1
|
Spitzer F, Kleine T, Burkhardt C, Hopp T, Yokoyama T, Abe Y, Aléon J, O’D Alexander CM, Amari S, Amelin Y, Bajo KI, Bizzarro M, Bouvier A, Carlson RW, Chaussidon M, Choi BG, Dauphas N, Davis AM, Di Rocco T, Fujiya W, Fukai R, Gautam I, Haba MK, Hibiya Y, Hidaka H, Homma H, Hoppe P, Huss GR, Ichida K, Iizuka T, Ireland TR, Ishikawa A, Itoh S, Kawasaki N, Kita NT, Kitajima K, Komatani S, Krot AN, Liu MC, Masuda Y, Morita M, Moynier F, Motomura K, Nakai I, Nagashima K, Nguyen A, Nittler L, Onose M, Pack A, Park C, Piani L, Qin L, Russell SS, Sakamoto N, Schönbächler M, Tafla L, Tang H, Terada K, Terada Y, Usui T, Wada S, Wadhwa M, Walker RJ, Yamashita K, Yin QZ, Yoneda S, Young ED, Yui H, Zhang AC, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Sakamoto K, Yabuta H, Abe M, Miyazaki A, Nakato A, Nishimura M, Okada T, Yada T, Yogata K, Nakazawa S, Saiki T, Tanaka S, Terui F, Tsuda Y, Watanabe SI, Yoshikawa M, Tachibana S, Yurimoto H. The Ni isotopic composition of Ryugu reveals a common accretion region for carbonaceous chondrites. SCIENCE ADVANCES 2024; 10:eadp2426. [PMID: 39331721 PMCID: PMC11430466 DOI: 10.1126/sciadv.adp2426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk's lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites.
Collapse
Affiliation(s)
- Fridolin Spitzer
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Thorsten Kleine
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Christoph Burkhardt
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Timo Hopp
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Tetsuya Yokoyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yoshinari Abe
- Graduate School of Engineering Materials Science and Engineering, Tokyo Denki University, Tokyo 120-8551, Japan
| | - Jérôme Aléon
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d’Histoire Naturelle, CNRS UMR 7590, IRD, 75005 Paris, France
| | - Conel M. O’D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Sachiko Amari
- McDonnell Center for the Space Sciences and Physics Department, Washington University, 35 St. Louis, MO 63130, USA
- Geochemical Research Center, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuri Amelin
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, GD 510640, China
| | - Ken-ichi Bajo
- Department of Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Martin Bizzarro
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen K 1350, Denmark
| | - Audrey Bouvier
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth 95447, Germany
| | - Richard W. Carlson
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Marc Chaussidon
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
| | - Byeon-Gak Choi
- Department of Earth Science Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Nicolas Dauphas
- Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Andrew M. Davis
- Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Tommaso Di Rocco
- Faculty of Geosciences and Geography, University of Göttingen, Göttingen D-37077, Germany
| | - Wataru Fujiya
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | | | - Ikshu Gautam
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Makiko K. Haba
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yuki Hibiya
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, Kanagawa 237-0061, Japan
| | - Hiroshi Hidaka
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hisashi Homma
- Osaka Application Laboratory, SBUWDX, Rigaku Corporation, Osaka 569-1146, Japan
| | - Peter Hoppe
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Gary R. Huss
- Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Kiyohiro Ichida
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Tsuyoshi Iizuka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Trevor R. Ireland
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Akira Ishikawa
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Shoichi Itoh
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Kawasaki
- Department of Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Noriko T. Kita
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kouki Kitajima
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shintaro Komatani
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Alexander N. Krot
- Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Ming-Chang Liu
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Yuki Masuda
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Mayu Morita
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Fréderic Moynier
- Department of Earth Science Education, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Izumi Nakai
- Department of Applied Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Kazuhide Nagashima
- Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Ann Nguyen
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Larry Nittler
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Morihiko Onose
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Andreas Pack
- Faculty of Geosciences and Geography, University of Göttingen, Göttingen D-37077, Germany
| | - Changkun Park
- Division of Earth-System Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Laurette Piani
- Centre de Recherches Pétrographiques et Géochimiques, CNRS - Université de Lorraine, 54500 Nancy, France
| | - Liping Qin
