1
|
Zhang W, Gundel PE, Jáuregui R, Card SD, Mace WJ, Johnson RD, Bastías DA. The growth promotion in endophyte symbiotic plants does not penalise the resistance to herbivores and bacterial microbiota. PLANT, CELL & ENVIRONMENT 2024; 47:2865-2878. [PMID: 38616528 DOI: 10.1111/pce.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.
Collapse
Affiliation(s)
- Wei Zhang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ruy Jáuregui
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Stuart D Card
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wade J Mace
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
2
|
Martins V, Teixeira A, Gerós H. A comparison of microbiota isolation methods reveals habitat preferences for fermentative yeasts and plant pathogenic fungi in the grape berry. Food Microbiol 2024; 118:104408. [PMID: 38049270 DOI: 10.1016/j.fm.2023.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 12/06/2023]
Abstract
The methodologies for profiling the grape berry microbiota have exponentially evolved in the past 25 years. Recently, concerns arose regarding the homogeneity in the protocols of grape harvesting, sequencing and bioinformatic analyses, but the bias introduced by the microbiota isolation method is still unexplored. This study followed a simple approach of comparing two most used methods of microbiota collection from grape berries (washing vs crushing), hypothesizing a significant impact in the outcome of the microbiota profiles analyzed by NGS metabarcoding. Experiments conducted in fruits of three cultivars of the Douro wine region showed that only 52 % of OTUs were common to both surface and juice microbiota, suggesting specific microbial niches. Thirteen fungal genera were abundantly detected in the fruit surface, including Alternaria, Aureobasidium, Cladosporium, Didymella and Bipolaris. Fermentative yeasts including Meyerozyma and Saccharomyces cerevisiae were exclusively detected in the juice, together with several Penicillium species. Distinct habitat preferences of species within the genera Alternaria, Sporobolomyces and Rhodotorula were also revealed. The study showed that the microbiota isolation method is crucial in the detection of certain plant pathogenic/saprophytic fungi and yeasts with biotechnological and oenological interest, adding novelty to the globally accepted assumption that S. cerevisiae in musts originates primarily from the cellar.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
3
|
Epichloë Endophytes Shape the Foliar Endophytic Fungal Microbiome and Alter the Auxin and Salicylic Acid Phytohormone Levels in Two Meadow Fescue Cultivars. J Fungi (Basel) 2023; 9:jof9010090. [PMID: 36675911 PMCID: PMC9861471 DOI: 10.3390/jof9010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Plants harbor a large diversity of endophytic microbes. Meadow fescue (Festuca pratensis) is a cool-season grass known for its symbiotic relationship with the systemic and vertically-via seeds-transmitted fungal endophyte Epichloë uncinata, yet its effects on plant hormones and the microbial community is largely unexplored. Here, we sequenced the endophytic bacterial and fungal communities in the leaves and roots, analyzing phytohormone concentrations and plant performance parameters in Epichloë-symbiotic (E+) and Epichloë-free (E-) individuals of two meadow fescue cultivars. The endophytic microbial community differed between leaf and root tissues independent of Epichloë symbiosis, while the fungal community was different in the leaves of Epichloë-symbiotic and Epichloë-free plants in both cultivars. At the same time, Epichloë symbiosis decreased salicylic acid and increased auxin concentrations in leaves. Epichloë-symbiotic plants showed higher biomass and higher seed mass at the end of the season. Our results demonstrate that Epichloë symbiosis alters the leaf fungal microbiota, which coincides with changes in phytohormone concentrations, indicating that Epichloë endophytes affect both plant immune responses and other fungal endophytes. Whether the effect of Epichloë endophytes on other fungal endophytes is connected to changes in phytohormone concentrations remains to be elucidated.
