1
|
Mishcherikova V, Lynikienė J, Marčiulynas A, Gedminas A, Prylutskyi O, Marčiulynienė D, Menkis A. Biogeography of Fungal Communities Associated with Pinus sylvestris L. and Picea abies (L.) H. Karst. along the Latitudinal Gradient in Europe. J Fungi (Basel) 2023; 9:829. [PMID: 37623600 PMCID: PMC10455207 DOI: 10.3390/jof9080829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
We assessed the diversity and composition of fungal communities in different functional tissues and the rhizosphere soil of Pinus sylvestris and Picea abies stands along the latitudinal gradient of these tree species distributions in Europe to model possible changes in fungal communities imposed by climate change. For each tree species, living needles, shoots, roots, and the rhizosphere soil were sampled and subjected to high-throughput sequencing. Results showed that the latitude and the host tree species had a limited effect on the diversity and composition of fungal communities, which were largely explained by the environmental variables of each site and the substrate they colonize. The mean annual temperature and mean annual precipitation had a strong effect on root fungal communities, isothermality on needle fungal communities, mean temperature of the warmest quarter and precipitation of the driest month on shoot fungal communities, and precipitation seasonality on soil fungal communities. Fungal communities of both tree species are predicted to shift to habitats with a lower annual temperature amplitude and with increasing precipitation during the driest month, but the suitability of these habitats as compared to the present conditions is predicted to decrease in the future.
Collapse
Affiliation(s)
- Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, V.N. Karazin Kharkiv National University, Svobody Sq., 61022 Kharkiv, Ukraine;
| | - Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| |
Collapse
|
2
|
Gaytán Á, Abdelfattah A, Faticov M, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Gotthard K, Pawlowski K, Tack AJM. Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe. JOURNAL OF BIOGEOGRAPHY 2022; 49:2269-2280. [PMID: 36636040 PMCID: PMC9828548 DOI: 10.1111/jbi.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 06/17/2023]
Abstract
Aim Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities. Location A latitudinal gradient spanning c. 20 degrees in latitude in Europe. Taxa The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur. Methods We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding. Results Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude. Conclusions Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%-22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.
Collapse
Affiliation(s)
- Álvaro Gaytán
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
| | - Maria Faticov
- Department of BiologySherbrooke UniversitySherbrookeQuebecCanada
| | | | | | | | | | | | | | | | - Pil U. Rasmussen
- The National Research Centre for the Working EnvironmentCopenhagenDenmark
| | - Nick Bos
- Section for Ecology and EvolutionUniversity of CopenhagenCopenhagenDenmark
| | - Raimo Jaatinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationLäyliäinenFinland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationLäyliäinenFinland
| | - Sara Söderlund
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Karl Gotthard
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
| |
Collapse
|
3
|
First Report of Fungal Endophyte Communities and Non-Defensive Phytochemistry of Biocontrol-Inoculated Whitebark Pine Seedlings in a Restoration Planting. FORESTS 2022. [DOI: 10.3390/f13060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant endosymbionts (endophytes) influence host plant health and express genotype-dependent ecological relationships with plant hosts. A fungal species intended to confer host plant resistance to a forest pathogen was used as inoculum to test for effects of inoculation on disease resistance, microbiomes, and phytochemistry of a threatened pine species planted in a restoration setting. Correlations of inoculation presence/absence, phytochemistry, spatial location of seedlings, maternal seed sources, and fungal endophytic communities in the foliage of six-year-old whitebark pine (Pinus albicaulis) seedlings were assessed five years after an experimental inoculation of seedlings with foliar endophytic fungi cultured from whitebark pine trees at Crater Lake National Park, including Paramyrothecium roridum. We hypothesized that P. roridum would modify host microbiomes in a manner that combats white pine blister rust disease. Our assessment of seedlings in the field five years after inoculation allowed us to consider whether inoculation stimulated long-lasting changes in microbiome communities and whether effects varied by seedling genetic family. Tests for effects of endophyte inoculation on disease resistance were inconclusive due to current low levels of rust infection observed at the field site. Foliar fungal endophyte richness and Shannon diversity varied with maternal seed sources. Isotopic stoichiometry and phytochemistry did not vary with seedling spatial proximity, inoculation treatment, or maternal seed family. However, endophyte community composition varied with both seedling spatial proximity and maternal seed sources. Endophytic communities did not vary with the inoculation treatment, and the hypothesized biocontrol was not detected in inoculated seedlings. We draw three conclusions from this work: (1) fungal microbiomes of whitebark pine seedlings across our study site did not vary with host phytochemical signatures of ecophysiological status, (2) the inoculation of P. albicaulis seedlings with a mixture of fungal endophytes did not lead to persistent systemic changes in seedling foliar microbiomes, and (3) in correspondence with other studies, our data suggest that maternal seed source and spatial patterns influence fungal endophyte community composition.
