1
|
Mascarin GM, Golo PS, de Souza Ribeiro-Silva C, Muniz ER, de Oliveira Franco A, Kobori NN, Fernandes ÉKK. Advances in submerged liquid fermentation and formulation of entomopathogenic fungi. Appl Microbiol Biotechnol 2024; 108:451. [PMID: 39212719 PMCID: PMC11364594 DOI: 10.1007/s00253-024-13287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi (EPF) can be defined as beneficial multifunctional eukaryotic microorganisms that display pivotal ecological services in pest management, with some species possessing the special ability to establish mutualistic relationships with plants. Mass production of these fungi is critical to support affordable widespread commercialization and worldwide field application. Among the mass production methods explored mainly by industry, submerged liquid fermentation is a robust and versatile technology that allows the formation of different types of propagules designated for various applications in pest control. Many hypocrealean EPF are easily culturable on artificial substrates by producing single-celled structures (hyphal bodies, blastospores, and submerged conidia) or multicellular structures (mycelium and microsclerotia). Less frequently, some EPF may form environmentally resistant chlamydospores, but these structures have almost always been overlooked. A continued research pipeline encompassing screening fungal strains, media optimization, and proper formulation techniques aligned with the understanding of molecular cues involved in the formation and storage stability of these propagules is imperative to unlock the full potential and to fine-tune the development of robust and effective biocontrol agents against arthropod pests and vectors of diseases. Finally, we envision a bright future for the submerged liquid fermentation technology to supplement or replace the traditional solid substrate fermentation method for the mass production of many important EPF. KEY POINTS: • Submerged liquid fermentation (SLF) allows precise control of nutritional and environmental factors • SLF provides a scalable, robust, and cost-effective platform for mycopesticide production • Enhancing formulation, shelf life, and field efficacy of submerged propagules remain crucial • Understanding the molecular mechanisms behind submerged propagule formation is key to advancing SLF technology.
Collapse
Affiliation(s)
- Gabriel Moura Mascarin
- Laboratório de Microbiologia Ambiental, Embrapa Meio Ambiente, SP 340 Road, Km 127.5, Tanquinho Velho, Jaguariúna, SP, 13918-110, Brazil.
| | - Patrícia Silva Golo
- Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Cárita de Souza Ribeiro-Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74605-050, Brazil
| | - Elen Regozino Muniz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74605-050, Brazil
| | - Artur de Oliveira Franco
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74605-050, Brazil
| | | | - Éverton Kort Kamp Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74605-050, Brazil.
| |
Collapse
|
2
|
Lima VH, Matugawa AT, Mascarin GM, Fernandes ÉKK. Complex nitrogen sources from agro-industrial byproducts: impact on production, multi-stress tolerance, virulence, and quality of Beauveria bassiana blastospores. Microbiol Spectr 2024; 12:e0404023. [PMID: 38700331 PMCID: PMC11237575 DOI: 10.1128/spectrum.04040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
We investigated the impact of various complex organic nitrogen sources on the submerged liquid fermentation of Beauveria bassiana, a versatile entomopathogenic fungus known for producing hydrophilic yeast-like single cells called blastospores. Specifically, we examined yeast extract, autolyzed yeast, inactive yeast, cottonseed flour, corn bran, and corn gluten meal as nitrogen compounds with different carbon-to-nitrogen (C:N) ratios. Our comprehensive analysis encompassed blastospore production, tolerance to abiotic stresses, shelf stability after drying, and virulence against mealworm larvae, crucial attributes for developing effective blastospore-based biopesticides. Notably, cottonseed flour emerged as the optimal nitrogen source, yielding up to 2.5 × 109 blastospores/mL within 3 days in a bioreactor. These blastospores exhibited the highest tolerance to heat stress and UV-B radiation exposure. The endogenous C:N ratio in blastospore composition was also impacted by nitrogen sources. Bioassays with mealworm larvae demonstrated that blastospores from cottonseed flour were the most virulent, achieving faster lethality (lower LT50) and requiring a lower inoculum (LC50). Importantly, blastospores produced with cottonseed flour displayed extended viability during storage, surpassing the retention of viability compared to those from autolyzed yeast over 180 days at 4°C. Despite differences in storage viability, both nitrogen sources conferred similar long-term blastospore bioactivity against mealworms. In summary, this research advances our understanding of the crucial impact of complex organic nitrogen selection on the phenotypic traits of blastospores in association with their intracellular C:N ratio, contributing to the production of ecologically fit, shelf-stable, and virulent propagules