1
|
Büttner C, Lisee C, Bjornsen E, Buck A, Favoreto N, Creighton A, Kamath G, Spang J, Franz JR, Blackburn T, Pietrosimone B. Bilateral waveform analysis of gait biomechanics presurgery to 12 months following ACL reconstruction compared to controls. J Orthop Res 2025; 43:322-336. [PMID: 39628297 DOI: 10.1002/jor.26001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 01/07/2025]
Abstract
The purpose of this study was to compare gait biomechanics between limbs and to matched uninjured controls (i.e., sex, age, and body mass index) preoperatively and at 2, 4, 6, and 12 months following primary unilateral anterior cruciate ligament reconstruction (ACLR). Functional mixed effects models were used to identify differences in gait biomechanics throughout the stance phase between the a) ACLR limb and uninvolved limb, b) ACLR limb and controls, and c) uninvolved limb and controls. Compared with the uninvolved limb, the ACLR limb demonstrated lesser knee extension moment (KEM; within 8-37% range of stance) during early stance as well as lesser knee flexion moment (KFM; 45-84%) and greater knee flexion angle (KFA; 43-90%) during mid- to late stance at all timepoints. Compared with controls, the ACLR limb demonstrated lesser vertical ground reaction force (vGRF; 5-26%), lesser KEM (7-47%), and lesser knee adduction moment (KAM; 12-35%) during early stance as well as greater vGRF (39-63%) and greater KFA (34-95%) during mid- to late stance at all timepoints. Compared with controls, the uninvolved limb demonstrated lesser KFA (1-56%) and lesser KEM (12-54%) during early to mid-stance at all timepoints. While gait becomes more symmetrical over the first 12 months post-ACLR, the ACLR and uninvolved limbs both demonstrate persistent aberrant gait biomechanics compared to controls. Biomechanical waveforms throughout stance can be generally described as less dynamic following ACL injury and ACLR compared with uninjured controls.
Collapse
Affiliation(s)
- Christin Büttner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Caroline Lisee
- Department of Kinesiology, University of Georgia, Athens, Georgia, USA
| | - Elizabeth Bjornsen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Ashley Buck
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
- Thurston Arthritis Research Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natália Favoreto
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexander Creighton
- Deparment of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ganesh Kamath
- Deparment of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeffrey Spang
- Deparment of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Ruan Y, Wang S, Zhang N, Jiang Z, Mei N, Li P, Ren L, Qian Z, Chang F. In vivo analysis of ankle joint kinematics and ligament deformation of chronic ankle instability patients during level walking. Front Bioeng Biotechnol 2024; 12:1441005. [PMID: 39165404 PMCID: PMC11333339 DOI: 10.3389/fbioe.2024.1441005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction: Chronic ankle instability (CAI) carries a high risk of progression to talar osteochondral lesions and post-traumatic osteoarthritis. It has been clinically hypothesized the progression is associated with abnormal joint motion and ligament elongation, but there is a lack of scientific evidence. Methods: A total of 12 patients with CAI were assessed during level walking with the use of dynamic biplane radiography (DBR) which can reproduce the in vivo positions of each bone. We evaluated the uninjured and CAI side of the tibiotalar and subtalar joint for three-dimensional kinematics differences. Elongation of the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) were also calculated bilaterally. Results: For patients with CAI, the dorsiflexion of the tibiotalar joint had reduced (21.73° ± 3.90° to 17.21° ± 4.35°), displacement of the talus increased (2.54 ± 0.64 mm to 3.12 ± 0.55 mm), and the inversion of subtalar joint increased (8.09° ± 2.21° to 11.80° ± 3.41°). Mean ATFL elongation was inversely related to mean dorsiflexion angle (CAI: rho = -0.82, P < 0.001; Control: rho = -0.92, P < 0.001), mean ATFL elongation was related to mean anterior translation (CAI: rho = 0.82, P < 0.001; Control: rho = 0.92, P < 0.001), mean CFL elongation was related to mean dorsiflexion angle (CAI: rho = 0.84, P < 0.001; Control: rho = 0.70, P < 0.001), and mean CFL elongation was inversely related to mean anterior translation (CAI: rho = -0.83, P < 0.001; Control: rho = -0.71, P < 0.001). Furthermore, ATFL elongation was significantly (CAI: rho = -0.82, P < 0.001; Control: rho = -0.78, P < 0.001) inversely correlated with CFL elongation. Discussion: Patients with CAI have significant changes in joint kinematics relative to the contralateral side. Throughout the stance phase of walking, ATFL increases in length during plantarflexion and talar anterior translation whereas the elongation trend of CFL was the opposite. This understanding can inform the development of targeted therapeutic exercises aimed at balancing ligament tension during different phases of gait. The interrelationship between two ligaments is that when one ligament shortens, the other lengthens. The occurrence of CAI didn't change this trend. Surgeons might consider positioning the ankle in a neutral sagittal plane to ensure optimal outcomes during ATFL and CFL repair.
Collapse
Affiliation(s)
- Yaokuan Ruan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shengli Wang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, China
| | - Nan Zhang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhende Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Nan Mei
- Orthopaedic Surgeon Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
- Health Technology College, Jilin Sport University, Changchun, China
| | - Pu Li
- Health Technology College, Jilin Sport University, Changchun, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, China
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Aragón-Basanta E, Venegas W, Ayala G, Page A, Serra-Añó P. Relationship between neck kinematics and neck dissability index. An approach based on functional regression. Sci Rep 2024; 14:215. [PMID: 38167615 PMCID: PMC10761888 DOI: 10.1038/s41598-023-50562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Numerous studies use numerical variables of neck movement to predict the level of severity of a pathology. However, the correlation between these numerical variables and disability levels is low, less than 0.4 in the best cases, even less in subjects with nonspecific neck pain. This work aims to use Functional Data Analysis (FDA), in particular scalar-on-function regression, to predict the Neck Disability Index (NDI) of subjects with nonspecific neck pain using the complete movement as predictors. Several functional regression models have been implemented, doubling the multiple correlation coefficient obtained when only scalar predictors are used. The best predictive model considers the angular velocity curves as a predictor, obtaining a multiple correlation coefficient of 0.64. In addition, functional models facilitate the interpretation of the relationship between the kinematic curves and the NDI since they allow identifying which parts of the curves most influence the differences in the predicted variable. In this case, the movement's braking phases contribute to a greater or lesser NDI. So, it is concluded that functional regression models have greater predictive capacity than usual ones by considering practically all the information in the curve while allowing a physical interpretation of the results.
Collapse
Affiliation(s)
- Elisa Aragón-Basanta
- Camino de Vera s/n, Instituto Universitario de Ingeniería Mecánica y Biomecánica, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - William Venegas
- Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, PO-Box 17-01-2759, Quito, Ecuador
| | - Guillermo Ayala
- Avda Vicent Andrés Estellés 1, Departament of Statistics and Operation Research, Universitat de València, 46100, Burjasot, Spain
| | - Alvaro Page
- Camino de Vera s/n, Instituto Universitario de Ingeniería Mecánica y Biomecánica, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Pilar Serra-Añó
- Gascó Oliag 5, Departament of Physiotherapy, Universitat de València, 46010, Valencia, Spain
| |
Collapse
|