1
|
Shao Y, Gu S, Peng H, Zhang L, Li S, Berendsen RL, Yang T, Dong C, Wei Z, Xu Y, Shen Q. Synergic interactions between Trichoderma and the soil microbiomes improve plant iron availability and growth. NPJ Biofilms Microbiomes 2025; 11:56. [PMID: 40199867 PMCID: PMC11978894 DOI: 10.1038/s41522-025-00684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Iron bioavailability is often limited especially in calcareous soils. Trichoderma harzianum strongly improves plant iron uptake and growth in calcareous soils. However, little is known about the mechanisms by which T. harzianum mobilizes iron in calcareous soils. Here, the model strain T. harzianum NJAU4742 and a synthetic microbial community (SynCom) was used to show that the efficacy of T. harzianum in enhancing plant iron nutrition in calcareous soils depends on the soil microbiome. Enhanced iron-mobilization functions of the SynCom were observed in the presence of T. harzianum NJAU4742. Concurrently, T. harzianum NJAU4742 improved the iron-mobilization capacity of the SynCom by enriching strains that are able to do so. Finally, Chryseobacterium populi was identified as a key driver of iron mobilization, while their synergistic colonization further enhances this process. This study unveils a pivotal mechanism by which T. harzianum NJAU4742-mediated re-structuring of the soil microbiome and ameliorates plant iron nutrition.
Collapse
Affiliation(s)
- Yadong Shao
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shaohua Gu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haiying Peng
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lisheng Zhang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sidong Li
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Tianjie Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Caixia Dong
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Elshahawy I, Saied N, Abd-El-Kareem F, Abd-Elgawad M. Enhanced activity of Trichoderma asperellum introduced in solarized soil and its implications on the integrated control of strawberry-black root rot. Heliyon 2024; 10:e36795. [PMID: 39263098 PMCID: PMC11387541 DOI: 10.1016/j.heliyon.2024.e36795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
An effective method for maintaining the activity and longevity of microorganisms in adverse conditions is microencapsulation. In the present study, synthetic alginate pellets were developed as carriers for the biocontrol agent Trichoderma asperellum. In two field experiments, solarization was applied for three weeks to loamy clay soil that was naturally infested with strawberry-black root rot fungi (Fusarium solani, Rhizoctonia solani and Machrophomina phaseolina). Following solarization, T. asperellum-based alginate pellets or spore suspension were added to the soil. Data reveal that, three weeks solarization of irrigated soil increased its maximum temperature reached by 11-14.2 °C (1-10 cm depth), 11.6-13.1 °C (11-20 cm depth) and 10.1-12.2 °C (21-30 cm depth). In either trial, solarization also successfully lowers the vitality of strawberry-black root rot fungi directly after the solarization phase. When compared to controls, strawberry-black root rot was substantially less common in solarized plots. In two field trials, soil solarization followed by inoculation with alginate pellets based on T. asperellum led to the greatest reductions in black root rot incidence (59.3 and 74.1 %) and severity (72.5 and 75.2 %), as compared to un-solarized control plots. In vivo studies, this treatment dramatically increased the activity of defensive enzymes (peroxidase and chitinase) and strawberry yield (60.5 and 60.0 %, respectively), as compared to non-solarized control plots. In two field studies, the rhizosphere population of native Trichoderma spp. Developed more in solarized soils after the application of alginate pellets based on T. asperellum (86.5 and 83.6 %, respectively), compared to the non-solarized control.
