1
|
Kato T, Inagaki S, Shibata C, Takayanagi K, Uehara H, Nishimura K, Park EY. Topical Infection of Cordyceps militaris in Silkworm Larvae Through the Cuticle has Lower Infectivity Compared to Beauveria bassiana and Metarhizium anisopliae. Curr Microbiol 2024; 82:26. [PMID: 39621154 DOI: 10.1007/s00284-024-03989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025]
Abstract
Topical infection of entomopathogenic fungi in insects occurs when the fungal conidia attach to the insect's surface (cuticle), germinate, and then form appressoria that penetrate the cuticle and enter their bodies. In this study, we inoculated silkworm larvae with three entomopathogenic fungi, Cordyceps militaris, Beauveria bassiana, and Metarhizium anisopliae, and investigated their mechanisms of infection. Attachment of the conidia of the three entomopathogenic fungi to the surface of silkworm larvae was observed under a microscope. We counted the number of conidia attached to the surface of the silkworm larvae and the number of conidia detached from the surface was counted. The number of C. militaris conidia that attached to the surface was less than that of B. bassiana and M. anisopliae; however, it germinated and formed appressoria on hydrophobic surfaces, similar to the other two strains. Mycelial growth of C. militaris was inhibited compared to that of B. bassiana in PDA medium containing 0.1% linoleic and linolenic acids. The germination of C. militaris conidia was also inhibited in PD medium containing 0.1% linoleic or linolenic acids. These results suggest that the attachment of low numbers of C. militaris conidia on the surface of silkworm larvae and presence of inhibitory linoleic or linolenic acids in the silkworm cuticles may cause low topical infectivity by C. militaris. This study improves the efficacy of topically infecting silkworms with C. militaris to produce fungal fruiting bodies for use in traditional Chinese medicine and dietary supplement production.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Sota Inagaki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Chisato Shibata
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Keito Takayanagi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hiroki Uehara
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Konomi Nishimura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
2
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
3
|
Herren P, Hesketh H, Meyling NV, Dunn AM. Environment-host-parasite interactions in mass-reared insects. Trends Parasitol 2023; 39:588-602. [PMID: 37258342 DOI: 10.1016/j.pt.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The mass production of insects is rapidly expanding globally, supporting multiple industrial needs. However, parasite infections in insect mass-production systems can lower productivity and can lead to devastating losses. High rearing densities and artificial environmental conditions in mass-rearing facilities affect the insect hosts as well as their parasites. Environmental conditions such as temperature, gases, light, vibration, and ionizing radiation can affect productivity in insect mass-production facilities by altering insect development and susceptibility to parasites. This review explores the recent literature on environment-host-parasite interactions with a specific focus on mass-reared insect species. Understanding these complex interactions offers opportunities to optimise environmental conditions for the prevention of infectious diseases in mass-reared insects.
Collapse
Affiliation(s)
- Pascal Herren
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Helen Hesketh
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Nicolai V Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Alison M Dunn
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Ha SY, Jung JY, Yang JK. Optimization of a solid culture medium based on Monochamus alternatus for Cordyceps militaris fruiting body formation. Lett Appl Microbiol 2021; 74:185-193. [PMID: 34758116 DOI: 10.1111/lam.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Monochamus alternatus (Coleoptera: Cerambycidae; M. alternatus), popularly known as the Japanese pine sawyer, is a vector of pinewood nematode (Bursaphelenchus xylophilus) that causes pine wilt disease. A solid medium culture with M. alternatus produced Cordyceps militaris fruiting bodies with the longest strips and the highest biological efficiency. Supplementing the original form of M. alternatus with oats resulted in slightly enhanced fruiting body production. The original form of M. alternatus showed higher production than its powder form. The solid culture medium was optimized using a response surface methodology, and the optimal medium contained the following: 8·5 g per bottle of M. alternatus and 11·5 g per bottle of oats mixed with 22·4 ml of water in a 300-ml cylindrical plastic bottle. The optimal culturing period for the fruiting body formation was 37·1 days. Under these conditions, a fruiting body dry weight of 38·0 g per bottle (actual value) was attained. The fruiting body produced using a solid culture medium based on M. alternatus had a cordycepin content of about 25 µg g-1 . The solid culture medium containing M. alternatus is highly efficient and eco-friendly, and its effectiveness in large-scale fruiting body production from C. militaris has been demonstrated.