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sara S. Russell
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Hokkaido University, Sapporo 001-0021, Japan
| | - Maria Schönbächler
- Institute for Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Lauren Tafla
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Haolan Tang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kentaro Terada
- Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan
| | - Yasuko Terada
- Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198 Japan
| | | | - Sohei Wada
- Department of Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Richard J. Walker
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Katsuyuki Yamashita
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Qing-Zhu Yin
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA
| | - Shigekazu Yoneda
- Department of Science and Engineering, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Edward D. Young
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Hiroharu Yui
- Department of Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Ai-Cheng Zhang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Hikaru Yabuta
- Earth and Planetary Systems Science Program, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | - Toru Yada
- ISAS/JSEC, JAXA, Sagamihara 252-5210, Japan
| | | | | | | | | | - Fuyuto Terui
- Graduate School of Engineering, Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | | | - Sei-ichiro Watanabe
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | - Shogo Tachibana
- UTokyo Organization for Planetary and Space Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Yurimoto
- Department of Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
van Kooten E, Zhao X, Franchi I, Tung PY, Fairclough S, Walmsley J, Onyett I, Schiller M, Bizzarro M. The nucleosynthetic fingerprint of the outermost protoplanetary disk and early Solar System dynamics. SCIENCE ADVANCES 2024; 10:eadp1613. [PMID: 38875339 PMCID: PMC11177941 DOI: 10.1126/sciadv.adp1613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Knowledge of the nucleosynthetic isotope composition of the outermost protoplanetary disk is critical to understand the formation and early dynamical evolution of the Solar System. We report the discovery of outer disk material preserved in a pristine meteorite based on its chemical composition, organic-rich petrology, and 15N-rich, deuterium-rich, and 16O-poor isotope signatures. We infer that this outer disk material originated in the comet-forming region. The nucleosynthetic Fe, Mg, Si, and Cr compositions of this material reveal that, contrary to current belief, the isotope signature of the comet-forming region is ubiquitous among outer Solar System bodies, possibly reflecting an important planetary building block in the outer Solar System. This nucleosynthetic component represents fresh material added to the outer disk by late accretion streamers connected to the ambient molecular cloud. Our results show that most Solar System carbonaceous asteroids accreted material from the comet-forming region, a signature lacking in the terrestrial planet region.
Collapse
Affiliation(s)
- Elishevah van Kooten
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Xuchao Zhao
- School of Physical Sciences, Open University, Milton Keynes, MK7 6AA, UK
| | - Ian Franchi
- School of Physical Sciences, Open University, Milton Keynes, MK7 6AA, UK
| | - Po-Yen Tung
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge, UK
| | - Simon Fairclough
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge, UK
| | - John Walmsley
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge, UK
| | - Isaac Onyett
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Martin Bizzarro
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Institut de Physique du Globe de Paris, Université Paris Cité, 1 Rue Jussieu, 75005 Paris, France
| |
Collapse
|
3
|
Zhu K, Schiller M, Pan L, Saji NS, Larsen KK, Amsellem E, Rundhaug C, Sossi P, Leya I, Moynier F, Bizzarro M. Late delivery of exotic chromium to the crust of Mars by water-rich carbonaceous asteroids. SCIENCE ADVANCES 2022; 8:eabp8415. [PMID: 36383650 PMCID: PMC9668285 DOI: 10.1126/sciadv.abp8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The terrestrial planets endured a phase of bombardment following their accretion, but the nature of this late accreted material is debated, preventing a full understanding of the origin of inner solar system volatiles. We report the discovery of nucleosynthetic chromium isotope variability (μ54Cr) in Martian meteorites that represent mantle-derived magmas intruded in the Martian crust. The μ54Cr variability, ranging from -33.1 ± 5.4 to +6.8 ± 1.5 parts per million, correlates with magma chemistry such that samples having assimilated crustal material define a positive μ54Cr endmember. This compositional endmember represents the primordial crust modified by impacting outer solar system bodies of carbonaceous composition. Late delivery of this volatile-rich material to Mars provided an exotic water inventory corresponding to a global water layer >300 meters deep, in addition to the primordial water reservoir from mantle outgassing. This carbonaceous material may also have delivered a source of biologically relevant molecules to early Mars.