for effective pest biocontrol programs. IMPORTANCE Biological control through entomopathogenic fungi provides essential ecological services in the integrated management of agricultural pests. In the context of submerged liquid fermentation, the nutritional composition significantly influences the ecological fitness, virulence and quality of these fungi. This study specifically explores the impact of various complex organic nitrogen sources derived from agro-industrial byproducts on the submerged liquid fermentation of Beauveria bassiana, a versatile entomopathogenic fungus known for producing hydrophilic yeast-like blastospores. Notably, manipulating the nitrogen source during submerged cultivation can influence the quality, fitness, and performance of blastospores. This research identifies cottonseed flour as the optimal low-cost nitrogen source, contributing to increased production yields, enhanced multi-stress tolerance, heightened virulence with extended shelf life and long-term bioactivity. These findings deepen our understanding of the critical role of nitrogen compound selection in liquid media formulation, facilitating the production of ecologically fit and virulent blastospores for more effective pest biocontrol programs.
Collapse
Affiliation(s)
- Valesca Henrique Lima
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Gabriel Moura Mascarin
- Laboratório de Microbiologia Ambiental, Embrapa Meio Ambiente, Jaguariúna, São Paulo, Brazil
| | - Éverton Kort Kamp Fernandes
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
3
|
Zhang H, Chen H, Zhang J, Wang K, Huang B, Wang Z. The role of MrUbp4, a deubiquitinase, in conidial yield, thermotolerance, and virulence in Metarhizium robertsii. J Invertebr Pathol 2024; 204:108111. [PMID: 38631560 DOI: 10.1016/j.jip.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Ubiquitin-specific proteases (UBPs), the largest subfamily of deubiquitinating enzymes, regulate ubiquitin homeostasis and play diverse roles in eukaryotes. Ubp4 is essential for the growth, development, and pathogenicity of various fungal pathogens. However, its functions in the growth, stress responses, and virulence of entomopathogenic fungi remain unclear. In this study, we elucidated the role of the homolog of Ubp4, MrUbp4, in the entomopathogenic fungus Metarhizium robertsii. Deletion of MrUbp4 led to a notable increase in ubiquitination levels, demonstrating the involvement of MrUbp4 in protein deubiquitination. Furthermore, the ΔMrUbp4 mutant displayed a significant reduction in conidial yield, underscoring the pivotal role of MrUbp4 in conidiation. Additionally, the mutant exhibited heightened resistance to conidial heat treatment, emphasizing the role of MrUbp4 in thermotolerance. Notably, insect bioassays unveiled a substantial impairment in the virulence of the ΔMrUbp4 mutant. This was accompanied by a notable decrease in cuticle penetration ability and appressorium formation upon further analysis. In summary, our findings highlight the essential role of MrUbp4 in regulating the conidial yield, thermotolerance, and contributions to the virulence of M. robertsii.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Hanyuan Chen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Jianfeng Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Kui Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Zhangxun Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
de Lima PPDABM, Fiorotti J, Paulino PG, Corval ARDC, Mesquita E, Corrêa TA, Lopes ADSC, Oliveira RJVD, Santos HA, Bittencourt VREP, Angelo IDC, Golo PS. Metarhizium pingshaense photolyase expression and virulence to Rhipicephalus microplus after UV-B exposure. J Basic Microbiol 2024; 64:94-105. [PMID: 37696778 DOI: 10.1002/jobm.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The current study examined the impact of ultraviolet (UV)-B radiation in Metarhizium pingshaense blastospores' photolyase expression and their virulence against Rhipicephalus microplus. Blastospores were exposed to UV under laboratory and field conditions. Ticks were treated topically with fungal suspension and exposed to UV-B in the laboratory for three consecutive days. The expression of cyclobutane pyrimidine dimmers (CPDs)-photolyase gene maphr1-2 in blastospores after UV exposure followed by white light exposure was accessed after 0, 8, 12, 24, 36, and 48 h. Average relative germination of blastospores 24 h after in vitro UV exposure was 8.4% lower than 48 h. Despite this, the relative germination of blastospores exposed to UV in the field 18 h (95.7 ± 0.3%) and 28 h (97.3 ± 0.8%) after exposure were not different (p > 0.05). Ticks treated with fungus and not exposed to UV exhibited 0% survival 10 days after the treatment, while fungus-treated ticks exposed to UV exhibited 50 ± 11.2% survival. Expression levels of maphr1-2 8, 12, and 24 h after UV-B exposure were not different from time zero. Maphr1-2 expression peak in M. pingshaense blastospores occurred 36 h after UV-B exposure, in the proposed conditions and times analyzed, suggesting repair mechanisms other than CPD-mediated-photoreactivation might be leading blastospores' germination from 0 to 24 h.