Collapse
Affiliation(s)
- Ibrahim Elshahawy
- Plant Pathology Department, National Research Centre, Cairo, 12622, Egypt
| | - Nehal Saied
- Plant Pathology Department, National Research Centre, Cairo, 12622, Egypt
| | | | | |
Collapse
|
3
|
Qi Q, Fan C, Wu H, Sun L, Cao C. Preparation of Trichoderma asperellum Microcapsules and Biocontrol of Cucumber Powdery Mildew. Microbiol Spectr 2023; 11:e0508422. [PMID: 37102872 PMCID: PMC10269890 DOI: 10.1128/spectrum.05084-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
Microencapsulation is an important technique for protecting the viability and activity of microorganisms under adverse environmental conditions. To improve biological control, controlled-release microcapsules of Trichoderma asperellum were prepared and embedded in combinations of the biodegradable wall materials sodium alginate (SA). The microcapsules were evaluated for their ability to control cucumber powdery mildew in the greenhouse. The results showed that the highest encapsulation efficiency of 95% was obtained by applying 1% SA and 4% calcium chloride. The microcapsules provided good, controlled release and UV resistance, and could be stored for a long time. The greenhouse experiment revealed that the T. asperellum microcapsules had a maximal biocontrol efficiency of 76% against cucumber powdery mildew. In summary, embedding T. asperellum in microcapsules is a promising technique to improve the survivability of T. asperellum conidia. The T. asperellum microcapsules exerted significant biocontrol efficiency against cucumber powdery mildew. IMPORTANCE Trichoderma asperellum is widely found in plant roots and soil and has been used for the biocontrol of various plant pathogens; however, the control efficiency of T. asperellum is usually unstable in field trials. To improve the control efficiency of T. asperellum, in the present study, T. asperellum microcapsules were prepared using sodium alginate as wall material to reduce the effects of temperature, UV irradiation, and other environmental factors on its activity, and to significantly improve its biocontrol efficiency on cucumber powdery mildew. Microcapsules can prolong the shelf life of microbial pesticides. This study provides a new way to prepare a biocontrol agent against cucumber powdery mildew with high efficiency.
Collapse
Affiliation(s)
- Qi Qi
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, People’s Republic of China
| | - Chengcheng Fan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, People’s Republic of China
| | - Hongqu Wu
- Hubei Biopesticide Engineering Research Center, Wuhan, Hubei, People’s Republic of China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, People’s Republic of China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Enhancing polysaccharide production by Paraisaria dubia spores batch fermentation through a pH-shift strategy based on kinetic analysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Zhang C, Ali Khan RA, Wei H, Wang R, Hou J, Liu T. Rapid and mass production of biopesticide Trichoderma Brev T069 from cassava peels using newly established solid-state fermentation bioreactor system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114981. [PMID: 35395529 DOI: 10.1016/j.jenvman.2022.114981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Converting agricultural waste into value-added biopesticides to replace chemical pesticides for plant protection is a good alternative for environmental sustainability and resource recycling. In this study, five tropical wastes (cassava peels, banana pseudostem, coconut shell, sugarcane bagasse, and pineapple peels) were screened as substrates for the rapid production of biopesticide Trichoderma Brev T069. Five single tests and a Box-Behnken design (BBD) with response surface methodology were used to optimize the culture conditions to improve the spore yield. The results showed that cassava peel was the optimal solid fermentation substrate, and the optimization enabled a spore yield of 9.31 × 109 spores/g at 3rd day, which was equal to 93.19% of spore yield obtained at 5th day (9.99 × 109 spores/g). A newly packed-bed bioreactor with agitation and ventilation system was developed and used to expand the production that 250 kg of biopesticide (2.89 × 109 spores/g) could be available on the 3rd day. A pot experiment indicated that the biopesticide T. Brev T069 obtained under this production system, when applied at 1 × 107 spores/g of soil had a 64.65% biocontrol efficiency on banana fusarium wilt. This study provides a practical solution for turning a tropical waste into an effective biopesticide which can prevent banana wilt disease, thereby helping to reduce disease management cost and overcome environmental hazards caused by synthetic pesticides.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Raja Asad Ali Khan
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China; Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | - HongYan Wei
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Rui Wang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China; Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan (Hainan University), Haikou, Hainan, 570228, PR China
| | - JuMei Hou
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan (Hainan University), Haikou, Hainan, 570228, PR China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China; Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan (Hainan University), Haikou, Hainan, 570228, PR China.