Collapse
Affiliation(s)
- Ke Zhu
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lu Pan
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nikitha Susan Saji
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten K. Larsen
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elsa Amsellem
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Courtney Rundhaug
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Sossi
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Ingo Leya
- Physics Institute, University of Bern, Bern, Switzerland
| | - Frederic Moynier
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Martin Bizzarro
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Torrano ZA, Schrader DL, Davidson J, Greenwood RC, Dunlap DR, Wadhwa M. The relationship between CM and CO chondrites: Insights from combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 301:70-90. [PMID: 34316079 PMCID: PMC8312627 DOI: 10.1016/j.gca.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A close relationship between CM and CO chondrites has been suggested by previous petrologic and isotopic studies, leading to the suggestion that they may originate from similar precursor materials or even a common parent body. In this study, we evaluate the genetic relationship between CM and CO chondrites using Ti, Cr, and O isotopes. We first provide additional constraints on the ranges of ε50Ti and ε54Cr values of bulk CM and CO chondrites by reporting the isotopic compositions of CM2 chondrites Murchison, Murray, and Aguas Zarcas and the CO3.8 chondrite Isna. We then report the ε50Ti and ε54Cr values for several ungrouped and anomalous carbonaceous chondrites that have been previously reported to exhibit similarities to the CM and/or CO chondrite groups, including Elephant Moraine (EET) 83226, EET 83355, Grosvenor Mountains (GRO) 95566, MacAlpine Hills (MAC) 87300, MAC 87301, MAC 88107, and Northwest Africa (NWA) 5958, and the O-isotope compositions of a subset of these samples. We additionally report the Ti, Cr, and O isotopic compositions of additional ungrouped chondrites LaPaz Ice Field (LAP) 04757, LAP 04773, Lewis Cliff (LEW) 85332, and Coolidge to assess their potential relationships with known carbonaceous and ordinary chondrite groups. LAP 04757 and LAP 04773 exhibit isotopic compositions indicating they are low-FeO ordinary chondrites. The isotopic compositions of Murchison, Murray, Aguas Zarcas, and Isna extend the compositional ranges defined by the CM and CO chondrites in ε50Ti versus ε54Cr space. The majority of the ungrouped carbonaceous chondrites with documented similarities to the CM and/or CO chondrites plot outside the CM and CO group fields in plots of ε50Ti versus ε54Cr, Δ17O versus ε50Ti, and Δ17O versus ε54Cr. Therefore, based on differences in their Ti, Cr, and O isotopic compositions, we conclude that the CM, CO, and ungrouped carbonaceous chondrites likely represent samples of multiple distinct parent bodies. We also infer that these parent bodies formed from precursor materials that shared similar isotopic compositions, which may indicate formation in regions of the protoplanetary disk that were in close proximity to each other.
Collapse
Affiliation(s)
- Zachary A. Torrano
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Devin L. Schrader
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- Center for Meteorite Studies, Arizona State University, Tempe, AZ 85287, USA
| | - Jemma Davidson
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- Center for Meteorite Studies, Arizona State University, Tempe, AZ 85287, USA
| | - Richard C. Greenwood
- Planetary and Space Sciences, School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Daniel R. Dunlap
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Zhu K, Moynier F, Schiller M, Alexander CMO, Davidson J, Schrader DL, van Kooten E, Bizzarro M. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 301:158-186. [PMID: 34393262 PMCID: PMC7611480 DOI: 10.1016/j.gca.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from 53Mn-53Cr decay and variable nucleosynthetic contributions from the stable 54Cr nuclide. Here, we report high-precision measurements of the massindependent Cr isotope compositions (ε53Cr and ε54Cr) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing ε54Cr (per ten thousand deviation of the 54Cr/52Cr ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH ≥ CB ≥ CR ≥ CM ≈ CV ≈ CO ≥ CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group ε54Cr heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable ε54Cr (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common ε54Cr characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar ε53Cr values to the CI chondrites, invalidating them as anchors for a bulk 53Mn-53Cr isochron for carbonaceous chondrites. Bulk Earth has a ε53Cr value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites.
