1
|
Odhiambo DA, Pittman AN, Rickard AG, Castillo RJ, Bassil AM, Chen J, Ravotti ML, Xu ES, Himes JE, Daniel AR, Watts TL, Williams NT, Luo L, Kirsch DG, Mowery YM. Preclinical Evaluation of the ATR Inhibitor BAY 1895344 as a Radiosensitizer for Head and Neck Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2024; 118:1315-1327. [PMID: 38104870 PMCID: PMC11294978 DOI: 10.1016/j.ijrobp.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Despite aggressive multimodal treatment that typically includes definitive or adjuvant radiation therapy (RT), locoregional recurrence rates approach 50% for patients with locally advanced human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). Thus, more effective therapeutics are needed to improve patient outcomes. We evaluated the radiosensitizing effects of ataxia telangiectasia and RAD3-related (ATR) inhibitor (ATRi) BAY 1895344 in preclinical models of HNSCC. METHODS AND MATERIALS Murine and human HPV-negative HNSCC cells (MOC2, MOC1, JHU-012) were treated with vehicle or ATRi with or without 4 Gy. Checkpoint kinase 1 phosphorylation and DNA damage (γH2AX) were evaluated by Western blot, and ATRi half-maximal inhibitory concentration was determined by MTT assay for HNSCC cells and immortalized murine oral keratinocytes. In vitro radiosensitization was tested by clonogenic assay. Cell cycle distribution and mitotic catastrophe were evaluated by flow cytometry. Mitotic aberrations were quantified by fluorescent microscopy. Tumor growth delay and survival were assessed in mice bearing MOC2 or JHU-012 transplant tumors treated with vehicle, ATRi, RT (10 Gy × 1 or 8 Gy × 3), or combined ATRi + RT. RESULTS ATRi caused dose-dependent reduction in checkpoint kinase 1 phosphorylation at 1 hour post-RT (4 Gy) and dose-dependent increase in γH2AX at 18 hours post-RT. Addition of RT to ATRi led to decreased BAY 1895344 half-maximal inhibitory concentration in HNSCC cell lines but not in normal tissue surrogate immortalized murine oral keratinocytes. Clonogenic assays demonstrated radiosensitization in the HNSCC cell lines. ATRi abrogated the RT-induced G2/M checkpoint, leading to mitosis with unrepaired DNA damage and increased mitotic aberrations (multinucleated cells, micronuclei, nuclear buds, nucleoplasmic bridges). ATRi and RT significantly delayed tumor growth in MOC2 and JHU-012 in vivo models, with improved overall survival in the MOC2 model. CONCLUSIONS These findings demonstrated that BAY 1895344 increased in vitro and in vivo radiosensitivity in HPV-negative HNSCC preclinical models, suggesting therapeutic potential warranting evaluation in clinical trials for patients with locally advanced or recurrent HPV-negative HNSCC.