Collapse
|
4
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
5
|
Laihonen M, Saikkonen K, Helander M, Vázquez de Aldana BR, Zabalgogeazcoa I, Fuchs B. Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Front Microbiol 2022; 12:786619. [PMID: 35087489 PMCID: PMC8787217 DOI: 10.3389/fmicb.2021.786619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plants host taxonomically and functionally complex communities of microbes. However, ecological studies on plant-microbe interactions rarely address the role of multiple co-occurring plant-associated microbes. Here, we contend that plant-associated microbes interact with each other and can have joint consequences for higher trophic levels. In this study we recorded the occurrence of the plant seed pathogenic fungus Claviceps purpurea and aphids (Sitobion sp.) on an established field experiment with red fescue (Festuca rubra) plants symbiotic to a seed transmitted endophytic fungus Epichloë festucae (E+) or non-symbiotic (E-). Both fungi are known to produce animal-toxic alkaloids. The study was conducted in a semi-natural setting, where E+ and E- plants from different origins (Spain and Northern Finland) were planted in a randomized design in a fenced common garden at Kevo Subarctic Research Station in Northern Finland. The results reveal that 45% of E+ plants were infected with Claviceps compared to 31% of E- plants. Uninfected plants had 4.5 times more aphids than Claviceps infected plants. By contrast, aphid infestation was unaffected by Epichloë symbiosis. Claviceps alkaloid concentrations correlated with a decrease in aphid numbers, which indicates their insect deterring features. These results show that plant mutualistic fungi can increase the infection probability of a pathogenic fungus, which then becomes beneficial to the plant by controlling herbivorous insects. Our study highlights the complexity and context dependency of species-species and multi-trophic interactions, thus challenging the labeling of species as plant mutualists or pathogens.
Collapse
Affiliation(s)
| | | | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | |
Collapse
|
6
|
Bastías DA, Bustos LB, Jáuregui R, Barrera A, Acuña-Rodríguez IS, Molina-Montenegro MA, Gundel PE. Epichloë Fungal Endophytes Influence Seed-Associated Bacterial Communities. Front Microbiol 2022; 12:795354. [PMID: 35058911 PMCID: PMC8764391 DOI: 10.3389/fmicb.2021.795354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.
Collapse
Affiliation(s)
- Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ludmila Bubica Bustos
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruy Jáuregui
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Andrea Barrera
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.,Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Pedro E Gundel
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
7
|
Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, Zhang XX. The Plant Salicylic Acid Signalling Pathway Regulates the Infection of a Biotrophic Pathogen in Grasses Associated with an Epichloë Endophyte. J Fungi (Basel) 2021; 7:jof7080633. [PMID: 34436172 PMCID: PMC8399569 DOI: 10.3390/jof7080633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
The study of the contribution of the plant defence hormones, salicylic acid (SA) and jasmonic acid (JA), in the resistance against pathogens of plants associated with Epichloë fungal endophytes has been scanty. We hypothesised that Epichloë spp., capable of inducing host plant SA-dependent defences, would increase the levels of plant resistance against biotrophic pathogens. Plants of Achnatherum inebrians, with and without the fungal endophyte Epichloë gansuensis, were inoculated with the biotrophic fungal pathogen Blumeria graminis. We measured the status of plant defences (associated with SA and JA signalling pathways) and the levels of resistance to the pathogen. Plants associated with the endophyte showed less disease symptoms caused by the biotrophic pathogen than plants without the endophyte. In agreement with our hypothesis, the Epichloë endophyte increased the plant production of SA and enhanced the expression levels of plant genes of synthesis and response to the SA hormone. The elevated expression of SA-related genes coding for putative plant enzymes with anti-fungal activities promoted by the endophyte may explain the enhanced resistance to the pathogen. The present study highlights that interaction between the plant immune system and Epichloë fungal endophytes can contribute significantly to the resistance of endophyte-symbiotic plants against pathogens.
Collapse
Affiliation(s)
- Ming-Zhu Kou
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Daniel A. Bastías
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (D.A.B.); (M.J.C.)
| | - Michael J. Christensen
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (D.A.B.); (M.J.C.)