Collapse
Affiliation(s)
- Ke Zhu
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Frédéric Moynier
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Conel M O'D Alexander
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA
| | - Jemma Davidson
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Devin L Schrader
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Elishevah van Kooten
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Martin Bizzarro
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| |
Collapse
|
6
|
Fukuda K, Brownlee DE, Joswiak DJ, Tenner TJ, Kimura M, Kita NT. Correlated isotopic and chemical evidence for condensation origins of olivine in comet 81P/Wild 2 and in AOAs from CV and CO chondrites. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 293:544-574. [PMID: 34866644 PMCID: PMC8637496 DOI: 10.1016/j.gca.2020.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Magnesium stable isotope ratios and minor element abundances of five olivine particles from comet 81P/Wild 2 were examined by secondary ion mass spectrometry (SIMS). Wild 2 olivine particles exhibit only small variations in δ25Mg values from -1.0 +0.4/-0.5 ‰ to 0.6 +0.5/- 0.6 ‰ (2σ). This variation can be simply explained by mass-dependent fractionation from Mg isotopic compositions of the Earth and bulk meteorites, suggesting that Wild 2 olivine particles formed in the chondritic reservoir with respect to Mg isotope compositions. We also determined minor element abundances, and O and Mg isotope ratios of olivine grains in amoeboid olivine aggregates (AOAs) from Kaba (CV3.1) and DOM 08006 (CO3.01) carbonaceous chondrites. Our new SIMS minor element data reveal uniform, low FeO contents of ~0.05 wt% among AOA olivines from DOM 08006, suggesting that AOAs formed at more reducing environments in the solar nebula than previously thought. Furthermore, the SIMS-derived FeO contents of the AOA olivines are consistently lower than those obtained by electron microprobe analyses (~1 wt% FeO), indicating possible fluorescence from surrounding matrix materials and/or Fe,Ni-metals in AOAs during electron microprobe analyses. For Mg isotopes, AOA olivines show more negative mass-dependent fractionation (-3.8 ± 0.5‰ ≤ δ25Mg ≤ -0.2 ± 0.3‰; 2σ) relative to Wild 2 olivines. Further, these Mg isotope variations are correlated with their host AOA textures. Large negative Mg isotope fractionations in olivine are often observed in pore-rich AOAs, while those in compact AOAs tend to have near-chondritic Mg isotopic compositions. These observations indicate that pore-rich AOAs preserved their gas-solid condensation histories, while compact AOAs experienced thermal processing in the solar nebula after their condensation and aggregation. Importantly, one 16O-rich Wild 2 LIME olivine particle (T77/F50) shows negative Mg isotope fractionation (δ25Mg = -0.8 ± 0.4‰, δ26Mg = -1.4 ± 0.9‰; 2σ) relative to bulk chondrites. Minor element abundances of T77/F50 are in excellent agreement with those of olivines from pore-rich AOAs in DOM 08006. The observed similarity in O and Mg isotopes, and minor element abundances suggest that T77/F50 formed in an environment similar to AOAs, probably near the proto-Sun, and then was transported to the Kuiper belt, where comet 81P/Wild 2 likely accreted.
Collapse
Affiliation(s)
- Kohei Fukuda
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Donald E. Brownlee
- Department of Astronomy, University of Washington, Seattle, WA 98195, USA
| | - David J. Joswiak
- Department of Astronomy, University of Washington, Seattle, WA 98195, USA
| | - Travis J. Tenner
- Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory, MSJ514, Los Alamos, NM 87545, USA
| | - Makoto Kimura
- National Institute of Polar Research, Tokyo 190-8518, Japan
| | - Noriko T. Kita
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Williams CD, Sanborn ME, Defouilloy C, Yin QZ, Kita NT, Ebel DS, Yamakawa A, Yamashita K. Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk. Proc Natl Acad Sci U S A 2020; 117:23426-23435. [PMID: 32900966 PMCID: PMC7519341 DOI: 10.1073/pnas.2005235117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the ε50Ti-ε54Cr-Δ17O systematics of large individual chondrules, which typically formed 2 to 3 My after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a "missing reservoir" that bridges the gap between inner and outer Solar System materials. We also observe chondrules with positive ε50Ti and ε54Cr plot with a constant offset below the primitive chondrule mineral line (PCM), indicating that they are on the slope ∼1.0 in the oxygen three-isotope diagram. In contrast, chondrules with negative ε50Ti and ε54Cr increasingly deviate above from PCM line with increasing δ18O, suggesting that they are on a mixing trend with an ordinary chondrite-like isotope reservoir. Furthermore, the Δ17O-Mg# systematics of these chondrules indicate they formed in environments characterized by distinct abundances of dust and H2O ice. We posit that large-scale outward transport of nominally inner Solar System materials most likely occurred along the midplane associated with a viscously evolving disk and that CV and CK chondrules formed in local regions of enhanced gas pressure and dust density created by the formation of Jupiter.