| |
Collapse
|
6
|
dos Santos LBPR, Oliveira-Santos N, Fernandes JV, Jaimes-Martinez JC, De Souza JT, Cruz-Magalhães V, Loguercio LL. Tolerance to and Alleviation of Abiotic Stresses in Plants Mediated by Trichoderma spp. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wu M, Wei H, Ma K, Cui P, Zhu S, Lai D, Ren J, Wang W, Fan A, Lin W, Su H. ThpacC Acts as a Positive Regulator of Homodimericin A Biosynthesis and Antifungal Activities of Trichoderma harzianum 3.9236. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12695-12704. [PMID: 34677054 DOI: 10.1021/acs.jafc.1c04330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Pal/Rim pathway and its key transcription factor PacC play important roles in fungal adaptation to ambient pH regarding growth, secondary metabolism, and virulence. However, the effect of PacC on the secondary metabolism of the important biocontrol fungus Trichoderma harzianum remains elusive. To answer this question, ThpacC deletion (KO-ThpacC) and overexpression (OE-ThpacC) mutants of T. harzianum 3.9236 were constructed. Transcriptomic analysis of T. harzianum and KO-ThpacC suggested that ThpacC acted as both a positive and a negative regulator for secondary metabolite (SM) production. Further investigation revealed that deletion of ThpacC abolished homodimericin A and 8-epi-homodimericin A production. Moreover, ThpacC plays a role in the antagonism of T. harzianum against Sclerotinia sclerotiorum. 8-epi-Homodimericin A demonstrated moderate inhibitory activity against S. sclerotiorum. Our results contribute to a deeper understanding of the ThpacC function on SM production and the antifungal activity of T. harzianum.
Collapse
Affiliation(s)
- Mengyue Wu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Huiling Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Ke Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Peiqi Cui
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Shaozhou Zhu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Aili Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Hinterdobler W, Li G, Spiegel K, Basyouni-Khamis S, Gorfer M, Schmoll M. Trichoderma reesei Isolated From Austrian Soil With High Potential for Biotechnological Application. Front Microbiol 2021; 12:552301. [PMID: 33584603 PMCID: PMC7876326 DOI: 10.3389/fmicb.2021.552301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Fungi of the genus Trichoderma are of high importance for biotechnological applications, in biocontrol and for production of homologous and heterologous proteins. However, sexual crossing under laboratory conditions has so far only been achieved with the species Trichoderma reesei, which was so far only isolated from tropical regions. Our isolation efforts aimed at the collection of Trichoderma strains from Austrian soils surprisingly also yielded 12 strains of the species T. reesei, which was previously not known to occur in Europe. Their identity was confirmed with tef1- and rpb2-sequencing and phylogenetic analysis. They could clearly be distinguished from tropical strains including the common laboratory wildtypes by UP-PCR and genetic variations adjacent to the mating type locus. The strains readily mated with reference strains derived from CBS999.97. Secreted cellulase and xylanase levels of these isolates were up to six-fold higher than those of QM6a indicating a high potential for strain improvement. The strains showed different responses to injury in terms of induction of sporulation, but a correlation to alterations in the nox1-gene sequence was not detected. Several synonymous SNPs were found in the sequence of the regulator gene noxR of the soil isolates compared to QM6a. Only in one strain, non-synonymous SNPs were found which impact a PEST sequence of NoxR, suggesting altered protein stability. The availability of sexually fertile strains from middle Europe naturally producing decent amounts of plant cell wall degrading enzymes opens up novel perspectives for non-GMO strain improvement and biological pretreatment of plant biomass for bioethanol production. Moreover, the varied response of these strains to injury in terms of sporulation, which is independent of Nox1 and NoxR suggests that additional regulators impact this phenomenon in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guofen Li
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Katharina Spiegel
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Samira Basyouni-Khamis
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
- Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
9
|
Sugimoto K, Oda S. Efficient production of fungal spores by the combination of reduction of nitrogen source content and embedding of hydrophobic polymer in an agar plate. J Biosci Bioeng 2021; 131:390-395. [PMID: 33483217 DOI: 10.1016/j.jbiosc.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022]
Abstract
Fungal sporulation is affected by many environmental factors, for example, we previously observed that embedding of a hydrophobic polymer net in an agar plate medium significantly accelerates spore formation of some fungi. Here, it was found that the fungal spore formation depended on the surface hydrophobicity of cultivation vessels used for the plate cultivation. In a polypropylene (PP) vessel, six fungal strains produced spores of 1.5 to 514.8 times of those growing in a glass vessel. The contact of vegetative hyphae on the surface of the vessels might trigger the fungal spore formation. Moreover, the spore formation was synergistically accelerated by the reduction of nitrogen source content in an agar plate medium and by the contact to hydrophobic polymers. The synergistic effect depended on the surface area of the hydrophobic polymer. Thus, the combination of the reduction of nitrogen source and the embedding of hydrophobic polymer is expected as a novel and effective procedure for production of fungal spores which are useful for the inoculum in fermentation industry and biocontrol agent in agriculture.
