1
|
Brus-Szkalej M, Dotson B, Andersen CB, Vetukuri RR, Grenville-Briggs LJ. A Family of Transglutaminases Is Essential for the Development of Appressorium-Like Structures and Phytophthora infestans Virulence in Potato. PHYTOPATHOLOGY 2025; 115:374-386. [PMID: 39745383 DOI: 10.1094/phyto-03-24-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localized to the cell wall. Based on sequence similarity, we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. These seven proteins are predicted to contain both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of TGase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans, indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower pathogenicity than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maja Brus-Szkalej
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Bradley Dotson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Christian B Andersen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
2
|
Andronis CE, Bringans S, Tan KC. Application of Proteomic Methods in Oomycete Biology. Methods Mol Biol 2025; 2892:211-231. [PMID: 39729279 DOI: 10.1007/978-1-0716-4330-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes. These methodologies include protein extraction, purification, subsequent processing, mass spectrometry analysis, and qualitative and quantitative data processing of oomycete proteomes for comparative studies. Additionally, the use of mass spectra to assist in gene validation and modelling in unfinished oomycete genomes is also described.
Collapse
Affiliation(s)
- Christina E Andronis
- Proteomics International, Nedlands, WA, Australia
- The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
3
|
Mélida H, Kappel L, Ullah SF, Bulone V, Srivastava V. Quantitative proteomic analysis of plasma membranes from the fish pathogen Saprolegnia parasitica reveals promising targets for disease control. Microbiol Spectr 2024; 12:e0034824. [PMID: 38888349 PMCID: PMC11302233 DOI: 10.1128/spectrum.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and β-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in β-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.
Collapse
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
4
|
Pejenaute-Ochoa MD, Tomás-Gallardo L, Ibeas JI, Barrales RR. Row1, a member of a new family of conserved fungal proteins involved in infection, is required for appressoria functionality in Ustilago maydis. THE NEW PHYTOLOGIST 2024; 243:1101-1122. [PMID: 38742361 DOI: 10.1111/nph.19798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
The appressorium of phytopathogenic fungi is a specific structure with a crucial role in plant cuticle penetration. Pathogens with melanized appressoria break the cuticle through cell wall melanization and intracellular turgor pressure. However, in fungi with nonmelanized appressorium, the mechanisms governing cuticle penetration are poorly understood. Here we characterize Row1, a previously uncharacterized appressoria-specific protein of Ustilago maydis that localizes to membrane and secretory vesicles. Deletion of row1 decreases appressoria formation and plant penetration, thereby reducing virulence. Specifically, the Δrow1 mutant has a thicker cell wall that is more resistant to glucanase degradation. We also observed that the Δrow1 mutant has secretion defects. We show that Row1 is functionally conserved at least among Ustilaginaceae and belongs to the Row family, which consists of five other proteins that are highly conserved among Basidiomycota fungi and are involved in U. maydis virulence. We observed similarities in localization between Row1 and Row2, which is also involved in cell wall remodelling and secretion, suggesting similar molecular functions for members of this protein family. Our data suggest that Row1 could modify the chitin-glucan matrix of the fungal cell wall and may be involved in unconventional protein secretion, thereby promoting both appressoria maturation and penetration.
Collapse
Affiliation(s)
- María Dolores Pejenaute-Ochoa
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Platform, Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km. 1, 41013, Seville, Spain
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| |
Collapse
|
5
|
Moon H, Min K, Winarto J, Shin S, Jeon H, Song DG, Son H. Proteomic Analysis of Cell Wall Proteins with Various Linkages in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6028-6039. [PMID: 38457781 DOI: 10.1021/acs.jafc.3c07746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The fungal cell wall, primarily comprising a glucan-chitin matrix and cell wall proteins (CWPs), serves as a key mediator for fungal interactions with the environment and plays a pivotal role in virulence. In this study, we employed a comprehensive proteomics approach to analyze the CWPs in the plant pathogenic fungus Fusarium graminearum. Our methodology successfully extracted and identified 1373 CWPs, highlighting their complex linkages, including noncovalent bonds, disulfide bridges, alkali-sensitive linkages, and glycosylphosphatidylinositol (GPI) anchors. A significant subset of these proteins, enriched in Gene Ontology terms, suggest multifunctional roles of CWPs. Through the integration of transcriptomic and proteomic data, we observed differential expression patterns of CWPs across developmental stages. Specifically, we focused on two genes, Fca7 and Cpd1, which were upregulated in planta, and confirmed their localization predominantly outside the plasma membrane, primarily in the cell wall and periplasmic space. The disruption of FCA7 reduced virulence on wheat, aligning with previous findings and underscoring its significance. Overall, our findings offer a comprehensive proteomic profile of CWPs in F. graminearum, laying the groundwork for a deeper understanding of their roles in the development and interactions with host plants.