Collapse
Affiliation(s)
- Pamella Pryscila de A B M de Lima
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Jessica Fiorotti
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto SP, Brazil
| | - Patrícia G Paulino
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Amanda R da C Corval
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Emily Mesquita
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Thaís A Corrêa
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Adriani da S C Lopes
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Rafael José V de Oliveira
- Laboratório de Bioprocessos, Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, Pernambuco, Brazil
| | - Huarrisson A Santos
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Vânia R E P Bittencourt
- Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Isabele da C Angelo
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Patrícia S Golo
- Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Mesquita E, Hu S, Lima TB, Golo PS, Bidochka MJ. Utilization of Metarhizium as an insect biocontrol agent and a plant bioinoculant with special reference to Brazil. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1276287. [PMID: 38186633 PMCID: PMC10768067 DOI: 10.3389/ffunb.2023.1276287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium's utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.
Collapse
Affiliation(s)
- Emily Mesquita
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Shasha Hu
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Tais B. Lima
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Patricia Silva Golo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - Michael J. Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
6
|
Wu S, Toews MD, Behle RW, Barman AK, Sparks AN, Simmons AM, Shapiro-Ilan DI. Post-Application Field Persistence and Efficacy of Cordyceps javanica against Bemisia tabaci. J Fungi (Basel) 2023; 9:827. [PMID: 37623598 PMCID: PMC10455680 DOI: 10.3390/jof9080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Previously, Cordyceps javanica Wf GA17, a causing agent of whitefly epizootics in southern Georgia, demonstrated superior temperature tolerance and higher virulence against the whitefly Bemisia tabaci than commercial strains in the laboratory. The post-application persistence and efficacy of this fungus against B. tabaci were compared with that of the commercially available C. javanica Apopka97 strain over a two-year field study in cotton and vegetable crops. When blastospores of both strains were applied alone, whitefly populations were not effectively suppressed. Thus, JMS stylet oil was added to fungal treatments for enhancing efficacy and persistence. For 0-day samples, all fungal treatments caused similar but significant levels of immature mortality regardless of fungal strain, propagule form (conidia vs. blastospores), and application method (alone or mixed with JMS). In follow-up samplings, Wf GA17 blastospores + JMS achieved higher control levels than other treatments in some trials, but the efficacy did not last long. The JMS oil alone caused significant mortality and suppressed whiteflies. Over 90% of spores lost viability 24 h after treatment in all fungal treatments. Across evaluation times, there was no difference between the two fungal strains (conidia or blastospores, alone or combined with JMS), but conidia persisted better than blastospores for both strains. Overall, the field persistence and efficacy of C. javanica did not last long; therefore, improved delivery methods and formulations are needed for enhancement.
