1
|
Lv X, Murphy K, Murphy Z, Getman M, Rahman N, Nakamura Y, Blanc L, Gallagher PG, Palis J, Mohandas N, Steiner LA. HEXIM1 is an essential transcription regulator during human erythropoiesis. Blood 2023; 142:2198-2215. [PMID: 37738561 PMCID: PMC10733840 DOI: 10.1182/blood.2022019495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023] Open
Abstract
ABSTRACT Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor β. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the β-globin loci, where there was loss of RNAPII and GATA1 at β-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the β-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiurui Lv
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Kristin Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Zachary Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Michael Getman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Nabil Rahman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Yukio Nakamura
- Rikagaku Kenkyūjyo (RIKEN) BioResource Research Center, Tsukuba Campus, Ibaraki, Japan
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | | | - James Palis
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Narla Mohandas
- Red Cell Physiology Laboratory, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Laurie A. Steiner
- Center for Child Health Research, University of Rochester, Rochester, NY
- Center for RNA Biology, University of Rochester, Rochester, NY
| |
Collapse
|
2
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
3
|
Fujinaga K, Huang F, Peterlin BM. P-TEFb: The master regulator of transcription elongation. Mol Cell 2023; 83:393-403. [PMID: 36599353 PMCID: PMC9898187 DOI: 10.1016/j.molcel.2022.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.
Collapse
Affiliation(s)
- Koh Fujinaga
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Fang Huang
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Sobeh AM, Eichhorn CD. C-terminal determinants for RNA binding motif 7 protein stability and RNA recognition. Biophys Chem 2023; 292:106928. [PMID: 36427363 PMCID: PMC9768861 DOI: 10.1016/j.bpc.2022.106928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The 7SK ribonucleoprotein (RNP) is a critical regulator of eukaryotic transcription. Recently, RNA binding motif 7 (RBM7) containing an RNA recognition motif (RRM) was reported to associate with 7SK RNA and core 7SK RNP protein components in response to DNA damage. However, little is known about the mode of RBM7-7SK RNA recognition. Here, we found that RRM constructs containing extended C-termini have increased solubility compared to a minimal RRM construct, although these constructs aggregate in a temperature and concentration-dependent manner. Using solution NMR dynamics experiments, we identified additional structural features observed previously in crystal but not in solution structures. To identify potential RBM7-7SK RNA binding sites, we analyzed deposited data from in cellulo crosslinking experiments and found that RBM7 primarily crosslinks to the distal region of 7SK stem-loop 3 (SL3). Electrophoretic mobility shift assays and NMR chemical shift perturbation experiments showed weak binding to 7SK SL3 constructs in vitro. Together, these results provide new insights into RBM7 RRM folding and recognition of 7SK RNA.
Collapse
Affiliation(s)
- Amr M Sobeh
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA.
| |
Collapse
|
5
|
Lorenzini E, Torricelli F, Zamponi R, Donati B, Manicardi V, Sauta E, Faria do Valle I, Reggiani F, Gugnoni M, Manzotti G, Fragliasso V, Vitale E, Piana S, Sancisi V, Ciarrocchi A. KAP1 is a new non-genetic vulnerability of malignant pleural mesothelioma (MPM). NAR Cancer 2022; 4:zcac024. [PMID: 35910692 PMCID: PMC9336180 DOI: 10.1093/narcan/zcac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients’ survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.
Collapse
Affiliation(s)
- Eugenia Lorenzini
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Cellular and Molecular Biology PhD Program, University of Bologna, 40126 Bologna , Italy
| | - Federica Torricelli
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Raffaella Zamponi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia , 41121 Modena , Italy
| | - Elisabetta Sauta
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavi, , 27100 Pavia , Italy
| | - Italo Faria do Valle
- Department of Physics, Center for Complex Network Research, Northeastern University , Boston , MA 02115 , USA
| | - Francesca Reggiani
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia , 41121 Modena , Italy
| | - Simonetta Piana
- Pathology Unit , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
6
|
Krischuns T, Günl F, Henschel L, Binder M, Willemsen J, Schloer S, Rescher U, Gerlt V, Zimmer G, Nordhoff C, Ludwig S, Brunotte L. Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Front Immunol 2018; 9:2229. [PMID: 30323812 PMCID: PMC6172303 DOI: 10.3389/fimmu.2018.02229] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection.