Collapse
Affiliation(s)
| | | | - Ashlyn G Rickard
- Dept. of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh
| | | | | | - Joshua Chen
- College of Arts and Sciences, Duke University
| | - Madison L Ravotti
- Dept. of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh
| | - Eric S Xu
- Dept. of Radiation Oncology, Duke University
| | | | | | - Tammara L Watts
- Dept. of Head and Neck Surgery & Communication Sciences, Duke University
| | | | - Lixia Luo
- Dept. of Radiation Oncology, Duke University
| | - David G Kirsch
- Dept. of Radiation Oncology, Duke University
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network
- Dept. of Radiation Oncology and Dept. of Medical Biophysics, University of Toronto
| | - Yvonne M Mowery
- Dept. of Radiation Oncology, Duke University
- Dept. of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh
- Dept. of Head and Neck Surgery & Communication Sciences, Duke University
| |
Collapse
|
2
|
Restaino AC, Walz A, Vermeer SJ, Barr J, Kovács A, Fettig RR, Vermeer DW, Reavis H, Williamson CS, Lucido CT, Eichwald T, Omran DK, Jung E, Schwartz LE, Bell M, Muirhead DM, Hooper JE, Spanos WC, Drapkin R, Talbot S, Vermeer PD. Functional neuronal circuits promote disease progression in cancer. SCIENCE ADVANCES 2023; 9:eade4443. [PMID: 37163587 PMCID: PMC10171812 DOI: 10.1126/sciadv.ade4443] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jeffrey Barr
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Attila Kovács
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Robin R. Fettig
- Basic Biomedical Sciences Program, University of South Dakota, Vermillion, SD, USA
| | - Daniel W. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Hunter Reavis
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Tuany Eichwald
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Dalia K. Omran
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Bell
- Sanford Gynecologic Oncology, Sanford Health, Sioux Falls, SD, USA
| | | | - Jody E. Hooper
- Legacy Gift Rapid Autopsy Program, Johns Hopkins University, Baltimore, MD, USA
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Sanford Ear, Nose and Throat Clinic, Sioux Falls, SD, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastien Talbot
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| |
Collapse
|
3
|
Kono M, Saito S, Egloff AM, Allen CT, Uppaluri R. The mouse oral carcinoma (MOC) model: A 10-year retrospective on model development and head and neck cancer investigations. Oral Oncol 2022; 132:106012. [PMID: 35820346 PMCID: PMC9364442 DOI: 10.1016/j.oraloncology.2022.106012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Preclinical models of cancer have long been paramount to understanding tumor development and advancing the treatment of cancer. Creating preclinical models that mimic the complexity and heterogeneity of human tumors is a key challenge in the advancement of cancer therapy. About ten years ago, we created the mouse oral carcinoma (MOC) cell line models that were derived from 7, 12-dimethylbenz(a) anthracene (DMBA)-induced mouse oral squamous cell cancers. This model has been used in numerous investigations, including studies on tumor biology and therapeutics. We have seen remarkable progress in cancer immunology in recent years, and these cell lines, which are syngeneic to C57BL/6 background, have also been used to study the anti-tumor immune response. Herein, we aim to review the MOC model from its development and characterization to its use in non-immunological and immunological preclinical head and neck squamous cell carcinoma (HNSCC) studies. Integrating and refining these MOC model studies and extending findings to other systems will provide crucial insights for translational approaches aimed at improving head and neck cancer treatment.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Otolaryngology - Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Surgery/Otolaryngology, Brigham and Women's Hospital, United States.
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institutes on Deafness and Communication Disorders, NIH, Bethesda, MD, United States.
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Surgery/Otolaryngology, Brigham and Women's Hospital, United States.
| |
Collapse
|
4
|
Lonardi S, Missale F, Calza S, Bugatti M, Vescovi R, Debora B, Uppaluri R, Egloff AM, Mattavelli D, Lombardi D, Benerini Gatta L, Marini O, Tamassia N, Gardiman E, Cassatella MA, Scapini P, Nicolai P, Vermi W. Tumor-associated neutrophils (TANs) in human carcinoma-draining lymph nodes: a novel TAN compartment. Clin Transl Immunology 2021; 10:e1252. [PMID: 33643653 PMCID: PMC7886597 DOI: 10.1002/cti2.1252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives The role of tumor‐associated neutrophils (TANs) in the nodal spread of cancer cells remains unexplored. The present study evaluates the occurrence and clinical significance of human nodal TANs. Methods The relevance, derivation, phenotype and interactions of nodal TANs were explored via a large immunohistochemical analysis of carcinoma‐draining lymph nodes, and their clinical significance was evaluated on a retrospective cohort of oral squamous cell carcinomas (OSCC). The tumor‐promoting function of nodal TAN was probed in the OSCC TCGA dataset combining TAN and epithelial‐to‐mesenchymal transition (EMT) signatures. Results The pan‐carcinoma screening identified a consistent infiltration (59%) of CD66b+ TANs in tumor‐draining lymph nodes (TDLNs). Microscopic findings, including the occurrence of intra‐lymphatic conjugates of TANs and cancer cells, indicate that TANs migrate through lymphatic vessels. In vitro experiments revealed that OSCC cell lines sustain neutrophil viability and activation via release of GM‐CSF. Moreover, by retrospective analysis, a high CD66b+ TAN density in M‐TDLNs of OSCC (n = 182 patients) predicted a worse prognosis. The analysis of the OSCC‐TCGA dataset unveiled that the expression of a set of neutrophil‐specific genes in the primary tumor (PT) is highly associated with an EMT signature, which predicts nodal spread. Accordingly, in the PT of OSCC cases, CD66b+TANs co‐localised with PDPN+S100A9− EMT‐switched tumor cells in areas of lymphangiogenesis. The pro‐EMT signature is lacking in peripheral blood neutrophils from OSCC patients, suggesting tissue skewing of TANs. Conclusion Our findings are consistent with a novel pro‐tumoral TAN compartment that may promote nodal spread via EMT, through the lymphatics.