Collapse
Affiliation(s)
- Shaohui Wu
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (S.W.); (A.K.B.); (A.N.S.)
| | - Michael D. Toews
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (S.W.); (A.K.B.); (A.N.S.)
| | - Robert W. Behle
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 N. University St., Peoria, IL 61604, USA;
| | - Apurba K. Barman
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (S.W.); (A.K.B.); (A.N.S.)
| | - Alton N. Sparks
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (S.W.); (A.K.B.); (A.N.S.)
| | - Alvin M. Simmons
- U.S. Vegetable Laboratory, USDA-ARS, 2700 Savannah Highway, Charleston, SC 29414, USA;
| | | |
Collapse
|
7
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
8
|
Meirelles LN, Mesquita E, Corrêa TA, Bitencourt RDOB, Oliveira JL, Fraceto LF, Camargo MG, Bittencourt VREP. Encapsulation of entomopathogenic fungal conidia: evaluation of stability and control potential of Rhipicephalus microplus. Ticks Tick Borne Dis 2023; 14:102184. [PMID: 37105010 DOI: 10.1016/j.ttbdis.2023.102184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
The use of chemical acaricides is the primary strategy to control tick infestations. Nonetheless, chemical resistance in ticks has been reported. Thus, complementary methods such as biological control using entomopathogenic fungi (EPF) have been investigated. EPF, although efficient, have their viability compromised when applied under natural conditions, which indicates that formulation development is essential. Some researchers have demonstrated the efficacy of ionic gelation in protecting EPF against deleterious abiotic factors. In the present study, we conducted the ionic gelation technique to encapsulate Metarhizium anisopliae (Metschn.) Sorokin (Hypocreales: Clavicipitaceae) conidia in 2% (EC 2%) and 3% (EC 3%) sodium alginate. Next, the quantity and viability of encapsulated conidia (EC) were determined. The morphology of particles was characterized by using Scanning Electron Microscopy (SEM). EC and non-encapsulated conidia (NEC) were stored at room temperature (26.8 °C) and in the freezer (-11.9 °C) to shelf-life testing. For UV-B irradiance tolerance and thermotolerance tests, EC and NEC were exposed to UV-B (6.0 or 8.0 kJ m - 2) and heat (42 ºC). In addition, biological parameters of Rhipicephalus microplus Canestrini (Acari: Ixodidae) engorged females exposed to EC were evaluated. The particles presented a spherical shape, more homogeneous (EC 2%) or heterogeneous (EC 3%). Encapsulation decreased (4.8×) the conidial concentration and did not affect their viability. On the other hand, encapsulation increased the shelf life of conidia at room temperature as well as their UV-B tolerance and thermotolerance (6 h). The fungal particles decreased the biological parameters of females more significantly than the NEC. As far as we know, we reported for the first time the use of the ionic gelation to encapsulate entomopathogenic fungi toward controlling R. microplus.
Collapse
Affiliation(s)
- Laura Nobrega Meirelles
- Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rodovia BR 465, s/n, Seropédica, RJ 23897-000, Brazil.
| | - Emily Mesquita
- Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rodovia BR 465, s/n, Seropédica, RJ 23897-000, Brazil.
| | - Thaís Almeida Corrêa
- Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rodovia BR 465, s/n, Seropédica, RJ 23897-000, Brazil.
| | - Ricardo de Oliveira Barbosa Bitencourt
- Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rodovia BR 465, s/n, Seropédica, RJ 23897-000, Brazil.
| | - Jhones Luiz Oliveira
- Environmental Nanotechnology Laboratory, Institute of Science and Technology of Sorocaba, São Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista, Sorocaba, SP 18087-180, Brazil.
| | - Leonardo Fernandes Fraceto
- Environmental Nanotechnology Laboratory, Institute of Science and Technology of Sorocaba, São Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista, Sorocaba, SP 18087-180, Brazil.
| | - Mariana Guedes Camargo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rodovia BR 465, s/n, Seropédica, RJ 23897-000, Brazil.
| | - Vânia Rita Elias Pinheiro Bittencourt
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rodovia BR 465, s/n, Seropédica, RJ 23897-000, Brazil.
