplogroup D was the preponderant top-level haplogroup in Xibe followed by F, B, M, A, N, G, C, Z, Y, HV and J. Random match probability (RMP) and haplotype diversity (HD) of the whole mitogenome was calculated as 0.0097 and 1.0000, respectively. Compared with HVS-I only, RMP decreased 33.56%, while the number of haplotypes and HD increased 15.73% and 0.49%, respectively. Principal component analysis (PCA) showed that Xibe was clustered to East and Southeast Asian. As a whole, this MPS strategy is suitable for the whole mitogenome sequencing especially for degraded samples and can facilitate generating mitogenome data to support the routine application in forensic sciences. EMP00726 is the first whole mitogenome dataset from Xibe contributed to the EMPOP. Supplemental data for this article are available online at.
Collapse
Affiliation(s)
- Yang Xin
- Forensic Science College, Criminal Investigation Police University of China, Shenyang, China
| | - Rulin Jia
- Forensic Science College, Criminal Investigation Police University of China, Shenyang, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Fei Guo
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
- Forensic Science College, Criminal Investigation Police University of China, Shenyang, China
| |
Collapse
|
9
|
Faccinetto C, Sabbatini D, Serventi P, Rigato M, Salvoro C, Casamassima G, Margiotta G, De Fanti S, Sarno S, Staiti N, Luiselli D, Marino A, Vazza G. Internal validation and improvement of mitochondrial genome sequencing using the Precision ID mtDNA Whole Genome Panel. Int J Legal Med 2021; 135:2295-2306. [PMID: 34491421 PMCID: PMC8523450 DOI: 10.1007/s00414-021-02686-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022]
Abstract
With the recent advances in next-generation sequencing (NGS), mitochondrial whole-genome sequencing has begun to be applied to the field of the forensic biology as an alternative to the traditional Sanger-type sequencing (STS). However, experimental workflows, commercial solutions, and output data analysis must be strictly validated before being implemented into the forensic laboratory. In this study, we performed an internal validation for an NGS-based typing of the entire mitochondrial genome using the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific) on the Ion S5 sequencer (Thermo Fisher Scientific). Concordance, repeatability, reproducibility, sensitivity, and heteroplasmy detection analyses were assessed using the 2800 M and 9947A standard control DNA as well as typical casework specimens, and results were compared with conventional Sanger sequencing and another NGS sequencer in a different laboratory. We discuss the strengths and limitations of this approach, highlighting some issues regarding noise thresholds and heteroplasmy detection, and suggesting solutions to mitigate these effects and improve overall data interpretation. Results confirmed that the Precision ID Whole mtDNA Genome Panel is highly reproducible and sensitive, yielding useful full mitochondrial DNA sequences also from challenging DNA specimens, thus providing further support for its use in forensic practice.
Collapse
Affiliation(s)
- Christian Faccinetto
- Reparto Carabinieri Investigazioni Scientifiche Di Parma, Sezione Biologia, Parma, Italy.
| | - Daniele Sabbatini
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Patrizia Serventi
- Reparto Carabinieri Investigazioni Scientifiche Di Parma, Sezione Biologia, Parma, Italy
| | - Martina Rigato
- Department of Biology, University of Padova, Padova, Italy
| | | | - Gianluca Casamassima
- Reparto Carabinieri Investigazioni Scientifiche Di Parma, Sezione Biologia, Parma, Italy
| | - Gianluca Margiotta
- Reparto Carabinieri Investigazioni Scientifiche Di Parma, Sezione Biologia, Parma, Italy
| | - Sara De Fanti
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Interdepartmental Centre Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Stefania Sarno
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Nicola Staiti
- Reparto Carabinieri Investigazioni Scientifiche Di Parma, Sezione Biologia, Parma, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alberto Marino
- Reparto Carabinieri Investigazioni Scientifiche Di Parma, Sezione Biologia, Parma, Italy
| | - Giovanni Vazza
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Holt CL, Stephens KM, Walichiewicz P, Fleming KD, Forouzmand E, Wu SF. Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software. Genes (Basel) 2021; 12:genes12040599. [PMID: 33921728 PMCID: PMC8073089 DOI: 10.3390/genes12040599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Forensic mitochondrial DNA (mtDNA) analysis conducted using next-generation sequencing (NGS), also known as massively parallel sequencing (MPS), as compared to Sanger-type sequencing brings modern advantages, such as deep coverage per base (herein referred to as read depth per base pair (bp)), simultaneous sequencing of multiple samples (libraries) and increased operational efficiencies. This report describes the design and developmental validation, according to forensic quality assurance standards, of end-to-end workflows for two multiplexes, comprised of ForenSeq mtDNA control region and mtDNA whole-genome kits the MiSeq FGxTM instrument and ForenSeq universal analysis software (UAS) 2.0/2.1. Polymerase chain reaction (PCR) enrichment and a tiled amplicon approach target small, overlapping amplicons (60–150 bp and 60–209 bp for the control region and mtGenome, respectively). The system provides convenient access to data files that can be used outside of the UAS if desired. Studies assessed a range of environmental and situational variables, including but not limited to buccal samples, rootless hairs, dental and skeletal remains, concordance of control region typing between the two multiplexes and as compared to orthogonal data, assorted sensitivity studies, two-person DNA mixtures and PCR-based performance testing. Limitations of the system and implementation considerations are discussed. Data indicated that the two mtDNA multiplexes, MiSeq FGx and ForenSeq software, meet or exceed forensic DNA quality assurance (QA) guidelines with robust, reproducible performance on samples of various quantities and qualities.