Collapse
|
4
|
Apigo A, Oono R. Plant abundance, but not plant evolutionary history, shapes patterns of host specificity in foliar fungal endophytes. Ecosphere 2022. [DOI: 10.1002/ecs2.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| |
Collapse
|
5
|
Nguyen MH, Shin KC, Lee JK. Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea. MYCOBIOLOGY 2021; 49:385-395. [PMID: 34512082 PMCID: PMC8409933 DOI: 10.1080/12298093.2021.1948175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.
Collapse
Affiliation(s)
- Manh Ha Nguyen
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
- Forest Protection Research Center, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Keum Chul Shin
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University (Institute of Agriculture and Life Science), Jinju, Korea
| | - Jong Kyu Lee
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
6
|
Liu Y, Qu ZL, Liu B, Ma Y, Xu J, Shen WX, Sun H. The Impact of Pine Wood Nematode Infection on the Host Fungal Community. Microorganisms 2021; 9:microorganisms9050896. [PMID: 33922224 PMCID: PMC8146488 DOI: 10.3390/microorganisms9050896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023] Open
Abstract
Pine wilt disease (PWD), caused by pinewood nematode (PWN) Bursaphelenchus xylophilus, is globally one of the most destructive diseases of pine forests, especially in China. However, little is known about the effect of PWD on the host microbiome. In this study, the fungal community and functional structures in the needles, roots, and soil of and around Pinus thunbergii naturally infected by PWN were investigated by using high-throughput sequencing coupled with the functional prediction (FUNGuild). The results showed that fungal richness, diversity, and evenness in the needles of diseased trees were significantly lower than those of healthy ones (p < 0.05), whereas no differences were found in the roots and soil. Principal coordinate analysis (PCoA) showed that the fungal community and functional structures significantly differed only in the needles of diseased and healthy trees, but not in the soil and roots. Functionally, the saprotrophs had a higher abundance in the needles of diseased trees, whereas symbiotrophs abundance was higher in the needles of healthy trees (linear discriminant analysis (LDA) > 2.0, p < 0.05). These results indicated that PWN infection primarily affected the fungal community and functional structures in the needles of P. thunbergii, but not the roots and soil.