Collapse
Affiliation(s)
- Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jessica Winarto
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Safdar A, He F, Shen D, Hamid MI, Khan SA, Tahir HAS, Dou D. PcLRR-RK3, an LRR receptor kinase is required for growth and in-planta infection processes in Phytophthora capsici. Mycology 2024; 15:471-484. [PMID: 39247892 PMCID: PMC11376283 DOI: 10.1080/21501203.2024.2305720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 09/10/2024] Open
Abstract
Receptor protein kinases (RPKs) critically provide the basic infrastructure to sense, perceive, and conduct the signalling events at the cell surface of organisms. The importance of LRR-RLKs has been well studied in plants, but much less information has been reported in oomycetes. In this work, we have silenced the PcLRR-RK3 and characterised its functional importance in Phytophthora capsici. PcLRR-RK3 was predicted to encode signal peptides, leucine-rich repeats, transmembrane, and kinase domains. PcLRR-RK3-silenced transformants showed impaired colony growth, decreased deformed sporangia, and reduced zoospores count. The mycelium of silenced transformants did not penetrate within the host tissues and showed defects in the pathogenicity of P. capsici. Interestingly, gene silencing also weakens the ability of zoospores germination and penetration into host tissues and fails to produce necrotic lesions. Furthermore, PcLRR-RK3 localisation was found to be the plasma membrane of the cell. Altogether, our results revealed that PcLRR-RK3 was required for the regulation of vegetative growth, zoospores penetration, and establishment into host leaf tissues.
Collapse
Affiliation(s)
- Asma Safdar
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Feng He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Imran Hamid
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sajid Aleem Khan
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Abdul Samad Tahir
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Gogoi A, Rossmann SL, Lysøe E, Stensvand A, Brurberg MB. Genome analysis of Phytophthora cactorum strains associated with crown- and leather-rot in strawberry. Front Microbiol 2023; 14:1214924. [PMID: 37465018 PMCID: PMC10351607 DOI: 10.3389/fmicb.2023.1214924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4-67.6 megabases genomes in 178-204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.
Collapse
Affiliation(s)
- Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Simeon L. Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
8
|
Andronis CE, Jacques S, Lipscombe R, Tan KC. Comparative sub-cellular proteome analyses reveals metabolic differentiation and production of effector-like molecules in the dieback phytopathogen Phytophthora cinnamomi. J Proteomics 2022; 269:104725. [PMID: 36096432 DOI: 10.1016/j.jprot.2022.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Phytopathogenic oomycetes pose a significant threat to global biodiversity and food security. The proteomes of these oomycetes likely contain important factors that contribute to their pathogenic success, making their discovery crucial for elucidating pathogenicity. Phytophthora cinnamomi is a root pathogen that causes dieback in a wide variety of crops and native vegetation world-wide. Virulence proteins produced by P. cinnamomi are not well defined and a large-scale approach to understand the biochemistry of this pathogen has not been documented. Soluble mycelial, zoospore and secreted proteomes were obtained and label-free quantitative proteomics was used to compare the composition of the three sub-proteomes. A total of 4635 proteins were identified, validating 17.7% of the predicted gene set. The mycelia were abundant in transporters for nutrient acquisition, metabolism and cellular proliferation. The zoospores had less metabolic related ontologies but were abundant in energy generating, motility and signalling associated proteins. Virulence-associated proteins were identified in the secretome such as candidate effector and effector-like proteins, which interfere with the host immune system. These include hydrolases, cell wall degrading enzymes, putative necrosis-inducing proteins and elicitins. The secretome elicited a hypersensitive response on the roots of a model host and thus suggests evidence of effector activity. SIGNIFICANCE: Phytophthora cinnamomi is a phytopathogenic oomycete that causes dieback disease in native vegetation and several horticultural crops such as avocado, pineapple and macadamia. Whilst this pathogen has significance world-wide, its pathogenicity and virulence have not been described in depth. We carried out comparative label-free proteomics of the mycelia, zoospores and secretome of P. cinnamomi. This study highlights the differential metabolism and cellular processes between the sub-proteomes. Proteins associated with metabolism, nutrient transport and cellular proliferation were over represented in the mycelia. The zoospores have a specialised proteome showing increased energy generation geared towards motility. Candidate effectors and effector-like secreted proteins were also identified, which can be exploited for genetic resistance. This demonstrates a better understanding of the biology and pathogenicity of P. cinnamomi infection that can subsequently be used to develop effective methods of disease management.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
9
|
Secretome Profiling by Proteogenomic Analysis Shows Species-Specific, Temperature-Dependent, and Putative Virulence Proteins of Pythium insidiosum. J Fungi (Basel) 2022; 8:jof8050527. [PMID: 35628782 PMCID: PMC9144242 DOI: 10.3390/jof8050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
In contrast to most pathogenic oomycetes, which infect plants, Pythium insidiosum infects both humans and animals, causing a difficult-to-treat condition called pythiosis. Most patients undergo surgical removal of an affected organ, and advanced cases could be fetal. As a successful human/animal pathogen, P. insidiosum must tolerate body temperature and develop some strategies to survive and cause pathology within hosts. One of the general pathogen strategies is virulence factor secretion. Here, we used proteogenomic analysis to profile and validate the secretome of P. insidiosum, in which its genome contains 14,962 predicted proteins. Shotgun LC–MS/MS analysis of P. insidiosum proteins prepared from liquid cultures incubated at 25 and 37 °C mapped 2980 genome-predicted proteins, 9.4% of which had a predicted signal peptide. P. insidiosum might employ an alternative secretory pathway, as 90.6% of the validated secretory/extracellular proteins lacked the signal peptide. A comparison of 20 oomycete genomes showed 69 P. insidiosum–specific secretory/extracellular proteins, and these may be responsible for the host-specific infection. The differential expression analysis revealed 14 markedly upregulated proteins (particularly cyclophilin and elicitin) at body temperature which could contribute to pathogen fitness and thermotolerance. Our search through a microbial virulence database matched 518 secretory/extracellular proteins, such as urease and chaperones (including heat shock proteins), that might play roles in P. insidiosum virulence. In conclusion, the identification of the secretome promoted a better understanding of P. insidiosum biology and pathogenesis. Cyclophilin, elicitin, chaperone, and urease are top-listed secreted/extracellular proteins with putative pathogenicity properties. Such advances could lead to developing measures for the efficient detection and treatment of pythiosis.