Collapse
Affiliation(s)
- Tim Krischuns
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Lea Henschel
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joschka Willemsen
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schloer
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Ursula Rescher
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Vanessa Gerlt
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carolin Nordhoff
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
7
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
8
|
Li Y, Liu M, Chen LF, Chen R. P-TEFb: Finding its ways to release promoter-proximally paused RNA polymerase II. Transcription 2018; 9:88-94. [PMID: 28102758 PMCID: PMC5834220 DOI: 10.1080/21541264.2017.1281864] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
The release of a paused Pol II depends on the recruitment of P-TEFb. Recent studies showed that both active P-TEFb and inactive P-TEFb (7SK snRNP) can be recruited to the promoter regions of global genes by different mechanisms. Here, we summarize the recent advances on these distinct recruitment mechanisms.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Guzman C, D'Orso I. CIPHER: a flexible and extensive workflow platform for integrative next-generation sequencing data analysis and genomic regulatory element prediction. BMC Bioinformatics 2017; 18:363. [PMID: 28789639 PMCID: PMC5549294 DOI: 10.1186/s12859-017-1770-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) approaches are commonly used to identify key regulatory networks that drive transcriptional programs. Although these technologies are frequently used in biological studies, NGS data analysis remains a challenging, time-consuming, and often irreproducible process. Therefore, there is a need for a comprehensive and flexible workflow platform that can accelerate data processing and analysis so more time can be spent on functional studies. RESULTS We have developed an integrative, stand-alone workflow platform, named CIPHER, for the systematic analysis of several commonly used NGS datasets including ChIP-seq, RNA-seq, MNase-seq, DNase-seq, GRO-seq, and ATAC-seq data. CIPHER implements various open source software packages, in-house scripts, and Docker containers to analyze and process single-ended and pair-ended datasets. CIPHER's pipelines conduct extensive quality and contamination control checks, as well as comprehensive downstream analysis. A typical CIPHER workflow includes: (1) raw sequence evaluation, (2) read trimming and adapter removal, (3) read mapping and quality filtering, (4) visualization track generation, and (5) extensive quality control assessment. Furthermore, CIPHER conducts downstream analysis such as: narrow and broad peak calling, peak annotation, and motif identification for ChIP-seq, differential gene expression analysis for RNA-seq, nucleosome positioning for MNase-seq, DNase hypersensitive site mapping, site annotation and motif identification for DNase-seq, analysis of nascent transcription from Global-Run On (GRO-seq) data, and characterization of chromatin accessibility from ATAC-seq datasets. In addition, CIPHER contains an "analysis" mode that completes complex bioinformatics tasks such as enhancer discovery and provides functions to integrate various datasets together. CONCLUSIONS Using public and simulated data, we demonstrate that CIPHER is an efficient and comprehensive workflow platform that can analyze several NGS datasets commonly used in genome biology studies. Additionally, CIPHER's integrative "analysis" mode allows researchers to elicit important biological information from the combined dataset analysis.
Collapse
Affiliation(s)
- Carlos Guzman
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Present address: Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Resto M, Kim BH, Fernandez AG, Abraham BJ, Zhao K, Lewis BA. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β. J Biol Chem 2016; 291:22703-22713. [PMID: 27601472 DOI: 10.1074/jbc.m116.751420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, whereas in a purified system devoid of OGA the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA polymerase II (pol II) pausing/elongation factors SPT5 and TRIM28-KAP1-TIF1β, and a purified OGA-SPT5-TIF1β complex has elongation properties. Lastly, ChIP-seq experiments show that OGA maps to the transcriptional start site/5' ends of genes, showing considerable overlap with RNA pol II, SPT5, TRIM28-KAP1-TIF1β, and O-GlcNAc itself. These data all point to OGA as a component of the RNA pol II elongation machinery regulating elongation genome-wide. Our results add a novel and unexpected dimension to the regulation of elongation by the insertion of O-GlcNAc cycling into the pol II elongation regulatory dynamics.
Collapse
Affiliation(s)
- Melissa Resto
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893
| | - Bong-Hyun Kim
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Alfonso G Fernandez
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893
| | - Brian J Abraham
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, and.,Laboratory of Epigenome Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Keji Zhao
- Laboratory of Epigenome Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Brian A Lewis
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893,
| |
Collapse
|