Collapse
Affiliation(s)
- Curtis D Williams
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616;
| | - Matthew E Sanborn
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616
| | - Céline Defouilloy
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Qing-Zhu Yin
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616;
| | - Noriko T Kita
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Denton S Ebel
- Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024
| | - Akane Yamakawa
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616
| | - Katsuyuki Yamashita
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, 700-8530 Okayama, Japan
| |
Collapse
|
8
|
Fukuda K, Beard BL, Dunlap DR, Spicuzza MJ, Fournelle JH, Wadhwa M, Kita NT. Magnesium isotope analysis of olivine and pyroxene by SIMS: Evaluation of matrix effects. CHEMICAL GEOLOGY 2020; 540:119482. [PMID: 34866642 PMCID: PMC8637499 DOI: 10.1016/j.chemgeo.2020.119482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The performance of multi-collector secondary ion mass spectrometry (MC-SIMS) for Mg isotope ratio analysis was evaluated using 17 olivine and 5 pyroxene reference materials (RMs). The Mg isotope composition of these RMs was accurately and precisely determined by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these measured isotope ratios were used to evaluate SIMS instrumental mass bias as a function of the forsterite (Fo) content of olivine. The magnitude of the Mg isotope matrix effects were ~3‰ in δ25Mg, and are a complex function of olivine Fo content, that ranged from Fo59.3 to Fo100. In addition to these Mg isotope matrix effects, Si+ ion yields and Mg+/Si+ ion ratios varied as a complex function of the Fo content of the olivine RMs. For example, Si+ ion yields varied by ~33%. Based on the observations, we propose instrumental bias correction procedures for SIMS Mg isotope analysis of olivine using a combination of Mg+/Si+ ratios and Fo content of olivine. Using this correction method, the accuracy of δ25Mg analyses is 0.3‰, except for analysis of olivine with Fo86-88 where instrumental biases and Mg+/Si+ ratios change dramatically with Fo content, making it more difficult to assess the accuracy of Mg isotope ratio measurements by SIMS over this narrow range of Fo content. Five pyroxene RMs (3 orthopyroxenes and 2 clinopyroxenes) show smaller ranges of instrumental bias (~1.4‰ in δ25Mg) as compared to the olivine RMs. The instrumental bias for the 3 orthopyroxene RMs do not define a linear relationship with respect to enstatite (En) content, that ranged from En85.5 -96.3. The clinopyroxene RMs have similar En and wollastonite (Wo) contents but have δ25Mg values that differ by 0.5‰ relative to their δ25Mg values determined by MC-ICP-MS. These results indicate that additional factors (e.g., minor element abundances) likely contribute to SIMS instrumental mass fractionation. In order to better correct for these SIMS matrix effects, additional pyroxene RMs with various chemical compositions and known Mg isotope ratios are needed.