Collapse
|
10
|
Kharel A, Islam MT, Rookes J, Cahill D. How to Unravel the Key Functions of Cryptic Oomycete Elicitin Proteins and Their Role in Plant Disease. PLANTS 2021; 10:plants10061201. [PMID: 34204633 PMCID: PMC8231210 DOI: 10.3390/plants10061201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Pathogens and plants are in a constant battle with one another, the result of which is either the restriction of pathogen growth via constitutive or induced plant defense responses or the pathogen colonization of plant cells and tissues that cause disease. Elicitins are a group of highly conserved proteins produced by certain oomycete species, and their sterol binding ability is recognized as an important feature in sterol–auxotrophic oomycetes. Elicitins also orchestrate other aspects of the interactions of oomycetes with their plant hosts. The function of elicitins as avirulence or virulence factors is controversial and is dependent on the host species, and despite several decades of research, the function of these proteins remains elusive. We summarize here our current understanding of elicitins as either defense-promoting or defense-suppressing agents and propose that more recent approaches such as the use of ‘omics’ and gene editing can be used to unravel the role of elicitins in host–pathogen interactions. A better understanding of the role of elicitins is required and deciphering their role in host–pathogen interactions will expand the strategies that can be adopted to improve disease resistance and reduce crop losses.
Collapse
|
11
|
Perrine-Walker F. Phytophthora palmivora-Cocoa Interaction. J Fungi (Basel) 2020; 6:jof6030167. [PMID: 32916858 PMCID: PMC7558484 DOI: 10.3390/jof6030167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Phytophthora palmivora (Butler) is an hemibiotrophic oomycete capable of infecting over 200 plant species including one of the most economically important crops, Theobroma cacao L. commonly known as cocoa. It infects many parts of the cocoa plant including the pods, causing black pod rot disease. This review will focus on P. palmivora’s ability to infect a plant host to cause disease. We highlight some current findings in other Phytophthora sp. plant model systems demonstrating how the germ tube, the appressorium and the haustorium enable the plant pathogen to penetrate a plant cell and how they contribute to the disease development in planta. This review explores the molecular exchange between the oomycete and the plant host, and the role of plant immunity during the development of such structures, to understand the infection of cocoa pods by P. palmivora isolates from Papua New Guinea.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- School of Life and Environmental Sciences, The University of Sydney, LEES Building (F22), Camperdown, NSW 2006, Australia;
- The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia
| |
Collapse
|
12
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
13
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Genome-wide characterization of Phytophthora infestans metabolism: a systems biology approach. MOLECULAR PLANT PATHOLOGY 2018; 19:1403-1413. [PMID: 28990716 PMCID: PMC6638193 DOI: 10.1111/mpp.12623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
Genome-scale metabolic models (GEMs) provide a functional view of the complex network of biochemical reactions in the living cell. Initially mainly applied to reconstruct the metabolism of model organisms, the availability of increasingly sophisticated reconstruction methods and more extensive biochemical databases now make it possible to reconstruct GEMs for less well-characterized organisms, and have the potential to unravel the metabolism in pathogen-host systems. Here, we present a GEM for the oomycete plant pathogen Phytophthora infestans as a first step towards an integrative model with its host. We predict the biochemical reactions in different cellular compartments and investigate the gene-protein-reaction associations in this model to obtain an impression of the biochemical capabilities of P. infestans. Furthermore, we generate life stage-specific models to place the transcriptomic changes of the genes encoding metabolic enzymes into a functional context. In sporangia and zoospores, there is an overall down-regulation, most strikingly reflected in the fatty acid biosynthesis pathway. To investigate the robustness of the GEM, we simulate gene deletions to predict which enzymes are essential for in vitro growth. This model is an essential first step towards an understanding of P. infestans and its interactions with plants as a system, which will help to formulate new hypotheses on infection mechanisms and disease prevention.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
- Bioinformatics GroupWageningen University, Wageningen 6708 PBthe Netherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University, Wageningen 6708 PBthe Netherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
| |
Collapse
|
14
|
Hardham AR, Blackman LM. Phytophthora cinnamomi. MOLECULAR PLANT PATHOLOGY 2018; 19:260-285. [PMID: 28519717 PMCID: PMC6637996 DOI: 10.1111/mpp.12568] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/12/2023]
Abstract
Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. TAXONOMY Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. DISEASE SYMPTOMS A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1.
Collapse
Affiliation(s)
- Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| | - Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
15
|
Hinkel L, Ospina-Giraldo MD. Structural characterization of a putative chitin synthase gene in Phytophthora spp. and analysis of its transcriptional activity during pathogenesis on potato and soybean plants. Curr Genet 2017; 63:909-921. [PMID: 28314907 DOI: 10.1007/s00294-017-0687-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Although chitin is a major component of the fungal cell wall, in oomycetes (fungal-like organisms), this compound has only been found in very little amounts, mostly in the cell wall of members of the genera Achlya and Saprolegnia. In the oomycetes Phytophthora infestans and P. sojae the presence of chitin has not been demonstrated; however, the gene putatively encoding chitin synthase (CHS), the enzyme that synthesizes chitin, is present in their genomes. The evolutionary significance of the CHS gene in P. infestans and P. sojae genomes is not fully understood and, therefore, further studies are warranted. We have cloned and characterized the putative CHS genes from two Phytophthora spp. and multiple isolates of P. infestans and P. sojae and analyzed their phylogenetic relationships. We also conducted CHS inhibition assays and measured CHS transcriptional activity in Phytophthora spp. during infection of susceptible plants. Results of our investigations suggest that CHS contains all the motifs that are typical in CHS genes of fungal origin and is expressed, at least at the mRNA level, during in vitro and in planta growth. In infected tissues, the highest levels of expression occurred in the first 12 h post inoculation. In addition, results from our inhibition experiments appear to suggest that CHS activity is important for P. infestans normal vegetative growth. Because of the considerable variation in expression during infection when compared to basal expression observed in in vitro cultures of non-sporulating mycelium, we hypothesize that CHS may have a meaningful role in Phytophthora pathogenicity.