Collapse
Affiliation(s)
- Kyoko Sugimoto
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
| | - Shinobu Oda
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan; Research Laboratory for Integrated Technological Systems, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan.
| |
Collapse
|
10
|
de Rezende LC, de Andrade Carvalho AL, Costa LB, de Almeida Halfeld-Vieira B, Silva LG, Pinto ZV, Morandi MAB, de Medeiros FHV, Mascarin GM, Bettiol W. Optimizing mass production of Trichoderma asperelloides by submerged liquid fermentation and its antagonism against Sclerotinia sclerotiorum. World J Microbiol Biotechnol 2020; 36:113. [PMID: 32656684 DOI: 10.1007/s11274-020-02882-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Commercial products based on Trichoderma are obtained mainly from solid-state fermentation. Submerged liquid fermentation is the most appropriate method compared to the solid medium for large-scale production of Trichoderma spp. The present study aimed to optimize the combination of key variables that influence the liquid fermentation process of Trichoderma asperelloides LQC-96 for conidial production coupled with its efficiency in the control of Sclerotinia sclerotiorum. In addition, we verified whether the optimized culture conditions can be used for the conidial production of Trichoderma erinaceum T-12 and T-18 and Trichoderma harzianum T-15. Fermentation studies were performed in shake flasks following a planned experimental design to reduce the number of tests and consumable costs. The effect of temperature, pH, photoperiod, carbon:nitrogen ratio and water activity on conidial production were assessed, which of pH was the only meaningful factor contributing to increased conidial production of T. asperelloides LQC-96. From the five variables studied initially, pH and C:N ratio were further used in the second design (rotational central composite design-RCCD). Hence, the best conditions for the production of T. asperelloides LQC-96 conidia by liquid fermentation consisted of initial pH of 3.5, C:N ratio of 200:1 at 30 °C, without glycerol, and under 24 h photoperiod. The highest conidial concentration was observed after seven days of fermentation. Under these optimal conditions, T. erinaceum T-12 and T-18, and T. harzianum T-15 were also cultivated, but only LQC-96 efficiently parasitized S. sclerotiorum, precluding sclerotium myceliogenic germination. Our findings propose optimal fermentation conditions that maximize conidial production of T. asperelloides as a potential biofungicide against S. sclerotiorum.
Collapse
Affiliation(s)
- Larissa Castro de Rezende
- Departamento de Fitopatologia, Universidade Federal de Lavras, CP 3027, Lavras, MG, 37200-900, Brazil
| | | | - Lúcio Bertoldo Costa
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, 18, Botucatu, SP, 610-307, Brazil
| | | | - Lucas Guedes Silva
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, 18, Botucatu, SP, 610-307, Brazil
| | - Zayame Vegette Pinto
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, 18, Botucatu, SP, 610-307, Brazil
| | | | | | | | - Wagner Bettiol
- Embrapa Meio Ambiente, CP 69, Jaguariúna, SP, 13918-110, Brazil.