Collapse
Affiliation(s)
- Silvia Lonardi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Francesco Missale
- Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy.,IRCCS Ospedale Policlinico San Martino Unit of Otorhinolaryngology, Head and Neck Surgery Department of Surgical and Diagnostic Integrated Sciences University of Genoa Genoa Italy
| | - Stefano Calza
- Unit of Biostatistics Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden.,Big&Open Data Innovation Laboratory University of Brescia Brescia Italy
| | - Mattia Bugatti
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Raffaella Vescovi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Bresciani Debora
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Ravindra Uppaluri
- Department of Surgery/Otolaryngology Brigham and Women's Hospital and Dana-Farber Cancer Institute and Harvard Medical School Boston MA USA
| | - Ann Marie Egloff
- Department of Surgery/Otolaryngology Brigham and Women's Hospital and Dana-Farber Cancer Institute and Harvard Medical School Boston MA USA
| | - Davide Mattavelli
- Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Davide Lombardi
- ASST- Spedali Civili di Brescia Brescia Italy.,Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Luisa Benerini Gatta
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Olivia Marini
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Nicola Tamassia
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Elisa Gardiman
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Marco A Cassatella
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Patrizia Scapini
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Piero Nicolai
- ASST- Spedali Civili di Brescia Brescia Italy.,Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - William Vermi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy.,Department of Pathology and Immunology Washington University Saint Louis MO USA
| |
Collapse
|
5
|
Wang Z, Wu VH, Allevato MM, Gilardi M, He Y, Luis Callejas-Valera J, Vitale-Cross L, Martin D, Amornphimoltham P, Mcdermott J, Yung BS, Goto Y, Molinolo AA, Sharabi AB, Cohen EEW, Chen Q, Lyons JG, Alexandrov LB, Gutkind JS. Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat Commun 2019; 10:5546. [PMID: 31804466 PMCID: PMC6895221 DOI: 10.1038/s41467-019-13471-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Tobacco use is the main risk factor for HNSCC, and tobacco-associated HNSCCs have poor prognosis and response to available treatments. Recently approved anti-PD-1 immune checkpoint inhibitors showed limited activity (≤20%) in HNSCC, highlighting the need to identify new therapeutic options. For this, mouse models that accurately mimic the complexity of the HNSCC mutational landscape and tumor immune environment are urgently needed. Here, we report a mouse HNSCC model system that recapitulates the human tobacco-related HNSCC mutanome, in which tumors grow when implanted in the tongue of immunocompetent mice. These HNSCC lesions have similar immune infiltration and response rates to anti-PD-1 (≤20%) immunotherapy as human HNSCCs. Remarkably, we find that >70% of HNSCC lesions respond to intratumoral anti-CTLA-4. This syngeneic HNSCC mouse model provides a platform to accelerate the development of immunotherapeutic options for HNSCC.