| |
Collapse
|
9
|
da Paixão FRS, Muniz ER, Catão AML, Santos TR, Luz C, Marreto RN, Mascarin GM, Fernandes ÉKK. Microsclerotial pellets of Metarhizium spp.: thermotolerance and bioefficacy against the cattle tick. Appl Microbiol Biotechnol 2023; 107:2263-2275. [PMID: 36929189 DOI: 10.1007/s00253-023-12467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
The cattle tick, Rhipicephalus microplus (Acari: Ixodidae), is a multi-billion dollar ectoparasite of global importance affecting beef and milk production. Submerged cultures of cosmopolitan entomopathogenic fungal species of the genus Metarhizium typically produce microsclerotia that provide both long-term survival and environmental resistance. Microsclerotia hold great potential as an unconventional active propagule to control this tick under laboratory and semi-field conditions. However, heat stress caused especially by elevated temperatures poses a critical environmental constraint for the successful development and efficacy of microsclerotia under tropical conditions. First, we screened six strains of Metarhizium anisopliae, Metarhizium robertsii and Metarhizium humberi for their ability to produce microsclerotia by submerged liquid cultivation. In addition, we assessed the biological fitness and bioefficacy of dried microsclerotial pellets under amenable (27 °C) and heat-stressed (32 °C) incubation against engorged adult females of R. microplus. Microsclerotia in pelletized formulation prepared with carriers based on diatomaceous earth and microcrystalline cellulose exhibited conidial production at different extents according to the fungal strain and the incubation temperature, but most strains displayed reduced sporogenesis when exposed to 32 °C. Engorged tick females exposed to sporulated microsclerotia from pelletized M. anisopliae CG47 or IP 119 had fewer number of hatching larvae in comparison to the control group, irrespective of the incubation temperature tested. The minimum dosage of microsclerotial pellets that effectively reduced hatchability of tick larvae was estimated to be 2 mg per plate (equivalent to 6.0 kg per hectare). Metarhizium microsclerotial pellets exhibited significant tolerance to 32 °C and pronounced acaricidal activity against this economically important ectoparasite of cattle, even under simulated environmental heat stress. KEY POINTS: • Heat stress affects conidial production by microsclerotia of most pelletized Metarhizium strains • Heat stress does not impair the acaricidal performance of pelletized microsclerotia • Pellet formulation of Metarhizium microsclerotia is a promising mycoacaricide.
Collapse
Affiliation(s)
- Flávia Regina Santos da Paixão
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Elen Regozino Muniz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Alaine Maria Lopes Catão
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | | | - Christian Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Ricardo Neves Marreto
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Embrapa Environment, SP 340 Road, Km 127.5, Tanquinho Velho, Jaguariúna, SP, 13918-110, Brazil.
| | - Éverton Kort Kamp Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
10
|
Characterization of Brazilian Cordyceps fumosorosea isolates: Conidial production, tolerance to ultraviolet-B radiation, and elevated temperature. J Invertebr Pathol 2023; 197:107888. [PMID: 36681179 DOI: 10.1016/j.jip.2023.107888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Cordyceps fumosorosea is an entomopathogenic fungus with a global distribution and is used for the biological control of agricultural pests. High conidial productivity and tolerance to abiotic stresses such as elevated temperature and ultraviolet radiation (UV-B) are desired characteristics in candidate isolates for commercial products. Our goal in this study was to characterize promising isolates of C. fumosorosea from five Brazilian biomes regarding conidial production, tolerance to UV-B, and elevated temperature (45°). Seventy-two isolates out of 172 were chosen visually, based on growth and sporulation in culture medium, and grown on parboiled rice. Next, fourteen isolates were selected, based on productivity on rice and origin of isolation, for production in polypropylene bags and submitted to UV-B for 2, 4, 6, and 8 h or to 45 °C for 30, 60, and 90 min. High variations in conidial production were observed among isolates, and a positive correlation was observed between UV-B and heat tolerance. The isolates ESALQ4556 and ESALQ4778 showed the highest yields of conidial production in polypropylene bags (3.51 × 109 conidia/g dry rice), while ESALQ1296, an isolate recovered from insects, was the most tolerant to UV-B and 45 °C. Exposure to radiation for more than 4 h and placed directly at 45 °C for more than 30 min significantly reduced conidial germination for all C. fumosorosea isolates. These results contribute to a better understanding of the tolerance to abiotic factors of Brazilian isolates of C. fumosorosea.