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Zhi-Biao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Xing-Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
- Correspondence:
| |
Collapse
|
8
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
9
|
Pérez LI, Gundel PE, Zabalgogeazcoa I, Omacini M. An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Non-Entomopathogenic Roles of Entomopathogenic Fungi in Promoting Plant Health and Growth. INSECTS 2019; 10:insects10090277. [PMID: 31480565 PMCID: PMC6780571 DOI: 10.3390/insects10090277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Multiple genera of hypocrealean fungi infect and kill a wide variety of arthropod pests. Several formulations based on these soilborne fungi are commercially available as biopesticides for controlling urban, garden, greenhouse, and agricultural pests. These fungi are an important part of integrated pest management strategies to maintain pest control efficacy, reduce the risk of chemical insecticide resistance, and offer environmentally sustainable pest suppression. While the entomopathogenic or pest management role of these fungi is well documented, several studies in the past decade or two have provided insights into their relationship with plants, soil, and plant pathogens, and their additional roles in promoting plant growth and health. This review highlights these endophytic, mycorrhiza-like, and disease-antagonizing roles of entomopathogenic fungi.
Collapse
|
11
|
Sneck ME, Rudgers JA, Young CA, Miller TEX. Does host outcrossing disrupt compatibility with heritable symbionts? OIKOS 2019. [DOI: 10.1111/oik.06182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle E. Sneck
- Dept of BioSciences, Program in Ecology and Evolutionary Biology, Rice Univ Houston, TX 77005 USA
| | | | | | - Tom E. X. Miller
- Dept of BioSciences, Program in Ecology and Evolutionary Biology, Rice Univ Houston, TX 77005 USA
| |
Collapse
|
12
|
Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z. Role of Epichloë Endophytes in Defense Responses of Cool-Season Grasses to Pathogens: A Review. PLANT DISEASE 2018; 102:2061-2073. [PMID: 30270751 DOI: 10.1094/pdis-05-18-0762-fe] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various cool-season grasses are infected by Epichloë endophyte, and this symbiotic relationship is always of benefit to the host grass due to an increased resistance to abiotic and biotic stresses. Fungal diseases adversely affect the yield, quality, and economic benefits of rangelands, which affects the production of animal husbandry. Therefore, it is imperative to breed resistant cultivars and to better understand the role of fungal endophytes in order to protect grasses against pathogens. The present review introduces research regarding how these endophytes affect the growth of pathogens in vitro and how they change the resistance of host plants to plant diseases. From the perspective of physical defense, changes in physiological indexes, and secretion of chemical compounds, we summarize the potential mechanisms by which endophytes are able to enhance the disease resistance of a host grass. Through these, we aim to establish a solid theoretical foundation for plant disease control and disease resistance breeding by application of fungal endophytes. A broader understanding of fungal endophyte effects on hosts could create a new opportunity for managing or introducing fungal symbioses in both agronomic or non-agronomic ecosystems.
