1
|
Dos Reis JBA, Lorenzi AS, do Vale HMM. Methods used for the study of endophytic fungi: a review on methodologies and challenges, and associated tips. Arch Microbiol 2022; 204:675. [PMID: 36264513 PMCID: PMC9584250 DOI: 10.1007/s00203-022-03283-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/26/2022]
Abstract
Endophytic fungi are microorganisms that colonize the interior of plant tissues (e.g. leaves, seeds, stem, trunk, roots, fruits, flowers) in intracellular and/or extracellular spaces without causing symptoms of disease in host plants. These microorganisms have been isolated from plant species in a wide variety of habitats worldwide, and it is estimated that all terrestrial plants are colonized by one or more species of endophytic fungus. In addition, these microorganisms have been drawing the attention of researchers because of their ability to synthesize a wide range of bioactive molecules with potential for applications in agriculture, medicine and biotechnology. However, several obstacles come up when studying the diversity and chemical potential of endophytic fungi. For example, the usage of an inappropriate surface disinfection method for plant tissue may not eliminate the epiphytic microbiota or may end up interfering with the endophytic mycobiota, which consequently generates erroneous results. Moreover, the composition of the culture medium and the culture conditions can favor the growth of certain species and inhibit others, which generates underestimated results. Other inconsistencies can arise from the fungus misidentification and consequent exploration of its chemical potential. Based on the methodological biases that may occur at all stages of studies dealing with endophytic fungi, the objective of this review is to discuss the main methods employed in these studies as well as highlight the challenges derived from the different approaches. We also report associated tips to help future studies on endophytic fungi as a contribution.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
2
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Specification and DNA Barcoding of Thai Traditional Remedy for Chronic Kidney Disease: Pikad Tri-phol-sa-mut-than. PLANTS 2021; 10:plants10102023. [PMID: 34685831 PMCID: PMC8540904 DOI: 10.3390/plants10102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
The Pikad Tri-phol-sa-mut-than (TS) remedy, a Thai traditional medicine, is officially recorded in Tamra Paetsart Sonkrau Chabub Anurak for its capabilities in treating kidney deficiency. TS remedy is composed of three fruit species—Aegle marmelos (L.) Corrêa., Coriandrum sativum L., and Morinda citrifolia L.—in an equal part by weight. The quality of the raw material is one of the essential factors that can affect the effectiveness and safety of treatment by herbal remedy. The pharmacognostic evaluation and DNA barcode of the three fruit species and TS remedy were performed in this study to authenticate them from contamination, and to provide the scientific database for further uses. Macroscopic and microscopic examination, chemical profile by TLC, and DNA barcoding were employed to positively identify the raw materials bought from the herbal market, especially the powder form. Consequently, the outcomes of this investigation can be used to develop an essential and effective tool for the authentication of crude drugs and herbal remedies.
Collapse
|
4
|
Adamo I, Castaño C, Bonet JA, Colinas C, Martínez de Aragón J, Alday JG. Lack of Phylogenetic Differences in Ectomycorrhizal Fungi among Distinct Mediterranean Pine Forest Habitats. J Fungi (Basel) 2021; 7:jof7100793. [PMID: 34682215 PMCID: PMC8538088 DOI: 10.3390/jof7100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Understanding whether the occurrences of ectomycorrhizal species in a given tree host are phylogenetically determined can help in assessing different conservational needs for each fungal species. In this study, we characterized ectomycorrhizal phylogenetic composition and phylogenetic structure in 42 plots with five different Mediterranean pine forests: i.e., pure forests dominated by P. nigra, P. halepensis, and P. sylvestris, and mixed forests of P. nigra-P. halepensis and P. nigra-P. sylvestris, and tested whether the phylogenetic structure of ectomycorrhizal communities differs among these. We found that ectomycorrhizal communities were not different among pine tree hosts neither in phylogenetic composition nor in structure and phylogenetic diversity. Moreover, we detected a weak abiotic filtering effect (4%), with pH being the only significant variable influencing the phylogenetic ectomycorrhizal community, while the phylogenetic structure was slightly influenced by the shared effect of stand structure, soil, and geographic distance. However, the phylogenetic community similarity increased at lower pH values, supporting that fewer, closely related species were found at lower pH values. Also, no phylogenetic signal was detected among exploration types, although short and contact were the most abundant types in these forest ecosystems. Our results demonstrate that pH but not tree host, acts as a strong abiotic filter on ectomycorrhizal phylogenetic communities in Mediterranean pine forests at a local scale. Finally, our study shed light on dominant ectomycorrhizal foraging strategies in drought-prone ecosystems such as Mediterranean forests.
Collapse
Affiliation(s)
- Irene Adamo
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Correspondence:
| | - Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - José Antonio Bonet
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| | - Carlos Colinas
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Josu G. Alday
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| |
Collapse
|
5
|
Cai L, Cao MK, Chen TB, Guo HT, Zheng GD. Microbial degradation in the co-composting of pig manure and biogas residue using a recyclable cement-based synthetic amendment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:30-40. [PMID: 33740711 DOI: 10.1016/j.wasman.2021.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
This research investigated a synthetic amendment to improve composting and resource recycling of pig manure and biogas residue. We further examined whether adding a synthetic amendment impacts the microbial ecosystem in the composted materials. Three mixing ratios were used to investigate composting performance: no synthetic amendment (T0), 5% synthetic amendment (T1), and 10% synthetic amendment (T2) (T1 and T2 were measured as a wet weight ratio). There were no significant differences in the fundamental characteristics between composting products in T0 and T1. The moisture content of composting material in T0, T1, and T2 significantly decreased from a baseline of approximately 65% to 35.5%, 37.3%, and 55.9%, respectively. Meanwhile, the germination index significantly increased to 111.6%, 155.6%, and 62.3%, respectively. When an optimal proportion of synthetic amendment was added, T1 showed high degree of humification, lignocellulase activities, and effective biodegradation. Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacteria, while Ascomycota and Basidiomycota were the dominant fungi in all treatment groups. Amino sugar and nucleotide sugar metabolism, glycolysis, starch, and sucrose metabolism were among the primary pathways in predicted functions. The synthetic amendment can generate a mature composting product and can be reused or recycled to conserve resources.
Collapse
Affiliation(s)
- Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Meng-Ke Cao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Tong-Bin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Han-Tong Guo
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Guo-Di Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|