Collapse
|
11
|
Carneiro ADS, Mesquita E, Meirelles LN, Bittencourt VREP, Golo PS. Compatibility of different Metarhizium spp. propagules with synthetic acaricides for controlling Rhipicephalus microplus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e018221. [PMID: 35384990 PMCID: PMC9901882 DOI: 10.1590/s1984-29612022018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
Abstract
The inappropriate use of synthetic acaricides has selected resistant Rhipicephalus microplus populations. The present study evaluated the compatibility of different Metarhizium spp. propagules (conidia, blastospores, and microsclerotia) by incubating them with synthetic acaricides (amitraz, deltamethrin, and a combination of cypermethrin, chlorpyrifos, and citronellal) for 1 h, 5 h, 10 h, and 24 h. Conidia and microsclerotia of the tested isolates were usually more tolerant to synthetic acaricides than blastospores. Our study also analyzed the in vitro effect of deltamethrin associated with fungal propagules for controlling a population of R. microplus females that were not susceptible to this synthetic acaricide. The use of entomopathogenic fungi in association with deltamethrin in this tick population caused a greater tick control than did the use of the fungus or the synthetic acaricide separately.
Collapse
Affiliation(s)
- Adriani da Silva Carneiro
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Emily Mesquita
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Laura Nóbrega Meirelles
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | | | - Patrícia Silva Golo
- Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| |
Collapse
|
12
|
How Dopamine Influences Survival and Cellular Immune Response of Rhipicephalus microplus Inoculated with Metarhizium anisopliae. J Fungi (Basel) 2021; 7:jof7110950. [PMID: 34829237 PMCID: PMC8622812 DOI: 10.3390/jof7110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) is a biogenic monoamine reported to modulate insect hemocytes. Although the immune functions of DA are known in insects, there is a lack of knowledge of DA’s role in the immune system of ticks. The use of Metarhizium anisopliae has been considered for tick control, driving studies on the immune response of these arthropods challenged with fungi. The present study evaluated the effect of DA on the cellular immune response and survival of Rhipicephalus microplus inoculated with M. anisopliae blastospores. Exogenous DA increased both ticks’ survival 72 h after M. anisopliae inoculation and the number of circulating hemocytes compared to the control group, 24 h after the treatment. The phagocytic index of tick hemocytes challenged with M. anisopliae did not change upon injection of exogenous DA. Phenoloxidase activity in the hemolymph of ticks injected with DA and the fungus or exclusively with DA was higher than in untreated ticks or ticks inoculated with the fungus alone, 72 h after treatment. DA was detected in the hemocytes of fungus-treated and untreated ticks. Unveiling the cellular immune response in ticks challenged with entomopathogenic fungi is important to improve strategies for the biological control of these ectoparasites.
Collapse
|
13
|
Ahmadi Y, Bhardwaj N, Kim KH, Kumar S. Recent advances in photocatalytic removal of airborne pathogens in air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148477. [PMID: 34198079 DOI: 10.1016/j.scitotenv.2021.148477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The abatement of airborne pathogens such as bacteria, viruses, and fungi has become an important goal of air-quality management. Efficient and effective treatment techniques such as photocatalysis are essential for disinfection of airborne microorganisms. This review focuses on recent advances in the formulation and development of photocatalytic disinfection, design of efficient photocatalysts, choice of photocatalytic reactor, removal and/or disinfection mechanisms, and the role of reactive ion species. Data from recent studies are analyzed to accurately assess the efficacy of such disinfection approaches. This review also highlights the application of innovative materials in individual and combined abatement systems against airborne bacterial, viral, and fungal pathogens. We discuss the efficiency and benefits presented by such systems, address the challenges, and provide a perspective for future research.