Collapse
Affiliation(s)
- Lauren Hinkel
- Biology Department, Lafayette College, Easton, PA, USA
- Department of Cellular, Molecular, and Biomedical Sciences, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
16
|
Resjö S, Brus M, Ali A, Meijer HJG, Sandin M, Govers F, Levander F, Grenville-Briggs L, Andreasson E. Proteomic Analysis of Phytophthora infestans Reveals the Importance of Cell Wall Proteins in Pathogenicity. Mol Cell Proteomics 2017; 16:1958-1971. [PMID: 28935716 DOI: 10.1074/mcp.m116.065656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
The oomycete Phytophthora infestans is the most harmful pathogen of potato. It causes the disease late blight, which generates increased yearly costs of up to one billion euro in the EU alone and is difficult to control. We have performed a large-scale quantitative proteomics study of six P. infestans life stages with the aim to identify proteins that change in abundance during development, with a focus on preinfectious life stages. Over 10 000 peptides from 2061 proteins were analyzed. We identified several abundance profiles of proteins that were up- or downregulated in different combinations of life stages. One of these profiles contained 59 proteins that were more abundant in germinated cysts and appressoria. A large majority of these proteins were not previously recognized as being appressorial proteins or involved in the infection process. Among those are proteins with putative roles in transport, amino acid metabolism, pathogenicity (including one RXLR effector) and cell wall structure modification. We analyzed the expression of the genes encoding nine of these proteins using RT-qPCR and found an increase in transcript levels during disease progression, in agreement with the hypothesis that these proteins are important in early infection. Among the nine proteins was a group involved in cell wall structure modification and adhesion, including three closely related, uncharacterized proteins encoded by PITG_01131, PITG_01132, and PITG_16135, here denoted Piacwp1-3 Transient silencing of these genes resulted in reduced severity of infection, indicating that these proteins are important for pathogenicity. Our results contribute to further insight into P. infestans biology, and indicate processes that might be relevant for the pathogen while preparing for host cell penetration and during infection. The mass spectrometry data have been deposited to ProteomeXchange via the PRIDE partner repository with the data set identifier PXD002446.
Collapse
Affiliation(s)
- Svante Resjö
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden;
| | - Maja Brus
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Ashfaq Ali
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Harold J G Meijer
- §Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | | | - Francine Govers
- §Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Fredrik Levander
- ¶Department of Immunotechnology, Lund University, Sweden.,‖National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Sweden
| | - Laura Grenville-Briggs
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Erik Andreasson
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| |
Collapse
|
17
|
Strittmatter M, Grenville-Briggs LJ, Breithut L, Van West P, Gachon CMM, Küpper FC. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. PLANT, CELL & ENVIRONMENT 2016; 39:259-71. [PMID: 25764246 PMCID: PMC4949667 DOI: 10.1111/pce.12533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 02/07/2015] [Indexed: 05/24/2023]
Abstract
Pathogens are increasingly being recognized as key evolutionary and ecological drivers in marine ecosystems. Defence mechanisms of seaweeds, however, have mostly been investigated by mimicking infection using elicitors. We have established an experimental pathosystem between the genome brown model seaweed Ectocarpus siliculosus and the oomycete Eurychasma dicksonii as a powerful new tool to investigate algal responses to infection. Using proteomics, we identified 21 algal proteins differentially accumulated in response to Eu. dicksonii infection. These include classical algal stress response proteins such as a manganese superoxide dismutase, heat shock proteins 70 and a vanadium bromoperoxidase. Transcriptional profiling by qPCR confirmed the induction of the latter during infection. The accumulation of hydrogen peroxide was observed at different infection stages via histochemical staining. Inhibitor studies confirmed that the main source of hydrogen peroxide is superoxide converted by superoxide dismutase. Our data give an unprecedented global overview of brown algal responses to pathogen infection, and highlight the importance of oxidative stress and halogen metabolism in these interactions. This suggests overlapping defence pathways with herbivores and abiotic stresses. We also identify previously unreported actors, in particular a Rad23 and a plastid-lipid-associated protein, providing novel insights into the infection and defence processes in brown algae.
Collapse
Affiliation(s)
- Martina Strittmatter
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Laura J Grenville-Briggs
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, 230 53, Sweden
| | - Lisa Breithut
- Fachbereich Biologie, Universität Konstanz, Konstanz, D-78457, Germany
| | - Pieter Van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
| | - Frithjof C Küpper
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Scotland, AB41 6AA, UK
| |
Collapse
|
18
|
Khalaj K, Aminollahi E, Bordbar A, Khalaj V. Fungal annexins: a mini review. SPRINGERPLUS 2015; 4:721. [PMID: 26636009 PMCID: PMC4656261 DOI: 10.1186/s40064-015-1519-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
Abstract
The large family of annexins is composed of more than a thousand members which are typically phospholipid-binding proteins. Annexins act in a number of signalling networks and membrane trafficking events which are fundamental to cell physiology. Annexins exert their functions mainly through their calcium-dependent membrane binding abilities; however, some calcium-independent interactions have been documented in the literature. Although mammalian and plant annexins have been well characterized, little is known about this family in fungi. This mini review summarizes the available data on fungal annexins.