Collapse
Affiliation(s)
- Zhiyong Wang
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
| | - Victoria H Wu
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Michael M Allevato
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Mara Gilardi
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Lynn Vitale-Cross
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Martin
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - James Mcdermott
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
| | - Bryan S Yung
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Yusuke Goto
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
| | - Andrew B Sharabi
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ezra E W Cohen
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
- Department of Medicine, Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Guy Lyons
- Dermatology, Bosch Institute, University of Sydney, Camperdown, NSW, 2050, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Centenary Institute, Camperdown, NSW, 2050, Australia
| | - Ludmil B Alexandrov
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, Gartrell RD, Saenger YM, Hart TD, Santegoets SJ, Laoui D, Spanos C, Parikh F, Jayaraman P, Zhang B, Van der Burg SH, Van Ginderachter JA, Melief CJM, Sikora AG. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer 2019; 7:10. [PMID: 30646957 PMCID: PMC6332704 DOI: 10.1186/s40425-018-0485-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemoradiotherapy (CRT) remains one of the most common cancer treatment modalities, and recent data suggest that CRT is maximally effective when there is generation of an anti-tumoral immune response. However, CRT has also been shown to promote immunosuppressive mechanisms which must be blocked or reversed to maximize its immune stimulating effects. METHODS Therefore, using a preclinical model of human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), we developed a clinically relevant therapy combining CRT and two existing immunomodulatory drugs: cyclophosphamide (CTX) and the small molecule inducible nitric oxide synthase (iNOS) inhibitor L-n6-(1-iminoethyl)-lysine (L-NIL). In this model, we treated the syngeneic HPV-HNSCC mEER tumor-bearing mice with fractionated (10 fractions of 3 Gy) tumor-directed radiation and weekly cisplatin administration. We compared the immune responses induced by CRT and those induced by combinatory treatment (CRT + CTX/L-NIL) with flow cytometry, quantitative multiplex immunofluorescence and by profiling immune-related gene expression changes. RESULTS We show that combination treatment favorably remodels the tumor myeloid immune microenvironment including an increase in anti-tumor immune cell types (inflammatory monocytes and M1-like macrophages) and a decrease in immunosuppressive granulocytic myeloid-derived suppressor cells (MDSCs). Intratumoral T cell infiltration and tumor antigen specificity of T cells were also improved, including a 31.8-fold increase in the CD8+ T cell/ regulatory T cell ratio and a significant increase in tumor antigen-specific CD8+ T cells compared to CRT alone. CTX/LNIL immunomodulation was also shown to significantly improve CRT efficacy, leading to rejection of 21% established tumors in a CD8-dependent manner. CONCLUSIONS Overall, these data show that modulation of the tumor immune microenvironment with CTX/L-NIL enhances susceptibility of treatment-refractory tumors to CRT. The combination of tumor immune microenvironment modulation with CRT constitutes a translationally relevant approach to enhance CRT efficacy through enhanced immune activation.