Collapse
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul 1001, Afghanistan
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| |
Collapse
|
14
|
Iwanicki NSA, Mascarin GM, Moreno SG, Eilenberg J, Delalibera I. Development of novel spray-dried and air-dried formulations of Metarhizium robertsii blastospores and their virulence against Dalbulus maidis. Appl Microbiol Biotechnol 2021; 105:7913-7933. [PMID: 34550438 DOI: 10.1007/s00253-021-11576-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The present research addressed spray-drying and air-drying techniques applied to Metarhizium robertsii blastospores to develop wettable powder (WP) formulations. We investigated the effect of co-formulants on blastospore viability during drying and assessed the wettability and stability of formulations in water. The effect of oxygen-moisture absorbers was studied on the shelf life of these formulations stored at 26 °C and 4 °C for up to 90 days. Additionally, we determined the virulence of the best spray-dried and air-dried formulations against the corn leafhopper Dalbulus maidis. While sucrose and skim milk played an essential role as osmoprotectants in preserving air-dried blastospores, maltodextrin, skim milk, and bentonite were crucial to attain high cell survival during spray drying. The lowest wettability time was achieved with spray-dried formulations containing less Ca-lignin, while charcoal powder amount was positively associated with formulation stability. The addition of oxygen-moisture absorbers inside sealed packages increased from threefold to fourfold the half-life times of air-dried and spray-dried formulations at both storage temperatures. However, the half-life times of all blastospore-based formulations were shorter than 3 months regardless of temperature and packaging system. Spray-dried and air-dried WP formulations were as virulent as fresh blastopores against D. maydis adults sprayed with 5 × 107 blastospores mL-1 that induced 87.8% and 70.6% mortality, respectively. These findings bring innovative advancement for M. robertsii blastospore formulation through spray-drying and underpin the importance of adding protective matrices coupled to oxygen-moisture absorbers to extend cell viability during either cold or non-refrigerated storage. KEY POINTS: • Cost-effective wettable powder formulations of M. robertsii blastospores were developed. • Bioefficacy of formulations against the corn leafhopper was comparable to fresh blastospores. • Cold storage and dual oxygen-moisture absorber are critical for extended shelf life.
Collapse
Affiliation(s)
- Natasha Sant Anna Iwanicki
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz, " University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP CEP, 13418-900, Brazil.
| | - Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340, Km 127.5, Jaguariúna, 13918-110, Brazil.
| | - Sara Giro Moreno
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz, " University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP CEP, 13418-900, Brazil
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Italo Delalibera
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz, " University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP CEP, 13418-900, Brazil
| |
Collapse
|
15
|
Paixão FRS, Huarte-Bonnet C, Ribeiro-Silva CDS, Mascarin GM, Fernandes ÉKK, Pedrini N. Tolerance to Abiotic Factors of Microsclerotia and Mycelial Pellets From Metarhizium robertsii, and Molecular and Ultrastructural Changes During Microsclerotial Differentiation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:654737. [PMID: 37744155 PMCID: PMC10512246 DOI: 10.3389/ffunb.2021.654737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/05/2021] [Indexed: 09/26/2023]
Abstract
Metarhizium species fungi are able to produce resistant structures termed microsclerotia, formed by compact and melanized threads of hyphae. These propagules are tolerant to desiccation and produce infective conidia; thus, they are promising candidates to use in biological control programs. In this study, we investigated the tolerance to both ultraviolet B (UV-B) radiation and heat of microsclerotia of Metarhizium robertsii strain ARSEF 2575. We also adapted the liquid medium and culture conditions to obtain mycelial pellets from the same isolate in order to compare these characteristics between both types of propagules. We followed the peroxisome biogenesis and studied the oxidative stress during differentiation from conidia to microsclerotia by transmission electron microscopy after staining with a peroxidase activity marker and by the expression pattern of genes potentially involved in these processes. We found that despite their twice smaller size, microsclerotia exhibited higher dry biomass, yield, and conidial productivity than mycelial pellets, both with and without UV-B and heat stresses. From the 16 genes measured, we found an induction after 96-h differentiation in the oxidative stress marker genes MrcatA, MrcatP, and Mrgpx; the peroxisome biogenesis factors Mrpex5 and Mrpex14/17; and the photoprotection genes Mrlac1 and Mrlac2; and Mrlac3. We concluded that an oxidative stress scenario is induced during microsclerotia differentiation in M. robertsii and confirmed that because of its tolerance to desiccation, heat, and UV-B, this fungal structure could be an excellent candidate for use in biological control of pests under tropical and subtropical climates where heat and UV radiation are detrimental to entomopathogenic fungi survival and persistence.