Collapse
|
11
|
Assessment of Illumina® Human mtDNA Genome assay: workflow evaluation with development of analysis and interpretation guidelines. Int J Legal Med 2021; 135:1161-1178. [PMID: 33511452 DOI: 10.1007/s00414-021-02508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/27/2023]
Abstract
Mitochondrial DNA (mtDNA) is a small but significant part of the human genome, whose applicability potential has gradually increased with the advent of massively parallel sequencing (MPS) technology. Knowledge of the particular workflow, equipment, and reagents used, along with extensive usage of negative controls to monitor all preparation steps constitute the prerequisites for confident reporting of results. In this study, we performed an assessment of Illumina® Human mtDNA Genome assay on MiSeq FGx™ instrument. Through analysis of several types of negative controls, as well as mtDNA positive controls, we established thresholds for data analysis and interpretation, consisting of several components: minimum read depth (220 reads), minimum quality score (41), percentage of minor allele sufficient for analysis (3.0%), percentage of minor allele sufficient for interpretation (6.0%), and percentage of major allele sufficient for homoplasmic variant call (97.0%). Based on these criteria, we defined internal guidelines for analysis and interpretation of mtDNA results obtained by MPS. Our study shows that the whole mtDNA assay on MiSeq FGx™ produces repeatable and reproducible results, independent of the analyst, which are also concordant with Sanger-type sequencing results for mtDNA control region, as well as with MPS results produced by NextSeq®. Overall, established thresholds and interpretation guidelines were successfully applied for the sequencing of complete mitochondrial genomes from high-quality samples. The underlying principles and proposed methodology on the definition of internal laboratory guidelines for analysis and interpretation of MPS results may be applicable to similar MPS workflows, e.g. targeting good-quality samples in forensic genetics and molecular diagnostics.
Collapse
|
12
|
Association Study Between Genetic Variation in Whole Mitochondrial Genome and Ischemic Stroke. J Mol Neurosci 2021; 71:2152-2162. [PMID: 33447902 DOI: 10.1007/s12031-020-01778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial DNA (mtDNA) affects the mitochondrial function, which is potentially related to susceptibility to ischemic stroke (IS). However, study on IS genetics by whole mitochondrial genome sequencing has not been extensively explored. Therefore, a two-stage study was designed to explore the relationship between the whole mitochondrial genome variants and IS. In the first stage, whole mitochondrial genomes of 52 IS patients and 55 controls were sequenced by next-generation sequencing. Fifty-three mtDNA mutation sites which may be related to the pathogenesis of IS were discovered. Nine unreported mtDNA variation sites were found for the first time. In the second larger Chinese cohort, we confirmed that m.T195C and m.T12338C in the mitochondrial D-loop region were the protective factors of IS, especially m.T195C and m.C311T in the LAA subtype. In conclusion, our study provided population genetic information and a reference for IS-relevant research, with wide applications in diagnosis, therapeutic treatments and prediction of IS.