Collapse
Affiliation(s)
- Kamand Khalaj
- Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Aminollahi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Hua C, Kots K, Ketelaar T, Govers F, Meijer HJG. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans. PHYTOPATHOLOGY 2015; 105:419-423. [PMID: 25496300 DOI: 10.1094/phyto-04-14-0119-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.
Collapse
Affiliation(s)
- Chenlei Hua
- First, second, fourth, and fifth authors: Laboratory of Phytopathology, and second and third authors: Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; and fourth author: Centre for BioSystems Genomics, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Chang YH, Yan HZ, Liou RF. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2015; 16:123-36. [PMID: 24965864 PMCID: PMC6638464 DOI: 10.1111/mpp.12166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106, Taiwan
| | | | | |
Collapse
|
21
|
Comparative proteomic analysis of hyphae and germinating cysts of Phytophthora pisi and Phytophthora sojae. J Proteomics 2015; 117:24-40. [PMID: 25613045 DOI: 10.1016/j.jprot.2015.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The recently described oomycete pathogen Phytophthora pisi causes root rot on pea and faba bean, while the closely related Phytophthora sojae is the causal agent of soybean root and stem rot. Differences in the pathogenicity factor repertoires that enable the two species to have distinct host specificity towards pea and soybean, were studied using tandem mass spectrometry in a global proteome study of hyphae and germinating cysts in P. pisi and P. sojae. In total 2775 proteins from P. pisi and 2891 proteins from P. sojae were identified. Fifty-eight orthologous proteins were more abundant in germinated cysts of both pathogens and thus identified as candidate proteins for the infective stage. Several of these proteins were associated with lipid transport and metabolism, and energy production. Twenty-three orthologous proteins were more abundant in hyphae of both pathogens and thus identified as candidate proteins for vegetative growth. Proteins uniquely present in germinating cysts of either P. pisi or P. sojae were considered as candidates for species-specific pathogenicity factors that may be involved in host specificity. Among these proteins were serine proteases, membrane transporters and a berberine-like protein. These results significantly expand the knowledge of the expressed proteome in P. pisi and P. sojae. BIOLOGICAL SIGNIFICANCE P. sojae and P. pisi are closely related species that specifically cause root rot on soybean and pea, respectively. The pathogenicity factors contributing to their host specificity remained unknown. We carried out a comparative large-scale proteome analysis of vegetative (hyphae) and infective (germinating cysts) life stages in P. pisi and P. sojae. This study provides knowledge of the common factors and mechanism involved in initiation of infection and species-specific proteins that may contribute to the host specificity of these pathogens. This knowledge will lead to a better understanding of the infection biology of these pathogens, allowing new possibilities towards developing alternative and effective plant protection measures.
Collapse
|
22
|
Meijer HJG, Mancuso FM, Espadas G, Seidl MF, Chiva C, Govers F, Sabidó E. Profiling the secretome and extracellular proteome of the potato late blight pathogen Phytophthora infestans. Mol Cell Proteomics 2014; 13:2101-13. [PMID: 24872595 PMCID: PMC4125740 DOI: 10.1074/mcp.m113.035873] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
Oomycetes are filamentous organisms that cause notorious diseases, several of which have a high economic impact. Well known is Phytophthora infestans, the causal agent of potato late blight. Previously, in silico analyses of the genome and transcriptome of P. infestans resulted in the annotation of a large number of genes encoding proteins with an N-terminal signal peptide. This set is collectively referred to as the secretome and comprises proteins involved in, for example, cell wall growth and modification, proteolytic processes, and the promotion of successful invasion of plant cells. So far, proteomic profiling in oomycetes was primarily focused on subcellular, intracellular or cell wall fractions; the extracellular proteome has not been studied systematically. Here we present the first comprehensive characterization of the in vivo secretome and extracellular proteome of P. infestans. We have used mass spectrometry to analyze P. infestans proteins present in seven different growth media with mycelial cultures and this resulted in the consistent identification of over two hundred proteins. Gene ontology classification pinpointed proteins involved in cell wall modifications, pathogenesis, defense responses, and proteolytic processes. Moreover, we found members of the RXLR and CRN effector families as well as several proteins lacking an obvious signal peptide. The latter were confirmed to be bona fide extracellular proteins and this suggests that, similar to other organisms, oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment.