Collapse
Affiliation(s)
- Chao Xia
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Nana Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Yawen Zhang
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| |
Collapse
|
13
|
Wang D, Wang H, Li J, Zhang W, Pan Y, Liu X. Investigating the Role of Endophytic Fungi in Gentiana scabra bge. by Cross-Growth Period Inoculation. Indian J Microbiol 2018; 58:319-325. [PMID: 30013276 PMCID: PMC6023818 DOI: 10.1007/s12088-018-0725-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 11/25/2022] Open
Abstract
Gentiana scabra Bge. (gentian) is a Chinese medicinal plant. Endophytic fungi from the roots of gentian were isolated and cross-growth period inoculation was performed to study the roles of three Trichoderma spp. strains (F1, F2, and F9) in their original host plant. In treatments inoculated with F1, F2, and F9, gentiopicroside content increased 33.6, 23.7 and 13% than that in the control. Strains F1, F2, and F9 could also improve polysaccharide content by more than 6.6, 18.7 and 30% compared to the control. The incidence of spot blight in gentian inoculated with F1, F2, and F9 decreased by 31.2, 26.7 and 8.5%. Inconsistent changes in the activity of the three enzymes (superoxide dismutase, catalase and peroxidase) were observed when the plants were attacked by pathogens or inoculated with fungi. High enzymatic activity did not reflect mild disease. Cross-growth period inoculation, which takes into account the original living environment (gentian plant as "substrate" and different microorganisms as symbionts) of endophytic fungi, provides a new idea for studying effects of endophytes on their original hosts. This is the first research about the role of endophytic fungi in Gentiana scabra bge. in vivo.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People’s Republic of China
| | - Huan Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People’s Republic of China
| | - Jing Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People’s Republic of China
| | - Wei Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People’s Republic of China
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People’s Republic of China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People’s Republic of China
| |
Collapse
|
14
|
Cavazos BR, Bohner TF, Donald ML, Sneck ME, Shadow A, Omacini M, Rudgers JA, Miller TEX. Testing the roles of vertical transmission and drought stress in the prevalence of heritable fungal endophytes in annual grass populations. THE NEW PHYTOLOGIST 2018; 219:1075-1084. [PMID: 29786864 DOI: 10.1111/nph.15215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/08/2018] [Indexed: 05/22/2023]
Abstract
Beneficial inherited symbionts are expected to reach high prevalence in host populations, yet many are observed at intermediate prevalence. Theory predicts that a balance of fitness benefits and efficiency of vertical transmission may interact to stabilize intermediate prevalence. We established populations of grass hosts (Lolium multiflorum) that varied in prevalence of a heritable fungal endophyte (Epichloё occultans), allowing us to infer long-term equilibria by tracking change in prevalence over one generation. We manipulated an environmental stressor (elevated precipitation), which we hypothesized would reduce the fitness benefits of symbiosis, and altered the efficiency of vertical transmission by replacing endophyte-positive seeds with endophyte-free seeds. Endophytes and elevated precipitation both increased host fitness, but symbiont effects were not stronger in the drier treatment, suggesting that benefits of symbiosis were unrelated to drought tolerance. Reduced transmission suppressed the inferred equilibrium prevalence from 42.6% to 11.7%. However, elevated precipitation did not modify prevalence, consistent with the result that it did not modify fitness benefits. Our results demonstrate that failed transmission can influence the prevalence of heritable microbes and that intermediate prevalence can be a stable equilibrium due to forces that allow symbionts to increase (fitness benefits) but prevent them from reaching fixation (failed transmission).
Collapse
Affiliation(s)
- Brittany R Cavazos
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Teresa F Bohner
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Marion L Donald
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Michelle E Sneck
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Alan Shadow
- USDA NRCS East Texas Plant Materials Center, 6598 FM 2782, Nacogdoches, TX, 75964, USA
| | - Marina Omacini
- IFEVA - Facultad de Agronomıa, Universidad de Buenos Aires, CONICET, Av. San Martın 4453, Buenos Aires, C1417DSE, Argentina
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
15
|
Zhou Y, Li X, Gao Y, Liu H, Gao Y, van der Heijden MGA, Ren A. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Zhou
- College of Life SciencesNankai University Tianjin China
| | - Xia Li
- College of Life SciencesHebei University Baoding China
| | - Yuan Gao
- College of Life SciencesNankai University Tianjin China
| | - Hui Liu
- College of Life SciencesNankai University Tianjin China
| | - Yu‐Bao Gao
- College of Life SciencesNankai University Tianjin China
| | - Marcel G. A. van der Heijden
- Plant‐Soil Interactions, Institute for Sustainability Sciences, Agroscope Zürich Switzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
- Plant‐Microbe InteractionsFaculty of ScienceInstitute of Environmental BiologyUtrecht University Utrecht The Netherlands
| | - An‐Zhi Ren
- College of Life SciencesNankai University Tianjin China
| |
Collapse
|
16
|