Collapse
Affiliation(s)
- Yi Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Jie Xu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Wen-Xiao Shen
- School of Foreign Language, Nanjing University of Finance and Economics, Nanjing 210046, China;
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
- Correspondence: ; Tel.: +86-13-851-724-350
| |
Collapse
|
7
|
Antifungal polyketides from the Picea rubens and Vaccinium angustifolium endophyte Lachnellula calyciformis. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Park KH, Oh SY, Yoo S, Park MS, Fong JJ, Lim YW. Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake. Front Microbiol 2020; 11:574146. [PMID: 33101248 PMCID: PMC7545793 DOI: 10.3389/fmicb.2020.574146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
The pine mushroom (Tricholoma matsutake; Agaricales, Tricholomataceae) is an ectomycorrhizal fungus that produces a commercially valuable, edible mushrooms. Attempts to artificially cultivate T. matsutake has so far been unsuccessful. One method used to induce T. matsutake to produce fruiting bodies of in the wild is shiro (mycelial aggregations of T. matsutake) transplantation. In vitro ectomycorrhization of T. matsutake with seedlings of Pinus densiflora has been successful, but field trials showed limited production of fruiting bodies. Few studies have been done to test what happens after transplantation in the wild, whether T. matsutake persists on the pine seedling roots or gets replaced by other fungi. Here, we investigated the composition and the interaction of the root fungal microbiome of P. densiflora seedlings inoculated with T. matsutake over a 3 year period after field transplantation, using high-throughput sequencing. We found a decline of T. matsutake colonization on pine roots and succession of mycorrhizal fungi as P. densiflora seedlings grew. Early on, roots were colonized by fast-growing, saprotrophic Ascomycota, then later replaced by early stage ectomycorrhiza such as Wilcoxina. At the end, more competitive Suillus species dominated the host roots. Most of the major OTUs had negative or neutral correlation with T. matsutake, but several saprotrophic/plant pathogenic/mycoparasitic species in genera Fusarium, Oidiodendron, and Trichoderma had positive correlation with T. matsutake. Four keystone species were identified during succession; two species (Fusarium oxysporum, and F. trincintum) had a positive correlation with T. matsutake, while the other two had a negative correlation (Suillus granulatus, Cylindrocarpon pauciseptatum). These findings have important implications for further studies on the artificial cultivation of T. matsutake.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | | | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Jia Q, Qu J, Mu H, Sun H, Wu C. Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 2020. [DOI: 10.1007/s13199-019-00663-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Elfstrand M, Zhou L, Baison J, Olson Å, Lundén K, Karlsson B, Wu HX, Stenlid J, García‐Gil MR. Genotypic variation in Norway spruce correlates to fungal communities in vegetative buds. Mol Ecol 2020; 29:199-213. [PMID: 31755612 PMCID: PMC7003977 DOI: 10.1111/mec.15314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome-wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.
Collapse
Affiliation(s)
- Malin Elfstrand
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Linghua Zhou
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - John Baison
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Åke Olson
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Karl Lundén
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Harry X. Wu
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Jan Stenlid
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - M. Rosario García‐Gil
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
11
|
Zhao Y, Xiong Z, Wu G, Bai W, Zhu Z, Gao Y, Parmar S, Sharma VK, Li H. Fungal Endophytic Communities of Two Wild Rosa Varieties With Different Powdery Mildew Susceptibilities. Front Microbiol 2018; 9:2462. [PMID: 30386316 PMCID: PMC6198141 DOI: 10.3389/fmicb.2018.02462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Powdery mildew (PM) is one of the most devastating and wide spread fungal diseases of rose, which seriously decrease its productivity and commercial value. In the present study, the endophytic fungal communities of two wild Rosa varieties (Rosa multiflora Thunb and R. multiflora var. carnea Redouté and Thory) with different PM susceptibilities were studied through Illumina MiSeq sequencer. A total of 14,000,424 raw reads were obtained from 60 samples, and 6,862,953 tags were produced after merging paired-end reads. 4462 distinct OTUs were generated at a 97% similarity level. It was found that only 34.2% of OTUs shared between two plant varieties. All of the OTUs were assigned into four fungal phyla, 17 classes, 43 orders, 86 families, 157 genera, and 208 species. Members of Ascomycota were found to be the most common fungal endophytes (EF) among all plant samples (93.7% relative abundance), followed by Basidiomycota (4.7% relative abundance), while Zygomycota and Glomeromycota were found to be rare and incidental. At each developmental stage of plants, the diversity and community structure of EF between two Rosa varieties showed significant differences. Both PCoA plots and PERMANOVA analyses indicated that developmental stage was the major factor contributing to the difference between the Rosa varieties (R2 = 0.348, p < 0.001). In addition, plant varieties and tissues were also important factors contributing to the difference (R2 = 0.031, p < 0.05; R2 = 0.029, p < 0.05). Moreover, Neofusicoccum, Rhodosporidium, and Podosphaera, etc., were found to be significantly different between two Rosa varieties, and some of the endophytes may play a role in PM resistance. These finding are encouraging to testify the potential use of these fungi in the biocontrol of PM in future studies.
Collapse
Affiliation(s)
- Yi Zhao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhi Xiong
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Guangli Wu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Weixiao Bai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhengqing Zhu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Yonghan Gao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Shobhika Parmar
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Vijay K Sharma
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|