Collapse
Affiliation(s)
- Harold J G Meijer
- From the ‡Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Francesco M Mancuso
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guadalupe Espadas
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael F Seidl
- From the ‡Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; ‖Centre for BioSystems Genomics, Droevendaalsesteeg, 16708 PB Wageningen, The Netherlands
| | - Cristina Chiva
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Francine Govers
- From the ‡Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; ‖Centre for BioSystems Genomics, Droevendaalsesteeg, 16708 PB Wageningen, The Netherlands
| | - Eduard Sabidó
- §Proteomics Unit, Center of Genomics Regulation (CRG), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; ¶Proteomics Unit, Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain;
| |
Collapse
|
23
|
Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica. BMC Genomics 2014; 15:538. [PMID: 24974100 PMCID: PMC4111850 DOI: 10.1186/1471-2164-15-538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Oomycetes are a group of filamentous microorganisms that includes both animal and plant pathogens and causes major agricultural losses. Phytophthora species can infect most crops and plants from natural ecosystems. Despite their tremendous economic and ecologic importance, few effective methods exist for limiting the damage caused by these species. New solutions are required, and their development will require improvements in our understanding of the molecular events governing infection by these pathogens. In this study, we characterized the genetic program activated during penetration of the plant by the soil-borne pathogen Phytophthora parasitica. Results Using all the P. parasitica sequences available in public databases, we generated a custom oligo-array and performed a transcriptomic analysis of the early events of Arabidopsis thaliana infection. We characterized biological stages, ranging from the appressorium-mediated penetration of the pathogen into the roots to the occurrence of first dead cells in the plant. We identified a series of sequences that were transiently modulated during host penetration. Surprisingly, we observed an overall down regulation of genes encoding proteins involved in lipid and sugar metabolism, and an upregulation of functions controlling the transport of amino acids. We also showed that different groups of genes were expressed by P. parasitica during host penetration and the subsequent necrotrophic phase. Differential expression patterns were particularly marked for cell wall-degrading enzymes and other proteins involved in pathogenicity, including RXLR effectors. By transforming P. parasitica with a transcriptional fusion with GFP, we showed that an RXLR-ecoding gene was expressed in the appressorium and infectious hyphae during infection of the first plant cell. Conclusion We have characterized the genetic program activated during the initial invasion of plant cells by P. parasitica. We showed that a specific set of proteins, including effectors, was mobilized for penetration and to facilitate infection. Our detection of the expression of an RXLR encoding gene by the appressorium and infection hyphae highlights a role of this structure in the manipulation of the host cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-538) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Li A, Zhang M, Wang Y, Li D, Liu X, Tao K, Ye W, Wang Y. PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth, zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae. Fungal Genet Biol 2014; 65:14-24. [PMID: 24480463 DOI: 10.1016/j.fgb.2014.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in the regulation of vegetative and pathogenic growth in plant pathogens. Here, we identified an SLT2-type MAP kinase in Phytophthora sojae, PsMPK1, which was transcriptionally induced in sporulating hyphae and the early stages of infection. Silencing of PsMPK1 caused defects in growth and zoosporogenesis, and increased hyphal swellings after the induction of sporangia formation, along with increasing hypersensitivity to cell wall-degrading enzymes. Transmission electron microscopy showed that the cell wall of PsMPK1-silenced mutants was also deleteriously affected. A dark outermost layer in the cell walls disappeared in the mutants, and an additional layer of the mutant cell wall that was deposited abnormally inside an inner bright layer appeared nonhomogeneous and rough compared to the wild type. Pathogenicity assays showed that PsMPK1-silenced transformants lost their pathogenicity on susceptible soybean host plants and triggered stronger cell death. Overall, PsMPK1 is involved in growth, differentiation, cell wall integrity, and pathogenicity in P. sojae.
Collapse
Affiliation(s)
- Aining Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yonglin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Delong Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyun Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Resjö S, Ali A, Meijer HJG, Seidl MF, Snel B, Sandin M, Levander F, Govers F, Andreasson E. Quantitative Label-Free Phosphoproteomics of Six Different Life Stages of the Late Blight Pathogen Phytophthora infestans Reveals Abundant Phosphorylation of Members of the CRN Effector Family. J Proteome Res 2014; 13:1848-59. [DOI: 10.1021/pr4009095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Svante Resjö
- Department
of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Ashfaq Ali
- Department
of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Harold J. G. Meijer
- Laboratory
of Phytopathology, Wageningen University, 6700 EE Wageningen, The Netherlands
| | - Michael F. Seidl
- Laboratory
of Phytopathology, Wageningen University, 6700 EE Wageningen, The Netherlands
- Theoretical
Biology and Bioinformatics, Department of Biology, Utrecht University, 3508
TC Utrecht, The Netherlands
- Centre
for BioSystems
Genomics, 6700 AB Wageningen, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Utrecht University, 3508
TC Utrecht, The Netherlands
- Centre
for BioSystems
Genomics, 6700 AB Wageningen, The Netherlands
| | - Marianne Sandin
- Department
of Immunotechnology, Lund University, S-223 81 Lund, Sweden
| | - Fredrik Levander
- Department
of Immunotechnology, Lund University, S-223 81 Lund, Sweden
| | - Francine Govers
- Laboratory
of Phytopathology, Wageningen University, 6700 EE Wageningen, The Netherlands
- Centre
for BioSystems
Genomics, 6700 AB Wageningen, The Netherlands
| | - Erik Andreasson
- Department
of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| |
Collapse
|
26
|
Larousse M, Govetto B, Séassau A, Etienne C, Industri B, Theodorakopoulos N, Deleury E, Ponchet M, Panabières F, Galiana E. Characterization of PPMUCL1/2/3, three members of a new oomycete-specific mucin-like protein family residing in Phytophthora parasitica biofilm. Protist 2014; 165:275-92. [PMID: 24739437 DOI: 10.1016/j.protis.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/21/2014] [Accepted: 03/10/2014] [Indexed: 11/28/2022]
Abstract
The plant pathogen Phytophthora parasitica forms a biofilm on the host surface. The biofilm transcriptome is characterized by the expression of PPMUCL1/2/3 (PHYTOPHTHORA PARASITICA MUCIN-LIKE) genes, which we report here to be members of a new, large mucin-like gene family restricted to the oomycete lineage. These genes encode secreted proteins organized into two domains. The NH2-terminal domain is highly conserved, but of unknown function. The second domain is a mucin-like domain enriched in threonine and serine residues, with a large number of putative O-glycosylation sites and a repeated motif defining 15 subgroups among the 315 members of the family. The second domain was found to be glycosylated in the recombinant rPPMUCL1 and rPPMUCL2 proteins. An analysis of PPMUCL1/2/3 gene expression indicated that these genes were expressed in a specific and coordinated manner in the biofilm. A novel cis-motif (R) bound to nuclear proteins, suggesting a possible role in PPMUCL1/2/3 gene regulation. Immunohistochemical staining revealed that the PPMUCL1/2 proteins were secreted and accumulated on the surface of the biofilm. Our data demonstrate that PPMUCL1/2/3 belong to a new oomycete-specific family of mucin-like proteins playing a structural role in the biofilm extracellular matrix.