Collapse
Affiliation(s)
- Kohei Fukuda
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L. Beard
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel R. Dunlap
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Michael J. Spicuzza
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John H. Fournelle
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Noriko T. Kita
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Larsen K, Wielandta D, Schillera M, Krot A, Bizzarro M. Episodic formation of refractory inclusions in the Solar System and their presolar heritage. EARTH AND PLANETARY SCIENCE LETTERS 2020; 535:116088. [PMID: 34334802 PMCID: PMC7611424 DOI: 10.1016/j.epsl.2020.116088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Refractory inclusions [Ca-Al-rich Inclusions (CAIs) and Amoeboid Olivine Aggregates (AOAs)] in primitive meteorites are the oldest Solar System solids. They formed in the hot inner protoplanetary disk and, as such, provide insights into the earliest disk dynamics and physicochemical processing of the dust and gas that accreted to form the Sun and its planetary system. Using the short-lived 26Al to 26Mg decay system, we show that bulk refractory inclusions in CV (Vigarano-type) and CR (Renazzo-type) carbonaceous chondrites captured at least two distinct 26Al-rich (26Al/27Al ratios of ~5 × 10-5) populations of refractory inclusions characterized by different initial 26Mg/24Mg isotope compositions (μ26Mg*0). Another 26Al-poor CAI records an even larger μ26Mg*0 deficit. This suggests that formation of refractory inclusions was punctuated and recurrent, possibly associated with episodic outbursts from the accreting proto-Sun lasting as short as <8000 yr. Our results support a model in which refractory inclusions formed close to the hot proto-Sun and were subsequently redistributed to the outer disk, beyond the orbit of Jupiter, plausibly via stellar outflows with progressively decreasing transport efficiency. We show that the magnesium isotope signatures in refractory inclusions mirrors the presolar grain record, demonstrating a mutual exclusivity between 26Al enrichments and large nucleosynthetic Mg isotope effects. This suggests that refractory inclusions formed by incomplete thermal processing of presolar dust, thereby inheriting a diluted signature of their isotope systematics. As such, they record snapshots in the progressive sublimation of isotopically anomalous presolar carriers through selective thermal processing of young dust components from the proto-Solar molecular cloud. We infer that 26Al-rich refractory inclusions incorporated 26Al-rich dust which formed <5 Myr prior to our Sun, whereas 26Al-poor inclusions (such as FUN- and PLAC-type CAIs) incorporated >10 Myr old dust.
Collapse
Affiliation(s)
- K.K. Larsen
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - D. Wielandta
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - M. Schillera
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - A.N. Krot
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350, Denmark
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, HI 96822, USA
| | - M. Bizzarro
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350, Denmark
| |
Collapse
|
10
|
van Kooten E, Cavalcante L, Wielandt D, Bizzarro M. The role of Bells in the continuous accretion between the CM and CR chondrite reservoirs. METEORITICS & PLANETARY SCIENCE 2020; 55:575-590. [PMID: 32362738 PMCID: PMC7188250 DOI: 10.1111/maps.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
CM meteorites are dominant members of carbonaceous chondrites (CCs), which evidently accreted in a region separated from the terrestrial planets. These chondrites are key in determining the accretion regions of solar system materials, since in Mg and Cr isotope space, they intersect between what are identified as inner and outer solar system reservoirs. In this model, the outer reservoir is represented by metal-rich carbonaceous chondrites (MRCCs), including CR chondrites. An important question remains whether the barrier between MRCCs and CCs was a temporal or spatial one. CM chondrites and chondrules are used here to identify the nature of the barrier as well as the timescale of chondrite parent body accretion. We find based on high precision Mg and Cr isotope data of seven CM chondrites and 12 chondrules, that accretion in the CM chondrite reservoir was continuous lasting <3 Myr and showing late accretion of MRCC-like material reflected by the anomalous CM chondrite Bells. We further argue that although MRCCs likely accreted later than CM chondrites, CR chondrules must have initially formed from a reservoir spatially separated from CM chondrules. Finally, we hypothesize on the nature of the spatial barrier separating these reservoirs.
Collapse
Affiliation(s)
- Elishevah van Kooten
- Institut de Physique du Globe de ParisUniversité de ParisCNRSUMR 71541 rue Jussieu75238ParisFrance
| | | | - Daniel Wielandt
- Centre for Star and Planet Formation and Natural History Museum of DenmarkUniversity of CopenhagenDK‐1350CopenhagenDenmark
| | - Martin Bizzarro
- Centre for Star and Planet Formation and Natural History Museum of DenmarkUniversity of CopenhagenDK‐1350CopenhagenDenmark
| |
Collapse
|
11
|
Abstract