Sneck ME, Rudgers JA, Young CA, Miller TEX. Variation in the Prevalence and Transmission of Heritable Symbionts Across Host Populations in Heterogeneous Environments. MICROBIAL ECOLOGY 2017; 74:640-653. [PMID: 28314899 DOI: 10.1007/s00248-017-0964-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/09/2017] [Indexed: 05/29/2023]
Abstract
Heritable microbes are abundant in nature and influential to their hosts and the communities in which they reside. However, drivers of variability in the prevalence of heritable symbionts and their rates of transmission are poorly resolved, particularly across host populations experiencing variable biotic and abiotic environments. To fill these gaps, we surveyed 25 populations of two native grasses (Elymus virginicus and Elymus canadensis) across the southern Great Plains (USA). Both grass species host heritable endophytic fungi (genus Epichloё) and can hybridize where their ranges overlap. From a subset of hosts, we characterized endophyte genotype using genetic loci that link to bioactive alkaloid production. First, we found mean vertical transmission rates and population-level prevalence were positively correlated, specifically for E. virginicus. However, both endophyte prevalence and transmission varied substantially across populations and did not strongly correlate with abiotic variables, with one exception: endophyte prevalence decreased as drought stress decreased for E. virginicus hosts. Second, we evaluated the potential influence of biotic factors and found that, after accounting for climate, endophyte genotype explained significant variation in symbiont inheritance. We also contrasted populations where host species co-occurred in sympatry vs. allopatry. Sympatry could potentially increase interspecific hybridization, but this variable did not associate with patterns of symbiont prevalence or transmission success. Our results reveal substantial variability in symbiont prevalence and transmission across host populations and identify symbiont genotype, and to a lesser extent, the abiotic environment as sources of this variation.
Collapse
Affiliation(s)
- Michelle E Sneck
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Carolyn A Young
- Samuel Roberts Noble Foundation, Inc, Ardmore, OK, 73401, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
17
|
Chen W, Liu H, Wurihan, Gao Y, Card SD, Ren A. The advantages of endophyte-infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO 2. Sci Rep 2017; 7:6952. [PMID: 28761108 PMCID: PMC5537266 DOI: 10.1038/s41598-017-07183-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/22/2017] [Indexed: 11/26/2022] Open
Abstract
Atmospheric CO2 concentrations are predicted to double within the next century. Despite this trend, the extent and mechanisms through which elevated CO2 affects grass-endophyte symbionts remain uncertain. In the present study, the growth, chemical composition and pathogen resistance of endophyte-infected (E+) and uninfected (E-) tall fescue were compared under elevated CO2 conditions. The results showed that the effect of endophyte infection on the growth of tall fescue was significantly affected by elevated CO2. Significant advantage of E+ over E- tall fescue in tiller number, maximum net photosynthetic rate and shoot biomass occurred only under ambient CO2. With CO2 concentration elevated, the beneficial effect of endophyte infection on the growth disappeared. Similarly, endophyte infection reduced lesion number and spore concentration of Curvularia lunata only under ambient CO2. These results suggest that the beneficial effect of endophyte infection on the growth and pathogen resistance of tall fescue could be counteracted by elevated CO2. An explanation for the counteraction may be found in a change in photosynthesis and nutritive quality of leaf tissue.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hui Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wurihan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Stuart D Card
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Perez LI, Gundel PE, Marrero HJ, Arzac AG, Omacini M. Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease. Oecologia 2017; 184:237-245. [PMID: 28315955 DOI: 10.1007/s00442-017-3850-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
Plants interact with a myriad of microorganisms that modulate their interactions within the community. A well-described example is the symbiosis between grasses and Epichloë fungal endophytes that protects host plants from herbivores. It is suggested that these symbionts could play a protective role for plants against pathogens through the regulation of their growth and development and/or the induction of host defences. However, other endophyte-mediated ecological mechanisms involved in disease avoidance have been scarcely explored. Here we studied the endophyte impact on plant disease caused by the biotrophic fungus, Claviceps purpurea, under field conditions through (1) changes in the survival of the pathogen´s resistance structure (sclerotia) during overwintering on the soil surface, and (2) effects on insects responsible for the transportation of pathogen spores. This latter mechanism is tested through a visitor exclusion treatment and the measurement of plant volatile cues. We found no significant effects of the endophyte on the survival of sclerotia and thus on disease inocula. However, both pathogen incidence and severity were twofold lower in endophyte-symbiotic plants than in non-symbiotic ones, though when insect visits were prevented this difference disappeared. Endophyte-symbiotic and non-symbiotic plots presented different emission patterns of volatiles suggesting that they can play a role in this protection. We show a novel indirect ecological mechanism by which endophytes can defend host grasses against diseases through negatively interacting with intermediary vectors of the epidemic process.