| |
Collapse
|
11
|
Feitosa YB, Cruz-Magalhães V, Argolo-Filho RC, de Souza JT, Loguercio LL. Characterization of genetic diversity on tropical Trichoderma germplasm by sequencing of rRNA internal transcribed spacers. BMC Res Notes 2019; 12:663. [PMID: 31627730 PMCID: PMC6798453 DOI: 10.1186/s13104-019-4694-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/03/2019] [Indexed: 01/29/2023] Open
Abstract
Objective Trichoderma species are found in soil and in association with plants. They can act directly or indirectly in the biological control of plant diseases and in the promotion of plant growth, being among the most used fungi in the formulation of bioproducts applied to agricultural systems. The main objective of this study was to characterize at a first-tier level a collection of 67 Trichoderma isolates from various tropical sources, based solely on sequencing of the internal transcribed spacer (ITS) region of the rRNA genes. Our goal was to provide a preliminary idea of the baseline diversity in this collection, to combine this information later with an array of other isolate-specific physiological data. This study provides a required knowledge at molecular level for assessment of this germplasm potential as a source of biotechnological products for beneficial effects in plants. Results Sequencing of the ITS region showed that the 67 Trichoderma isolates belonged in 11 species: T. asperellum, T. atroviride, T. brevicompactum, T. harzianum, T. koningiopsis, T. longibrachiatum, T. pleuroticola, T. reesei, T. spirale, T. stromaticum and T. virens. A total of 40.3% of the isolates were very closely related to each other and similar to T. harzianum. The baseline genetic diversity found indicates that the collection has different genotypes, which can be exploited further as a source of bioproducts, aiming at providing beneficial effects to plants of interest to cope with biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yara Barros Feitosa
- Center of Nuclear Energy in Agriculture (CENA), State University of São Paulo (USP), Piracicaba, São Paulo, 13416-000, Brazil.,Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus, Bahia, 45662-900, Brazil
| | - Valter Cruz-Magalhães
- Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus, Bahia, 45662-900, Brazil. .,Department of Phytopathology (DFP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil.
| | - Ronaldo Costa Argolo-Filho
- Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus, Bahia, 45662-900, Brazil
| | - Jorge Teodoro de Souza
- Department of Phytopathology (DFP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Leandro Lopes Loguercio
- Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus, Bahia, 45662-900, Brazil
| |
Collapse
|
12
|
Mat'at'a M, Galádová H, Varečka L, Šimkovič M. The study of intracellular and secreted high-molecular-mass protease(s) of Trichoderma spp., and their responses to conidiation stimuli. Can J Microbiol 2019; 65:653-667. [PMID: 31059650 DOI: 10.1139/cjm-2018-0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We continued our study of high-molecular-mass proteases (HMMPs) using several strains of the genus Trichoderma, and other filamentous fungi (Botrytis cinerea, Aspergillus niger, Fusarium culmorum, and Penicillium purpurogenum). We found that five Trichoderma strains secreted HMMPs into the media after induction with bovine serum albumin. Botrytis cinerea and F. culmorum secreted proteases in the absence of inducer, while A. niger or P. purpurogenum did not secrete proteolytic activity (PA). The activity of HMMPs secreted by or intracellularly located in Trichoderma spp. represents the predominant part of cellular PA, according to zymogram patterns. This observation allowed the study of HMMPs' physiological role(s) independent from the secretion. In studying conidiation, we found that illumination significantly stimulated PA in Trichoderma strains. In the T. atroviride IMI 206040 strain, we demonstrated that this stimulation is dependent on the BLR1 and BLR2 receptors. No stimulation of PA was observed when mechanical injury was used as an elicitor of conidiation. Compounds used as inhibitors or activators of conidiation exerted no congruent effects on both PA and conidiation. These results do not favour a direct role of HMMPs in conidiation. Probably, HMMP activity may be involved in the process of the activation of metabolism during vegetative growth, differentiation, and aging-related processes.
Collapse
Affiliation(s)
- Matej Mat'at'a
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - L'udovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
13
|
Li YQ, Song K, Li YC, Chen J. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation. J Zhejiang Univ Sci B 2017; 17:619-27. [PMID: 27487807 DOI: 10.1631/jzus.b1500226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×10(8) spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×10(8) spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents.