An impasse exists between chemical and astrophysical models that explore the accretion of the Solar System’s building blocks, the chondrites. To resolve this issue means to gain an understanding of the dimensions of mass transport in the early Solar System and, hence, a crucial insight into the volatile inventory of the terrestrial planets. Here, we use element volatility patterns of chondrules and their dust rims to show that these main constituents of chondrites are not complementary to each other and did not form in the same chemical reservoirs. We propose a unifying chondrule and matrix accretion model that necessitates significant mass transport in the protoplanetary disk and an inward flux of volatile-rich CI-like (Ivuna-type carbonaceous chondrite) dust. The so far unique role of our Solar System in the universe regarding its capacity for life raises fundamental questions about its formation history relative to exoplanetary systems. Central in this research is the accretion of asteroids and planets from a gas-rich circumstellar disk and the final distribution of their mass around the Sun. The key building blocks of the planets may be represented by chondrules, the main constituents of chondritic meteorites, which in turn are primitive fragments of planetary bodies. Chondrule formation mechanisms, as well as their subsequent storage and transport in the disk, are still poorly understood, and their origin and evolution can be probed through their link (i.e., complementary or noncomplementary) to fine-grained dust (matrix) that accreted together with chondrules. Here, we investigate the apparent chondrule–matrix complementarity by analyzing major, minor, and trace element compositions of chondrules and matrix in altered and relatively unaltered CV, CM, and CR (Vigarano-type, Mighei-type, and Renazzo-type) chondrites. We show that matrices of the most unaltered CM and CV chondrites are overall CI-like (Ivuna-type) (similar to solar composition) and do not reflect any volatile enrichment or elemental patterns complementary to chondrules, the exception being their Fe/Mg ratios. We propose to unify these contradictory data by invoking a chondrule formation model in which CI-like dust accreted to so-called armored chondrules, which are ubiquitous in many chondrites. Metal rims expelled during chondrule formation, but still attached to their host chondrule, interacted with the accreted matrix, thereby enriching the matrix in siderophile elements and generating an apparent complementarity.
Collapse
|
12
|
Tenner TJ, Nakashima D, Ushikubo T, Tomioka N, Kimura M, Weisberg MK, Kita NT. Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. GEOCHIMICA ET COSMOCHIMICA ACTA 2019; 260:133-160. [PMID: 32255837 PMCID: PMC7121246 DOI: 10.1016/j.gca.2019.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Al-Mg isotope systematics of twelve FeO-poor (type I) chondrules from CR chondrites Queen Alexandra Range 99177 and Meteorite Hills 00426 were investigated by secondary ion mass spectrometry (SIMS). Five chondrules with Mg#'s of 99.0 to 99.2 and Δ17O of -4.2‰ to -5.3‰ have resolvable excess 26Mg. Their inferred (26Al/27Al)0 values range from (3.5 ± 1.3) × 10‒6 to (6.0 ± 3.9) × 10‒6. This corresponds to formation times of 2.2 (-0.5/+1.1) Myr to 2.8 (‒0.3/+0.5) Myr after CAIs, using a canonical (26Al/27Al)0 of 5.23 × 10-5, and assuming homogeneously distributed 26Al that yielded a uniform initial 26Al/27Al in the Solar System. Seven chondrules lack resolvable excess 26Mg. They have lower Mg#'s (94.2 to 98.7) and generally higher Δ17O (-0.9‰ to -4.9‰) than chondrules with resolvable excess 26Mg. Their inferred (26Al/27Al)0 upper limits range from 1.3 × 10‒6 to 3.2 × 10‒6, corresponding to formation >2.9 to >3.7 Myr after CAIs. Al-Mg isochrons depend critically on chondrule plagioclase, and several characteristics indicate the chondrule plagioclase is unaltered: (1) SIMS 27Al/24Mg depth profile patterns match those from anorthite standards, and SEM/EDS of chondrule SIMS pits show no foreign inclusions; (2) transmission electron microscopy (TEM) reveals no nanometer-scale micro-inclusions and no alteration due to thermal metamorphism; (3) oxygen isotopes of chondrule plagioclase match those of coexisting olivine and pyroxene, indicating a low extent of thermal metamorphism; and (4) electron microprobe data show chondrule plagioclase is anorthite-rich, with excess structural silica and high MgO, consistent with such plagioclase from other petrologic type 3.00-3.05 chondrites. We conclude that the resolvable (26Al/27Al)0 variabilities among chondrules studied are robust, corresponding to a formation interval of at least 1.1 Myr. Using relationships between chondrule (26Al/27Al)0, Mg#, and Δ17O, we interpret spatial and temporal features of dust, gas, and H2O ice in the FeO-poor chondrule-forming environment. Mg# ≥ 99, Δ17O ~-5‰ chondrules with resolvable excess 26Mg initially formed in an environment that was relatively anhydrous, with a dust-to-gas ratio of ~100×. After these chondrules formed, we interpret a later influx of 16O-poor H2O ice into the environment, and that dust-to-gas ratios expanded (100× to 300×). This led to the later formation of more oxidized Mg# 94-99 chondrules with higher Δ17O (-5‰ to -1‰), with low (26Al/27Al)0, and hence no resolvable excess 26Mg. We refine the mean CR chondrite chondrule formation age via mass balance, by considering that Mg# ≥ 99 chondrules generally have resolved positive (26Al/27Al)0 and that Mg# < 99 chondrules generally have no resolvable excess 26Mg, implying lower (26Al/27Al)0. We obtain a mean chondrule formation age of 3.8 ± 0.3 Myr after CAIs, which is consistent with Pb-Pb and Hf-W model ages of CR chondrite chondrule aggregates. Overall, this suggests most CR chondrite chondrules formed immediately before parent body accretion.