Collapse
|
13
|
King JL, Woerner AE, Mandape SN, Kapema KB, Moura-Neto RS, Silva R, Budowle B. STRait Razor Online: An enhanced user interface to facilitate interpretation of MPS data. Forensic Sci Int Genet 2021; 52:102463. [PMID: 33493821 DOI: 10.1016/j.fsigen.2021.102463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Since 2013, STRait Razor has enabled analysis of massively parallel sequencing (MPS) data from various marker systems such as short tandem repeats, single nucleotide polymorphisms, insertion/deletions, and mitochondrial DNA. In this paper, STRait Razor Online (SRO), available at https://www.unthsc.edu/straitrazor, is introduced as an interactive, Shiny-based user interface for primary analysis of MPS data and secondary analysis of STRait Razor haplotype pileups. This software can be accessed from any common browser via desktop, tablet, or smartphone device. SRO is available also as a standalone application and open-source R script available at https://github.com/ExpectationsManaged/STRaitRazorOnline. The local application is capable of batch processing of both fastq files and primary analysis output. Processed batches generate individual report folders and summary reports at the locus- and haplotype-level in a matter of minutes. For example, the processing of data from ∼700 samples generated with the ForenSeq Signature Preparation Kit from allsequences.txt to a final table can be performed in ∼40 min whereas the Excel-based workbooks can take 35-60 h to compile a subset of the tables generated by SRO. To facilitate analysis of single-source, reference samples, a preliminary triaging system was implemented that calls potential alleles and flags loci suspected of severe heterozygote imbalance. When compared to published, manually curated data sets, 98.72 % of software-assigned allele calls without manual interpretation were consistent with curated data sets, 0.99 % loci were presented to the user for interpretation due to heterozygote imbalance, and the remaining 0.29 % of loci were inconsistent due to the analytical thresholds used across the studies.
Collapse
Affiliation(s)
- Jonathan L King
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - August E Woerner
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Sammed N Mandape
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Kapema Bupe Kapema
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | | | - Rosane Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| |
Collapse
|
14
|
Cihlar JC, Amory C, Lagacé R, Roth C, Parson W, Budowle B. Developmental Validation of a MPS Workflow with a PCR-Based Short Amplicon Whole Mitochondrial Genome Panel. Genes (Basel) 2020; 11:E1345. [PMID: 33202822 PMCID: PMC7709034 DOI: 10.3390/genes11111345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
For the adoption of massively parallel sequencing (MPS) systems by forensic laboratories, validation studies on specific workflows are needed to support the feasibility of implementation and the reliability of the data they produce. As such, the whole mitochondrial genome sequencing methodology-Precision ID mtDNA Whole Genome Panel, Ion Chef, Ion S5, and Converge-has been subjected to a variety of developmental validation studies. These validation studies were completed in accordance with the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines and assessed reproducibility, repeatability, accuracy, sensitivity, specificity to human DNA, and ability to analyze challenging (e.g., mixed, degraded, or low quantity) samples. Intra- and inter-run replicates produced an average maximum pairwise difference in variant frequency of 1.2%. Concordance with data generated with traditional Sanger sequencing and an orthogonal MPS platform methodology was used to assess accuracy, and generation of complete and concordant haplotypes at DNA input levels as low as 37.5 pg of nuclear DNA or 187.5 mitochondrial genome copies illustrated the sensitivity of the system. Overall, data presented herein demonstrate that highly accurate and reproducible results were generated for a variety of sample qualities and quantities, supporting the reliability of this specific whole genome mitochondrial DNA MPS system for analysis of forensic biological evidence.
Collapse
Affiliation(s)
- Jennifer Churchill Cihlar
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.A.); (W.P.)
| | - Robert Lagacé
- Human Identification Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA; (R.L.); (C.R.)
| | - Chantal Roth
- Human Identification Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA; (R.L.); (C.R.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.A.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
15
|
Cihlar JC, Peters D, Strobl C, Parson W, Budowle B. The lot-to-lot variability in the mitochondrial genome of controls. Forensic Sci Int Genet 2020; 47:102298. [PMID: 32464353 DOI: 10.1016/j.fsigen.2020.102298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022]
Abstract
Current research in the biomedical field has illustrated how cell lines used as reference standards can change over time and, more importantly, can affect research and diagnostic results obtained from these cell lines. With the use of increasingly sensitive and highly resolving technologies (e.g., massively parallel sequencing), forensic scientists must be aware of and account for potential variability in the cell lines used as controls in their validation studies and day-to-day casework. In this study, multiple lot numbers from four commonly-used control cell line DNAs were sequenced with massively parallel sequencing on the Ion S5. The variability among these different lots was evaluated, and the effect on forensic laboratory work discussed.