Collapse
Affiliation(s)
- Ya-Qian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, China
| | - Kai Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-Chai Li
- Affiliated Hospital of Hebei University, Baoding 071100, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, China
| |
Collapse
|
14
|
Steyaert JM, Chomic A, Nieto-Jacobo M, Mendoza-Mendoza A, Hay AJ, Braithwaite M, Stewart A. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature. J Basic Microbiol 2017; 57:419-427. [PMID: 28211948 DOI: 10.1002/jobm.201600616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 11/08/2022]
Abstract
In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature.
Collapse
Affiliation(s)
| | | | | | | | - Amanda J Hay
- Bio-Protection Research Centre, Lincoln University, New Zealand
| | - Mark Braithwaite
- Bio-Protection Research Centre, Lincoln University, New Zealand.,Plant Diagnostics Ltd., Templeton, New Zealand
| | - Alison Stewart
- Bio-Protection Research Centre, Lincoln University, New Zealand.,Scion, Rotorua, New Zealand
| |
Collapse
|
15
|
Lange C, Weld RJ, Cox MP, Bradshaw RE, McLean KL, Stewart A, Steyaert JM. Genome-scale investigation of phenotypically distinct but nearly clonal Trichoderma strains. PeerJ 2016; 4:e2023. [PMID: 27190719 PMCID: PMC4868595 DOI: 10.7717/peerj.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/19/2016] [Indexed: 12/24/2022] Open
Abstract
Biological control agents (BCA) are beneficial organisms that are applied to protect plants from pests. Many fungi of the genus Trichoderma are successful BCAs but the underlying mechanisms are not yet fully understood. Trichoderma cf. atroviride strain LU132 is a remarkably effective BCA compared to T. cf. atroviride strain LU140 but these strains were found to be highly similar at the DNA sequence level. This unusual combination of phenotypic variability and high DNA sequence similarity between separately isolated strains prompted us to undertake a genome comparison study in order to identify DNA polymorphisms. We further investigated if the polymorphisms had functional effects on the phenotypes. The two strains were clearly identified as individuals, exhibiting different growth rates, conidiation and metabolism. Superior pathogen control demonstrated by LU132 depended on its faster growth, which is a prerequisite for successful distribution and competition. Genome sequencing identified only one non-synonymous single nucleotide polymorphism (SNP) between the strains. Based on this SNP, we successfully designed and validated an RFLP protocol that can be used to differentiate LU132 from LU140 and other Trichoderma strains. This SNP changed the amino acid sequence of SERF, encoded by the previously undescribed single copy gene “small EDRK-rich factor” (serf). A deletion of serf in the two strains did not lead to identical phenotypes, suggesting that, in addition to the single functional SNP between the nearly clonal Trichoderma cf. atroviride strains, other non-genomic factors contribute to their phenotypic variation. This finding is significant as it shows that genomics is an extremely useful but not exhaustive tool for the study of biocontrol complexity and for strain typing.
Collapse
Affiliation(s)
- Claudia Lange
- Bio-Protection Research Centre, Lincoln University , Lincoln , New Zealand
| | - Richard J Weld
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand; Lincoln Agritech Limited, Lincoln University, Lincoln, New Zealand
| | - Murray P Cox
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand; Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand; Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Kirstin L McLean
- Bio-Protection Research Centre, Lincoln University , Lincoln , New Zealand
| | | | - Johanna M Steyaert
- Bio-Protection Research Centre, Lincoln University , Lincoln , New Zealand
| |
Collapse
|
16
|
Daryaei A, Jones E, Ghazalibiglar H, Glare T, Falloon R. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride. J Appl Microbiol 2016; 120:999-1009. [DOI: 10.1111/jam.13076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. Daryaei
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
- Dryland Agricultural Research Institute; Kermanshah Iran
| | - E.E. Jones
- Faculty of Agriculture and Life Sciences; Lincoln University; Lincoln New Zealand
| | - H. Ghazalibiglar
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
| | - T.R. Glare
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
| | - R.E. Falloon
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
- New Zealand Institute for Plant and Food Research Ltd; Lincoln New Zealand
| |
Collapse
|
17
|
Mendoza-Mendoza A, Steyaert J, Nieto-Jacobo MF, Holyoake A, Braithwaite M, Stewart A. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil. MICROBIOLOGY-SGM 2015; 161:2110-26. [PMID: 26341342 DOI: 10.1099/mic.0.000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.