Collapse
Affiliation(s)
- Travis J Tenner
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory, MSJ514, Los Alamos, NM 87545, USA
| | - Daisuke Nakashima
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Earth and Planetary Material Sciences, Faculty of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Ushikubo
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe Otsu, Nankoku, Kochi 783-8502, Japan
| | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe Otsu, Nankoku, Kochi 783-8502, Japan
| | - Makoto Kimura
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
- National Institute of Polar Research, Tokyo 190-8518, Japan
| | - Michael K Weisberg
- Kingsborough Community College and Graduate Center, The City University of New York, 2001 Oriental Boulevard, Brooklyn, NY 11235-2398, USA
- American Museum of Natural History, Central Park West at 79 Street, New York, NY, 10024-5192, USA
| | - Noriko T Kita
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Scott ERD, Krot AN, Sanders IS. Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk. THE ASTROPHYSICAL JOURNAL 2018; 854:164. [PMID: 30842684 PMCID: PMC6398615 DOI: 10.3847/1538-4357/aaa5a5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole rock Δ17O and nucleosynthetic isotopic variations for chromium, titanium, nickel, and molybdenum in meteorites define two isotopically distinct populations: carbonaceous chondrites (CCs) and some achondrites, pallasites, and irons in one and all other chondrites and differentiated meteorites in the other. Since differentiated bodies accreted 1-3 Myr before the chondrites, the isotopic dichotomy cannot be attributed to temporal variations in the disk. Instead, the two populations were most likely separated in space, plausibly by proto-Jupiter. Formation of CCs outside Jupiter could account for their characteristic chemical and isotopic composition. The abundance of refractory inclusions in CCs can be explained if they were ejected by disk winds from near the Sun to the disk periphery where they spiraled inward due to gas drag. Once proto-Jupiter reached 10-20 M ⊕, its external pressure bump could have prevented millimeter- and centimeter-sized particles from reaching the inner disk. This scenario would account for the enrichment in CCs of refractory inclusions, refractory elements, and water. Chondrules in CCs show wide ranges in Δ17O as they formed in the presence of abundant 16O-rich refractory grains and 16O-poor ice particles. Chondrules in other chondrites (ordinary, E, R, and K groups) show relatively uniform, near-zero Δ17O values as refractory inclusions and ice were much less abundant in the inner solar system. The two populations were plausibly mixed together by the Grand Tack when Jupiter and Saturn migrated inward emptying and then repopulating the asteroid belt with roughly equal masses of planetesimals from inside and outside Jupiter's orbit (S- and C-type asteroids).
Collapse
Affiliation(s)
- Edward R D Scott
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Honolulu, HI 96822, USA
| | - Alexander N Krot
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Honolulu, HI 96822, USA
| | - Ian S Sanders
- Department of Geology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
14
|
Bollard J, Connelly JN, Whitehouse MJ, Pringle EA, Bonal L, Jørgensen JK, Nordlund Å, Moynier F, Bizzarro M. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. SCIENCE ADVANCES 2017; 3:e1700407. [PMID: 28808680 PMCID: PMC5550225 DOI: 10.1126/sciadv.1700407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/11/2017] [Indexed: 06/01/2023]
Abstract
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
Collapse
Affiliation(s)
- Jean Bollard
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | - James N. Connelly
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | | | - Emily A. Pringle
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lydie Bonal
- Institut de Planétologie et d’Astrophysique de Grenoble, Grenoble, France
| | - Jes K. Jørgensen
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | - Åke Nordlund
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martin Bizzarro
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|