Collapse
Affiliation(s)
- Jennifer Churchill Cihlar
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | - Dixie Peters
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
16
|
Sturk-Andreaggi K, Parson W, Allen M, Marshall C. Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy. Forensic Sci Int Genet 2020; 44:102205. [DOI: 10.1016/j.fsigen.2019.102205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/09/2019] [Accepted: 11/09/2019] [Indexed: 02/04/2023]
|
17
|
High throughput sequencing data analysis workflow: mtDNA variant detection and identification of STR/Y-STR alleles and iso-alleles. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Jing R, Wang H, Ju S, Cui M. Reference materials for molecular diagnostics: Current achievements and future strategies. Clin Biochem 2018; 56:11-17. [DOI: 10.1016/j.clinbiochem.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
|
19
|
Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int J Legal Med 2018; 132:1263-1272. [PMID: 29468381 DOI: 10.1007/s00414-018-1799-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023]
Abstract
The mitochondrial genome has a number of characteristics that provide useful information to forensic investigations. Massively parallel sequencing (MPS) technologies offer improvements to the quantitative analysis of the mitochondrial genome, specifically the interpretation of mixed mitochondrial samples. Two-person mixtures with nuclear DNA ratios of 1:1, 5:1, 10:1, and 20:1 of individuals from different and similar phylogenetic backgrounds and three-person mixtures with nuclear DNA ratios of 1:1:1 and 5:1:1 were prepared using the Precision ID mtDNA Whole Genome Panel and Ion Chef, and sequenced on the Ion PGM or Ion S5 sequencer (Thermo Fisher Scientific, Waltham, MA, USA). These data were used to evaluate whether and to what degree MPS mixtures could be deconvolved. Analysis was effective in identifying the major contributor in each instance, while SNPs from the minor contributor's haplotype only were identified in the 1:1, 5:1, and 10:1 two-person mixtures. While the major contributor was identified from the 5:1:1 mixture, analysis of the three-person mixtures was more complex, and the mixed haplotypes could not be completely parsed. These results indicate that mixed mitochondrial DNA samples may be interpreted with the use of MPS technologies.
Collapse
|
20
|
Peck MA, Sturk-Andreaggi K, Thomas JT, Oliver RS, Barritt-Ross S, Marshall C. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Forensic Sci Int Genet 2018; 34:25-36. [PMID: 29413633 DOI: 10.1016/j.fsigen.2018.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022]
Abstract
Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data.
Collapse
Affiliation(s)
- Michelle A Peck
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 115 Purple Heart Drive, Dover AFB, DE, 19902, United States; ARP Sciences, LLC, Contractor Supporting the Armed Forces Medical Examiner System, 9210 Corporate Boulevard, Suite 120, Rockville, MD, 20850, United States
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 115 Purple Heart Drive, Dover AFB, DE, 19902, United States; ARP Sciences, LLC, Contractor Supporting the Armed Forces Medical Examiner System, 9210 Corporate Boulevard, Suite 120, Rockville, MD, 20850, United States
| | - Jacqueline T Thomas
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 115 Purple Heart Drive, Dover AFB, DE, 19902, United States; ARP Sciences, LLC, Contractor Supporting the Armed Forces Medical Examiner System, 9210 Corporate Boulevard, Suite 120, Rockville, MD, 20850, United States
| | - Robert S Oliver
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 115 Purple Heart Drive, Dover AFB, DE, 19902, United States; ARP Sciences, LLC, Contractor Supporting the Armed Forces Medical Examiner System, 9210 Corporate Boulevard, Suite 120, Rockville, MD, 20850, United States
| | - Suzanne Barritt-Ross
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 115 Purple Heart Drive, Dover AFB, DE, 19902, United States; ARP Sciences, LLC, Contractor Supporting the Armed Forces Medical Examiner System, 9210 Corporate Boulevard, Suite 120, Rockville, MD, 20850, United States
| | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 115 Purple Heart Drive, Dover AFB, DE, 19902, United States; ARP Sciences, LLC, Contractor Supporting the Armed Forces Medical Examiner System, 9210 Corporate Boulevard, Suite 120, Rockville, MD, 20850, United States.
| |
Collapse
|