Collapse
Affiliation(s)
- Flávia R. S. Paixão
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Gabriel M. Mascarin
- Laboratório de Microbiologia Ambiental, Empresa Brasileira de Pesquisa Agropecuária–Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Éverton K. K. Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
16
|
Mascarin GM, Iwanicki NS, Ramirez JL, Delalibera Í, Dunlap CA. Transcriptional Responses of Beauveria bassiana Blastospores Cultured Under Varying Glucose Concentrations. Front Cell Infect Microbiol 2021; 11:644372. [PMID: 33842391 PMCID: PMC8024584 DOI: 10.3389/fcimb.2021.644372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Culturing the entomopathogenic fungus, Beauveria bassiana, under high glucose concentrations coupled with high aeration results in a fungal developmental shift from hyphal growth to mostly blastospores (yeast-like cells). The underlying molecular mechanisms involved in this shift remain elusive. A systematic transcriptome analysis of the differential gene expression was preformed to uncover the fungal transcriptomic response to osmotic and oxidative stresses associated with the resulting high blastospore yield. Differential gene expression was compared under moderate (10% w/v) and high (20% w/v) glucose concentrations daily for three days. The RNAseq-based transcriptomic results depicted a higher proportion of downregulated genes when the fungus was grown under 20% glucose than 10%. Additional experiments explored a broader glucose range (4, 8, 12, 16, 20% w/v) with phenotype assessment and qRT-PCR transcript abundance measurements of selected genes. Antioxidant, calcium transport, conidiation, and osmosensor-related genes were highly upregulated in higher glucose titers (16-20%) compared to growth in lower glucose (4-6%) concentrations. The class 1 hydrophobin gene (Hyd1) was highly expressed throughout the culturing. Hyd1 is known to be involved in spore coat rodlet layer assembly, and indicates that blastospores or another cell type containing hydrophobin 1 is expressed in the haemocoel during the infection process. Furthermore, we found implications of the HOG signaling pathway with upregulation of homologous genes Ssk2 and Hog1 for all fermentation time points under hyperosmotic medium (20% glucose). These findings expand our knowledge of the molecular mechanisms behind blastospore development and may help facilitate large-scale industrial production of B. bassiana blastospores for pest control applications.
Collapse
Affiliation(s)
- Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, Brazil
| | - Natasha Sant'Anna Iwanicki
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture/University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Jose Luis Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agriculture Research Service, Peoria, IL, United States
| | - Ítalo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture/University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agriculture Research Service, Peoria, IL, United States
| |
Collapse
|
17
|
Corval ARC, Mesquita E, Corrêa TA, Silva CDSR, Bitencourt RDOB, Fernandes ÉKK, Bittencourt VREP, Roberts DW, Gôlo PS. UV-B tolerances of conidia, blastospores, and microsclerotia of Metarhizium spp. entomopathogenic fungi. J Basic Microbiol 2020; 61:15-26. [PMID: 33616987 DOI: 10.1002/jobm.202000515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/21/2020] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to analyze ten native Metarhizium spp. isolates as to their UV-B tolerances. Comparisons included: different fungal propagules (conidia, blastospores, or microsclerotia [MS]); conidia in aqueous suspensions or in 10% mineral oil-in-water emulsions; and conidia mixed with different types of soil. The UV-B effect was expressed as the germination of conidia or culturability of blastospores and MS relative to nongerminated propagules. Metarhizium anisopliae LCM S05 exhibited high tolerance as blastospores and/or MS, but not as conidia; LCM S10 and LCM S08 had positive results with MS or conidia but not blastospores. The formulations with 10% mineral oil did not always protect Metarhizium conidia against UV-B. Conidia of LCM S07, LCM S08, and LCM S10 exhibited the best results when in aqueous suspensions, 24 h after UV-B exposure. In general, conidia mixed with soil and exposed to UV-B yielded similar number of colony forming units as conidia from unexposed soil, regardless the soil type. It was not possible to predict which type of propagule would be the most UV-B tolerant for each fungal isolate; in conclusion, many formulations and propagule types should be investigated early in the development of new fungal biocontrol products.
Collapse
Affiliation(s)
- Amanda R C Corval
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Emily Mesquita
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Thaís A Corrêa
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Cárita de S R Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ricardo de O B Bitencourt
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Vânia R E P Bittencourt
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil.,Departamento de Parasitologia Animal, Instituto de Veterinária, Seropédica, Rio de Janeiro, Brazil
| | | | - Patrícia S Gôlo
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil.,Departamento de Parasitologia Animal, Instituto de Veterinária, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|