Collapse
Affiliation(s)
- L I Perez
- IFEVA-Facultad de Agronomía (UBA)/CONICET, Cátedra de Ecología, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - P E Gundel
- IFEVA-Facultad de Agronomía (UBA)/CONICET, Cátedra de Ecología, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - H J Marrero
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, CC 507, 5500, Mendoza, Argentina
| | - A González Arzac
- IFEVA-Facultad de Agronomía (UBA)/CONICET, Cátedra de Ecología, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - M Omacini
- IFEVA-Facultad de Agronomía (UBA)/CONICET, Cátedra de Ecología, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
19
|
Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. THE NEW PHYTOLOGIST 2017; 213:324-337. [PMID: 27477008 DOI: 10.1111/nph.14103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 05/21/2023]
Abstract
Tall fescue (Lolium arundinaceum) is one of the primary forage and turf grasses in temperate regions of the world. A number of favourable characteristics of tall fescue are enhanced by its seed-transmissible fungal symbiont (endophyte) Epichloë coenophiala. Our approach was to assemble the tall fescue transcriptome, then identify differentially expressed genes (DEGs) for endophyte-symbiotic (E+) vs endophyte-free (E-) clones in leaf blades, pseudostems, crowns and roots. RNA-seq reads were used to construct a tall fescue reference transcriptome and compare gene expression profiles. Over all tissues examined, 478 DEGs were identified between the E+ and E- clones for at least one tissue (more than two-fold; P < 0.0001, 238 E+ > E- and 240 E- > E+), although no genes were differentially expressed in all four tissues. Gene ontology (GO) terms, GO:0010200 (response to chitin), GO:0002679 (respiratory burst during defence response) and GO:0035556 (intracellular signal transduction) were significantly overrepresented among 25 E- > E+ DEGs in leaf blade, and a number of other DEGs were associated with defence and abiotic response. In particular, endophyte effects on various WRKY transcription factors may have implications for symbiotic stability, endophyte distribution in the plant, or defence against pathogens.