Collapse
Affiliation(s)
- Aurelie Hanoteau
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Jared M. Newton
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Rosemarie Krupar
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Lung Center, Lubeck and Borstel, Germany
| | - Chen Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Hsuan-Chen Liu
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Angelina Gaspero
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Robyn D. Gartrell
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, USA
| | - Yvonne M. Saenger
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, USA
| | - Thomas D. Hart
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, USA
| | - Saskia J. Santegoets
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Chad Spanos
- Department of Surgery, University of South Dakota Sanford School of Medicine, Vermillion, SD USA
| | - Falguni Parikh
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Padmini Jayaraman
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Sjoerd H. Van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | | | - Andrew G. Sikora
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
- Department of Cell and Gene Therapy, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
7
|
Tan YS, Sansanaphongpricha K, Prince MEP, Sun D, Wolf GT, Lei YL. Engineering Vaccines to Reprogram Immunity against Head and Neck Cancer. J Dent Res 2018; 97:627-634. [PMID: 29533731 PMCID: PMC5960883 DOI: 10.1177/0022034518764416] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The recent Food and Drug Administration's approval of monoclonal antibodies targeting immune checkpoint receptors (ICRs) for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) offers exciting promise to improve patient outcome and reduce morbidities. A favorable response to ICR blockade relies on an extensive collection of preexisting tumor-specific T cells in the tumor microenvironment (TME). ICR blockade reinvigorates exhausted CD8+ T cells and enhances immune killing. However, resistance to ICR blockade is observed in about 85% of patients with HNSCC, therefore highlighting the importance of characterizing the mechanisms underlying HNSCC immune escape and exploring combinatorial strategies to sensitize hypoimmunogenic cold HNSCC to ICR inhibition. Cancer vaccines are designed to bypass the cold TME and directly deliver cancer antigens to antigen-presenting cells (APCs); these vaccines epitomize a priming strategy to synergize with ICR inhibitors. Cancer cells are ineffective antigen presenters, and poor APC infiltration as well as the M2-like polarization in the TME further dampens antigen uptake and processing, both of which render ineffective innate and adaptive immune detection. Cancer vaccines directly activate APC and expand the tumor-specific T-cell repertoire. In addition, cancer vaccines often contain an adjuvant, which further improves APC function, promotes epitope spreading, and augments host intrinsic antitumor immunity. Thus, the vaccine-induced immune priming generates a pool of effectors whose function can be enhanced by ICR inhibitors. In this review, we summarize the major HNSCC immune evasion strategies, the ongoing effort toward improving HNSCC vaccines, and the current challenges limiting the efficacy of cancer vaccines.
Collapse
Affiliation(s)
- Y S Tan
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - K Sansanaphongpricha
- 3 Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - M E P Prince
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- 4 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - D Sun
- 3 Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - G T Wolf
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- 4 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Y L Lei
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- 4 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Lapponi MJ, Rivero CW, Zinni MA, Britos CN, Trelles JA. New developments in nucleoside analogues biosynthesis: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Dionne LK, Driver ER, Wang XJ. Head and Neck Cancer Stem Cells: From Identification to Tumor Immune Network. J Dent Res 2015; 94:1524-31. [PMID: 26253189 DOI: 10.1177/0022034515599766] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common form of head and neck cancer. Annually, more than half a million individuals are diagnosed with this devastating disease, with increasing incidence in Europe and Southeast Asia. The diagnosis of HNSCC often occurs in late stages of the disease and is characterized by manifestation of a high-grade primary tumor and/or lymph node metastasis, precluding timely management of this deadly cancer. Recently, HNSCC cancer stem cells have emerged as an important factor for cancer initiation and maintenance of tumor bulk. Like normal stem cells, cancer stem cells can undergo self-renewal and differentiation. This unique trait allows for maintenance of the cancer stem cell pool and facilitates differentiation into heterogeneous neoplastic progeny when necessary. Recent studies have suggested coexistence of different cancer stem cell populations within a tumor mass, where the tumor initiation and metastasis properties of these cancer stem cells can be uncoupled. Cancer stem cells also possess resistant phenotypes that evade standard chemotherapy and radiotherapy, resulting in tumor relapse. Therefore, understanding distinctive pathways relating to cancer stem cells will provide insight into early diagnosis and treatment of HNSCC. In this review, we highlight current advances in identifying cancer stem cells, detail the interactions of these cells with the immune system within the tumor niche, and discuss the potential use of immunotherapy in managing HNSCC.
Collapse
Affiliation(s)
- L K Dionne
- Department of Pathology, University of Colorado Denver, Aurora, CO, USA
| | - E R Driver
- Department of Pathology, University of Colorado Denver, Aurora, CO, USA
| | - X J Wang
- Department of Pathology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|