Collapse
Affiliation(s)
- S Y Ha
- Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - J Y Jung
- Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - J K Yang
- Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
5
|
Wang Y, Yang X, Chen P, Yang S, Zhang H. Homologous overexpression of genes in Cordyceps militaris improves the production of polysaccharides. Food Res Int 2021; 147:110452. [PMID: 34399454 DOI: 10.1016/j.foodres.2021.110452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 11/15/2022]
Abstract
The maximum yield of EPS produced by mutant CM-pgm-H was 4.63 ± 0.23 g/L, whereas the yield of wild-type strain was 3.43 ± 0.26 g/L. In addition, the data obtained in the present study indicated that the yield of EPS produced by the engineered strain treated with the co-overexpression of phosphoglucomutase and UDP-glucose 6-dehydrogenase genes achieved 6.11 ± 0.21 g/L, which was increased by 78.13% compared with that by the wild-type strain. CM-pgm-H obtained the highest EPS content than that of gk, ugp, and ugdh mutants. This result indicated that the content of protein phosphoglucomutase was an important influencing factor on the CP production of C. militaris. Furthermore, the EPS production of CM-ugdh-pgm-M was significantly improved by 1.78-fold by co-overexpression. Therefore, our engineering strategies will play an important role in the development of C. militaris for the sustainable production of Cordyceps polysaccharides.
Collapse
Affiliation(s)
- Yifeng Wang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xi Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ping Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China.
| |
Collapse
|
6
|
Kryukov VY, Kosman E, Tomilova O, Polenogova O, Rotskaya U, Tyurin M, Alikina T, Yaroslavtseva O, Kabilov M, Glupov V. Interplay between Fungal Infection and Bacterial Associates in the Wax Moth Galleria mellonella under Different Temperature Conditions. J Fungi (Basel) 2020; 6:E170. [PMID: 32927906 PMCID: PMC7558722 DOI: 10.3390/jof6030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Elena Kosman
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Oksana Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Ulyana Rotskaya
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Maksim Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (T.A.); (M.K.)
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (T.A.); (M.K.)
| | - Viktor Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| |
Collapse
|
7
|
Kryukov VY, Kryukova NA, Tomilova OG, Vorontsova Y, Chertkova E, Pervushin AL, Slepneva I, Glupov VV, Yaroslavtseva ON. Comparative analysis of the immune response of the wax moth Galleria mellonella after infection with the fungi Cordyceps militaris and Metarhizium robertsii. Microb Pathog 2020; 141:103995. [DOI: 10.1016/j.micpath.2020.103995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022]
|
8
|
Glupov V, Martemyanov V, Kryukov V. Insect parasites in multicomponent systems and development of new bioinsecticides. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201800009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stable and dynamic interactions among plants, herbivorous insects, parasites and associated microbes are formed in natural habitats. The study of these interactions in multicomponent models is required to develop integrated methods for the management of insect pest populations. In this work, we summarize our studies on the influence of different factors, such as hygrothermal conditions, host development, host microbiota, plant quality, and concomitant infections, on interactions between insects and their parasites, such as fungi, bacteria, viruses and parasitoids. Some approaches for developing complex products for biocontrol are also discussed. For example, the use of natural compounds with immunosuppressive effects may enhance the efficacy of microbial agents toward pest insects.
Collapse
|
9
|
Tomilova OG, Yaroslavtseva ON, Ganina MD, Tyurin MV, Chernyak EI, Senderskiy IV, Noskov YA, Polenogova OV, Akhanaev YB, Kryukov VY, Glupov VV, Morozov SV. Changes in antifungal defence systems during the intermoult period in the Colorado potato beetle. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:106-117. [PMID: 31077710 DOI: 10.1016/j.jinsphys.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.
Collapse
Affiliation(s)
- Oksana G Tomilova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Mariya D Ganina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| | - Igor V Senderskiy
- All-Russia Institute of Plant Protection, sh. Podbel'skogo, 3, St. Petersburg - Pushkin, 196608, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia; Tomsk State University, st. Lenin, 36, Tomsk 634050, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Yuriy B Akhanaev
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia.
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Sergey V Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| |
Collapse
|