Collapse
Affiliation(s)
- Randy D Dinkins
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY, 40546-0091, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Deborah Boykin
- Jamie Whitten Delta States Research Center, USDA-ARS, Stoneville, MS, 38776, USA
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
20
|
Aboling S, Drotleff AM, Cappai MG, Kamphues J. Contamination with ergot bodies (Claviceps purpurea sensu lato) of two horse pastures in Northern Germany. Mycotoxin Res 2016; 32:207-219. [PMID: 27495979 DOI: 10.1007/s12550-016-0253-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/28/2022]
Abstract
Because the occurrence of Claviceps in European pastures may have been overlooked to cause serious health problem for grazing animals, we documented the degree of Claviceps contamination in two horse pastures and estimated whether the horses could have ingested a critical quantity of alkaloids. We counted the Claviceps sclerotia and determined alkaloid levels using high performance liquid chromatography with fluorescence detection. Depending on the location, the number of sclerotia varied from 0.09 to 0.19 per square meter (central area) and from 0.23 to 55.8 per square meter (border strips). Alkaloid levels in individual sclerotia also varied in different genera of grasses, ranging from 0.98 ± 0.17 μg/kg in Agrostis sp. to 25.82 ± 9.73 μg/kg in Dactylis sp., equivalent to 0.98 μg/kg and 7.26 mg/kg. Sclerotia from Dactylis contained high levels of ergosine (0.209 % ± 0.100 %) and ergocristine (0.374 % ± 0.070 %). Depending on the localization in pastures, alkaloid levels in forage (dry matter, DM) ranged from 16.1 to 45.4 μg/kg in central areas and from 23.9 to 722 μg/kg in border strips. The amount of alkaloids that a horse could have ingested depended on its daily DM uptake, which was higher in the central areas (5.85 kg/day) than in the border strips (2.73 or 0.78 kg/day). In the central areas, this amount of alkaloids ranged from 94.2 to 265.9 μg/day; and in the border strips, from 65.3 (in 2.73 kg DM/day) to as much as 563.8 μg/day (in 0.78 kg DM/day). All these amounts are higher than the European averages for alkaloids ingested by horses via feedstuffs.
Collapse
Affiliation(s)
- S Aboling
- Institute for Animal Nutrition, University of Veterinary Medicine, Hannover, Foundation, Bischofsholer Damm, 15, 30173, Hannover, Germany.
| | - A M Drotleff
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - M G Cappai
- Department of Agricultural Sciences, Research Unit of Animal Breeding Sciences, University of Sassari, via Vienna no. 2, 07100, Sassari, Italy
| | - J Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine, Hannover, Foundation, Bischofsholer Damm, 15, 30173, Hannover, Germany
| |
Collapse
|
21
|
The enhancement of invasion ability of an annual grass by its fungal endophyte depends on recipient community structure. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1129-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Tétard‐Jones C, Edwards R. Potential roles for microbial endophytes in herbicide tolerance in plants. PEST MANAGEMENT SCIENCE 2016; 72:203-9. [PMID: 26350619 PMCID: PMC4949542 DOI: 10.1002/ps.4147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/27/2015] [Accepted: 09/04/2015] [Indexed: 05/14/2023]
Abstract
Herbicide tolerance in crops and weeds is considered to be monotrophic, i.e. determined by the relative susceptibility of the physiological process targeted and the plant's ability to metabolise and detoxify the agrochemical. A growing body of evidence now suggests that endophytes, microbes that inhabit plant tissues and provide a range of growth, health and defence enhancements, can contribute to other types of abiotic and biotic stress tolerance. The current evidence for herbicide tolerance being bitrophic, with both free-living and plant-associated endophytes contributing to tolerance in the host plant, has been reviewed. We propose that endophytes can directly contribute to herbicide detoxification through their ability to metabolise xenobiotics. In addition, we explore the paradigm that microbes can 'prime' resistance mechanisms in plants such that they enhance herbicide tolerance by inducing the host's stress responses to withstand the downstream toxicity caused by herbicides. This latter mechanism has the potential to contribute to the growth of non-target-site-based herbicide resistance in weeds. Microbial endophytes already contribute to herbicide detoxification in planta, and there is now significant scope to extend these interactions using synthetic biology approaches to engineer new chemical tolerance traits into crops via microbial engineering.
Collapse
Affiliation(s)
| | - Robert Edwards
- School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastleUK
| |
Collapse
|
23
|
Prior R, Görges K, Yurkov A, Begerow D. New isolation method for endophytes based on enzyme digestion. Mycol Prog 2014. [DOI: 10.1007/s11557-014-0968-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|