Collapse
Affiliation(s)
- Artemio Mendoza-Mendoza
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Johanna Steyaert
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | | | - Andrew Holyoake
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Mark Braithwaite
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Alison Stewart
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand 2 Marrone Bio Innovations, 1540 Drew Avenue, Davis, California 95618, USA
| |
Collapse
|
18
|
Flodman HR, Noureddini H. Effects of intermittent mechanical mixing on solid-state fermentation of wet corn distillers grain with Trichoderma reesei. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Noble LM, Andrianopoulos A. Reproductive competence: a recurrent logic module in eukaryotic development. Proc Biol Sci 2013; 280:20130819. [PMID: 23864594 PMCID: PMC3730585 DOI: 10.1098/rspb.2013.0819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
Developmental competence is the ability to differentiate in response to an appropriate stimulus, as first elaborated by Waddington in relation to organs and tissues. Competence thresholds operate at all levels of biological systems from the molecular (e.g. the cell cycle) to the ontological (e.g. metamorphosis and reproduction). Reproductive competence, an organismal process, is well studied in mammals (sexual maturity) and plants (vegetative phase change), though far less than later stages of terminal differentiation. The phenomenon has also been documented in multiple species of multicellular fungi, mostly in early, disparate literature, providing a clear example of physiological differentiation in the absence of morphological change. This review brings together data on reproductive competence in Ascomycete fungi, particularly the model filamentous fungus Aspergillus nidulans, contrasting mechanisms within Unikonts and plants. We posit reproductive competence is an elementary logic module necessary for coordinated development of multicellular organisms or functional units. This includes unitary multicellular life as well as colonial species both unicellular and multicellular (e.g. social insects such as ants). We discuss adaptive hypotheses for developmental and reproductive competence systems and suggest experimental work to address the evolutionary origins, generality and genetic basis of competence in the fungal kingdom.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
20
|
PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 2013; 14:138. [PMID: 23445374 PMCID: PMC3618310 DOI: 10.1186/1471-2164-14-138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/23/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
Collapse
|
21
|
Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM. Trichoderma research in the genome era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:105-29. [PMID: 23915132 DOI: 10.1146/annurev-phyto-082712-102353] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.
Collapse
Affiliation(s)
- Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India.
| | | | | | | | | |
Collapse
|
22
|
Onilude AA, Adebayo-Tayo BC, Odeniyi AO, Banjo D, Garuba EO. Comparative mycelial and spore yield by Trichoderma viride in batch and fed-batch cultures. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0502-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH. Trichoderma: sensing the environment for survival and dispersal. MICROBIOLOGY-SGM 2011; 158:3-16. [PMID: 21964734 DOI: 10.1099/mic.0.052688-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Species belonging to the genus Trichoderma are free-living fungi common in soil and root ecosystems, and have a broad range of uses in industry and agricultural biotechnology. Some species of the genus are widely used biocontrol agents, and their success is in part due to mycoparasitism, a lifestyle in which one fungus is parasitic on another. In addition Trichoderma species have been found to elicit plant defence responses and to stimulate plant growth. In order to survive and spread, Trichoderma switches from vegetative to reproductive development, and has evolved with several sophisticated molecular mechanisms to this end. Asexual development (conidiation) is induced by light and mechanical injury, although the effects of these inducers are influenced by environmental conditions, such as nutrient status and pH. A current appreciation of the links between the molecular participants is presented in this review. The photoreceptor complex BLR-1/BLR-2, ENVOY, VELVET, and NADPH oxidases have been suggested as key participants in this process. In concert with these elements, conserved signalling pathways, such as those involving heterotrimeric G proteins, mitogen-activated protein kinases (MAPKs) and cAMP-dependent protein kinase A (cAMP-PKA) are involved in this molecular orchestration. Finally, recent comparative and functional genomics analyses allow a comparison of the machinery involved in conidiophore development in model systems with that present in Trichoderma and a model to be proposed for the key factors involved in the development of these structures.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., México