Collapse
Affiliation(s)
- Marie Larousse
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Benjamin Govetto
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Aurélie Séassau
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Catherine Etienne
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Benoit Industri
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Nicolas Theodorakopoulos
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Emeline Deleury
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Michel Ponchet
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Franck Panabières
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France
| | - Eric Galiana
- INRA, UMR1355 Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France; University Nice Sophia Antipolis, ISA, UMR 1355, 06900 Sophia Antipolis, France; CNRS, UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France.
| |
Collapse
|
27
|
Larroque M, Barriot R, Bottin A, Barre A, Rougé P, Dumas B, Gaulin E. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genomics 2012; 13:605. [PMID: 23140525 PMCID: PMC3532174 DOI: 10.1186/1471-2164-13-605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/25/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1). Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL), a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity. RESULTS To extend our knowledge on CBM1-containing proteins in oomycetes, we have conducted a comprehensive analysis on 60 fungi and 7 oomycetes genomes leading to the identification of 518 CBM1-containing proteins. In plant-interacting microorganisms, the larger number of CBM1-protein coding genes is expressed by necrotroph and hemibiotrophic pathogens, whereas a strong reduction of these genes is observed in symbionts and biotrophs. In fungi, more than 70% of CBM1-containing proteins correspond to enzymatic proteins in which CBM1 is associated with a catalytic unit involved in cellulose degradation. In oomycetes more than 90% of proteins are similar to CBEL in which CBM1 is associated with a non-catalytic PAN/Apple domain, known to interact with specific carbohydrates or proteins. Distinct Stramenopile genomes like diatoms and brown algae are devoid of CBM1 coding genes. A CBM1-PAN/Apple association 3D structural modeling was built allowing the identification of amino acid residues interacting with cellulose and suggesting the putative interaction of the PAN/Apple domain with another type of glucan. By Surface Plasmon Resonance experiments, we showed that CBEL binds to glycoproteins through galactose or N-acetyl-galactosamine motifs. CONCLUSIONS This study provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.
Collapse
Affiliation(s)
- Mathieu Larroque
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Roland Barriot
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaire, Toulouse F-31000, France
- Centre National de la Recherche Scientifique; LMGM, Toulouse F-31000, France
| | - Arnaud Bottin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Annick Barre
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Pierre Rougé
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Bernard Dumas
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Elodie Gaulin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| |
Collapse
|
28
|
Clark GB, Morgan RO, Fernandez MP, Roux SJ. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. THE NEW PHYTOLOGIST 2012; 196:695-712. [PMID: 22994944 DOI: 10.1111/j.1469-8137.2012.04308.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/29/2012] [Indexed: 05/04/2023]
Abstract
Annexins are an homologous, structurally related superfamily of proteins known to associate with membrane lipid and cytoskeletal components. Their involvement in membrane organization, vesicle trafficking and signaling is fundamental to cellular processes such as growth, differentiation, secretion and repair. Annexins exist in some prokaryotes and all eukaryotic phyla within which plant annexins represent a monophyletic clade of homologs descended from green algae. Genomic, proteomic and transcriptomic approaches have provided data on the diversity, cellular localization and expression patterns of different plant annexins. The availability of 35 complete plant genomes has enabled systematic comparative analysis to determine phylogenetic relationships, characterize structures and observe functional specificity between and within individual subfamilies. Short amino termini and selective erosion of the canonical type 2 calcium coordinating sites in domains 2 and 3 are typical of plant annexins. The convergent evolution of alternate functional motifs such as 'KGD', redox-sensitive Cys and hydrophobic Trp/Phe residues argues for their functional relevance and contribution to mechanistic diversity in plant annexins. This review examines recent findings and advances in plant annexin research with special focus on their structural diversity, cellular and molecular interactions and their potential integrated functions in the broader context of physiological responses.
Collapse
Affiliation(s)
- Greg B Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, 78713, USA
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006, Oviedo, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006, Oviedo, Spain
| | - Stanley J Roux
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, 78713, USA
| |
Collapse
|
29
|
Klis FM, de Koster CG, Brul S. A mass spectrometric view of the fungal wall proteome. Future Microbiol 2011; 6:941-51. [PMID: 21861624 DOI: 10.2217/fmb.11.72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The walls of many fungal species consist of a polysaccharide network offering mechanical strength and functioning as a scaffold for covalently attached glycoproteins. The rapid advances in fungal genome sequencing and mass spectrometry have made it possible to study fungal wall proteomes in detail, both qualitatively and quantitatively. One of the surprising outcomes of these studies is the large variety of covalently attached proteins found in fungal walls. Another important result is that fungi can rapidly adapt the protein composition of their new walls to changes in environmental conditions. The wall proteome of the opportunistic human pathogen Candida albicans amply illustrates these properties. Finally, we discuss the relevance of our insights for the identification of new vaccine candidates.