| | - José Alejandro Sánchez-Arreguín
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., México
| | - Alfredo H Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., México
| |
Collapse
|
24
|
Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A. Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiology (Reading) 2010; 156:2887-2900. [DOI: 10.1099/mic.0.041715-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Trichoderma spp. have served as models for asexual reproduction in filamentous fungi for over 50 years. Physical stimuli, such as light exposure and mechanical injury to the mycelium, trigger conidiation; however, conidiogenesis itself is a holistic response determined by the cell's metabolic state, as influenced by the environment and endogenous biological rhythms. Key environmental parameters are the carbon and nitrogen status and the C : N ratio, the ambient pH and the level of calcium ions. Recent advances in our understanding of the molecular biology of this fungus have revealed a conserved mechanism of environmental perception through the White Collar orthologues BLR-1 and BLR-2. Also implicated in the molecular regulation are the PacC pathways and the conidial regulator VELVET. Signal transduction cascades which link environmental signals to physiological outputs have also been revealed.
Collapse
Affiliation(s)
- Johanna M. Steyaert
- Bio-Protection Research Centre, PO Box 84, Lincoln University, Lincoln 7647, New Zealand
| | - Richard J. Weld
- Lincoln Ventures Limited, PO Box 133, Lincoln University, Lincoln 7647, New Zealand
| | | | - Alison Stewart
- Bio-Protection Research Centre, PO Box 84, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
25
|
Steyaert JM, Weld RJ, Loguercio LL, Stewart A. Rhythmic conidiation in the blue-light fungus Trichoderma pleuroticola. Fungal Biol 2010; 114:219-23. [PMID: 20943132 DOI: 10.1016/j.funbio.2010.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/11/2009] [Accepted: 01/04/2010] [Indexed: 02/05/2023]
Abstract
Trichoderma species conidiate in response to blue light, however, unlike in the blue-light model fungus Neurospora crassa, conidiation in Trichoderma spp. has been considered to be non-circadian. In this study we uncovered evidence for circadian conidiation in Trichoderma pleuroticola and identified orthologues of the key N. crassa clock components, wc-1 (blr-1) and frq.
Collapse
Affiliation(s)
- Johanna M Steyaert
- Bio-Protection Research Centre, PO Box 84, Lincoln University, Lincoln 7647, New Zealand.
| | | | | | | |
Collapse
|
26
|
Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol 2009; 114:179-88. [PMID: 20943128 DOI: 10.1016/j.funbio.2009.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 11/21/2022]
Abstract
A characteristic feature of Trichoderma is the production of concentric rings of conidia in response to alternating light/dark conditions and a single ring of conidia in response to a single burst of light. In this study, conidiation was investigated in four biocontrol isolates (T. hamatum, T. atroviride, T. asperellum, T. virens) and one isolate from the mushroom pathogen species, T. pleuroticola. All five isolates produced concentric conidial rings under alternating light/dark conditions on potato-dextrose agar (PDA), however, in response to a 15min burst of blue light, only T. asperellum and T. virens produced a clearly defined conidial ring. Both T. pleuroticola and T. hamatum photoconidiated in a disk-like fashion and T. atroviride produced a broken ring with a partially filled in appearance. In the presence of primary nitrogen, T. asperellum and T. pleuroticola conidiated in a disk, whereas, when grown in the presence of secondary nitrogen, a ring of conidia was produced. Primary nitrogen promoted photoconidiation and competency to conidiate in response to light appeared dependent on the nitrogen catabolite repression state of the cell. Mycelial injury was also investigated in the same five isolates of Trichoderma on PDA and under different nitrogen statuses. For the first time, we report that conidiation in response to injury is differentially regulated in different isolates/species of Trichoderma.
Collapse
|