Collapse
Affiliation(s)
- Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
30
|
Horner NR, Grenville-Briggs LJ, van West P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol 2011; 116:24-41. [PMID: 22208599 DOI: 10.1016/j.funbio.2011.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 01/22/2023]
Abstract
The oomycete Pythium oligandrum is a mycoparasitic biocontrol agent that is able to antagonise several plant pathogens, and can promote plant growth. In order to test the potential usefulness of P. oligandrum as a biocontrol agent against late blight disease caused by the oomycete Phytophthora infestans, we investigated the interaction between P. oligandrum and Ph. infestans using the green fluorescent protein (GFP) as a reporter gene. A CaCl(2) and polyethylene-glycol-based DNA transformation protocol was developed for P. oligandrum and transformants constitutively expressing GFP were produced. Up to 56 % of P. oligandrum transformants showed both antibiotic resistance and fluorescence. Mycoparasitic interactions, including coiling of P. oligandrum hyphae around Ph. infestans hyphae, were observed with fluorescent microscopy. To gain further insights into the nature of P. oligandrum mycoparasitism, we sequenced 2376 clones from cDNA libraries of P. oligandrum mycelium grown in vitro, or on heat-killed Ph. infestans mycelium as the sole nutrient source. 1219 consensus sequences were obtained including transcripts encoding glucanases, proteases, protease inhibitors, putative effectors and elicitors, which may play a role in mycoparasitism. This represents the first published expressed sequence tag (EST) resource for P. oligandrum and provides a platform for further molecular studies and comparative analysis in the Pythiales.
Collapse
Affiliation(s)
- Neil R Horner
- Aberdeen Oomycete Laboratory, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
31
|
Grenville-Briggs L, Gachon CMM, Strittmatter M, Sterck L, Küpper FC, van West P. A molecular insight into algal-oomycete warfare: cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Eurychasma dicksonii. PLoS One 2011; 6:e24500. [PMID: 21935414 PMCID: PMC3174193 DOI: 10.1371/journal.pone.0024500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/11/2011] [Indexed: 02/01/2023] Open
Abstract
Brown algae are the predominant primary producers in coastal habitats, and like land plants are subject to disease and parasitism. Eurychasma dicksonii is an abundant, and probably cosmopolitan, obligate biotrophic oomycete pathogen of marine brown algae. Oomycetes (or water moulds) are pathogenic or saprophytic non-photosynthetic Stramenopiles, mostly known for causing devastating agricultural and aquacultural diseases. Whilst molecular knowledge is restricted to crop pathogens, pathogenic oomycetes actually infect hosts from most eukaryotic lineages. Molecular evidence indicates that Eu. dicksonii belongs to the most early-branching oomycete clade known so far. Therefore Eu. dicksonii is of considerable interest due to its presumed environmental impact and phylogenetic position. Here we report the first large scale functional molecular data acquired on the most basal oomycete to date. 9873 unigenes, totalling over 3.5 Mb of sequence data, were produced from Sanger-sequenced and pyrosequenced EST libraries of infected Ectocarpus siliculosus. 6787 unigenes (70%) were of algal origin, and 3086 (30%) oomycete origin. 57% of Eu. dicksonii sequences had no similarity to published sequence data, indicating that this dataset is largely unique. We were unable to positively identify sequences belonging to the RXLR and CRN groups of oomycete effectors identified in higher oomycetes, however we uncovered other unique pathogenicity factors. These included putative algal cell wall degrading enzymes, cell surface proteins, and cyclophilin-like proteins. A first look at the host response to infection has also revealed movement of the host nucleus to the site of infection as well as expression of genes responsible for strengthening the cell wall, and secretion of proteins such as protease inhibitors. We also found evidence of transcriptional reprogramming of E. siliculosus transposable elements and of a viral gene inserted in the host genome.
Collapse
|
32
|
Chen X, Klemsdal SS, Brurberg MB. Identification and analysis of Phytophthora cactorum genes up-regulated during cyst germination and strawberry infection. Curr Genet 2011; 57:297-315. [PMID: 21698431 DOI: 10.1007/s00294-011-0348-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
The oomycete Phytophthora cactorum can cause economically important diseases on numerous host plants worldwide, such as crown rot on strawberry. To explore the molecular mechanisms underlying the pathogenicity of P. cactorum on strawberry, transcriptional analysis of P. cactorum during strawberry infection and cyst germination was performed by applying suppression subtractive hybridization (SSH) and effector-specific differential display (ESDD) techniques. Two SSH cDNA libraries were generated, enriched for P. cactorum genes expressed during infection or during cyst germination, respectively, and 137 unique differentially expressed genes were identified. To specifically select RxLR effector genes from P. cactorum, ESDD was performed using RxLR and EER motif-based degenerate primers. Eight RxLR effector candidate genes as well as 67 other genes were identified out of 124 selected fragments. The expression levels of 20 putatively up-regulated genes were further analyzed using real-time RT-PCR, showing that, indeed 19 of these 20 genes were up-regulated during at least one of the studied developmental stages or during strawberry crown invasion, relative to the mycelium. This study provides a first overview of P. cactorum genes that are up-regulated immediately prior to or during strawberry infection and also provides a novel method for selecting RxLR effector genes from the unsequenced genome of P. cactorum.
Collapse
Affiliation(s)
- Xiaoren Chen
- Plant Health and Plant Protection Division, Norwegian Institute for Agricultural and Environmental Research, Høgskoleveien 7, 1432, Ås, Norway
| | | | | |
Collapse
|