1
|
Li H, Nian J, Fang S, Guo M, Huang X, Zhang F, Wang Q, Zhang J, Bai J, Dong G, Xin P, Xie X, Chen F, Wang G, Wang Y, Qian Q, Zuo J, Chu J, Ma X. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice. J Genet Genomics 2022; 49:469-480. [DOI: 10.1016/j.jgg.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
2
|
Hartmann S, Preick M, Abelt S, Scheffel A, Hofreiter M. Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea. BMC Res Notes 2020; 13:426. [PMID: 32912303 PMCID: PMC7488092 DOI: 10.1186/s13104-020-05254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Plant carnivory is distributed across the tree of life and has evolved at least six times independently, but sequenced and annotated nuclear genomes of carnivorous plants are currently lacking. We have sequenced and structurally annotated the nuclear genome of the carnivorous Roridula gorgonias and that of a non-carnivorous relative, Madeira's lily-of-the-valley-tree, Clethra arborea, both within the Ericales. This data adds an important resource to study the evolutionary genetics of plant carnivory across angiosperm lineages and also for functional and systematic aspects of plants within the Ericales. RESULTS Our assemblies have total lengths of 284 Mbp (R. gorgonias) and 511 Mbp (C. arborea) and show high BUSCO scores of 84.2% and 89.5%, respectively. We used their predicted genes together with publicly available data from other Ericales' genomes and transcriptomes to assemble a phylogenomic data set for the inference of a species tree. However, groups of orthologs showed a marked absence of species represented by a transcriptome. We discuss possible reasons and caution against combining predicted genes from genome- and transriptome-based assemblies.
Collapse
Affiliation(s)
- Stefanie Hartmann
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Michaela Preick
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Silke Abelt
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - André Scheffel
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Mehra R, Jasrotia RS, Mahajan A, Sharma D, Iquebal MA, Kaul S, Dhar MK. Transcriptome analysis of Snow Mountain Garlic for unraveling the organosulfur metabolic pathway. Genomics 2020; 112:99-107. [DOI: 10.1016/j.ygeno.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
|
4
|
Shchennikova AV, Kamionskaya AM, Nezhdanova AV, Gavrilova KS, Filyushin MA, Kochieva EZ, Skryabin KG. Transcription factors MhyFIL1 and MhyFIL3 <i>(Monotropa hypopitys)</i> determine the asymmetric development of above-ground lateral organs in plants. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is believed that the complete mycoheterotroph pinesap Monotropa hypopitys adaptively evolved from a photosynthetic mycorrhizal ancestor, which had lost its photosynthetic apparatus and vegetative organs (stem and leaves). The aerial part of the plant is a reproductive axis with sterile bracts and inflorescence with a flower type canonical for higher plants. The origin of leaves and leaf-like lateral organs is associated, among other factors, with the evolution of the YABBY genes, which are divided into“vegetative” and evolutionarily recent“reproductive” genes, with regard to their expression profiles. The study of the vegetative YABBY genes in pinesap will determine whether their functions (identification of cell identity on the abaxial surface of the lateral organs) are preserved in the leafless plant. In this study, the structural and phylogenetic analysis of the pinesap vegetative genes MhyFIL1 and MhyFIL3 is performed, the main conserved domains and motifs of the encoded proteins are characterized, and it is confirmed that the genes belong to the vegetative clade YABBY3/FIL. The effect of heterologous ectopic expression of the MhyFIL1 and MhyFIL3 genes on the phenotype of transgenic tobacco Nicotiana tabacum is evaluated. The leaves formed by both types of plants, 35S::MhyFIL1 and 35S::MhyFIL3, were narrower than in control plants and were twisted due to the changed identity of adaxial surface cells. Also, changes in the architecture of the aerial part and the root system of transgenic plants, including aberrant phyllotaxis and arrest of the shoot and root apical meristem development, were noted. Some of the 35S::MhyFIL1 and 35S::MhyFIL3 plants died as early as the stage of the formation of the first leaves, others did not bloom, and still others had a greatly prolonged vegetation period and formed fewer flowers than normal ones. The flowers had no visible differences from the control except for fragile pedicles. Thus, the absence of structural changes from the M. hypopitys flower in comparison to autotrophic species and the effect of MhyFIL1/3 heterologous expression on the development of tobacco plants indicate the preservation of the functions of the vegetative YABBY genes by the MhyFIL1/3 genes in pinesap. Moreover, the activity of YABBY transcription factors of the FIL clade in M. hypopitys is not directly related to the loss of the ability of pinesap to form leaves during the evolutionary transition from autotrophic nutrition to heterotrophy.
Collapse
Affiliation(s)
- A. V. Shchennikova
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| | - A. M. Kamionskaya
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| | - A. V. Nezhdanova
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| | - K. S. Gavrilova
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| | - M. A. Filyushin
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| | - E. Z. Kochieva
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| | - K. G. Skryabin
- Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
| |
Collapse
|
5
|
Field B. Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2797-2807. [PMID: 29281108 DOI: 10.1093/jxb/erx485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The hyperphosphorylated nucleotides guanosine pentaphosphate and tetraphosphate [together referred to as (p)ppGpp, or 'magic spot'] orchestrate a signalling cascade in bacteria that controls growth under optimal conditions and in response to environmental stress. (p)ppGpp is also found in the chloroplasts of plants and algae where it has also been shown to accumulate in response to abiotic stress. Recent studies suggest that (p)ppGpp is a potent inhibitor of chloroplast gene expression in vivo, and is a significant regulator of chloroplast function that can influence both the growth and the development of plants. However, little is currently known about how (p)ppGpp is wired into eukaryotic signalling pathways, or how it may act to enhance fitness when plants or algae are exposed to environmental stress. This review discusses our current understanding of (p)ppGpp metabolism and its extent in plants and algae, and how (p)ppGpp signalling may be an important factor that is capable of influencing growth and stress acclimation in this major group of organisms.
Collapse
Affiliation(s)
- Ben Field
- Aix Marseille Univ, CEA, CNRS, France
| |
Collapse
|
6
|
Shchennikova AV, Slugina MA, Beletsky AV, Filyushin MA, Mardanov AA, Shulga OA, Kochieva EZ, Ravin NV, Skryabin KG. The YABBY Genes of Leaf and Leaf-Like Organ Polarity in Leafless Plant Monotropa hypopitys. Int J Genomics 2018; 2018:7203469. [PMID: 29850475 PMCID: PMC5941816 DOI: 10.1155/2018/7203469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/02/2018] [Accepted: 03/18/2018] [Indexed: 11/18/2022] Open
Abstract
Monotropa hypopitys is a mycoheterotrophic, nonphotosynthetic plant acquiring nutrients from the roots of autotrophic trees through mycorrhizal symbiosis, and, similar to other extant plants, forming asymmetrical lateral organs during development. The members of the YABBY family of transcription factors are important players in the establishment of leaf and leaf-like organ polarity in plants. This is the first report on the identification of YABBY genes in a mycoheterotrophic plant devoid of aboveground vegetative organs. Seven M. hypopitys YABBY members were identified and classified into four clades. By structural analysis of putative encoded proteins, we confirmed the presence of YABBY-defining conserved domains and identified novel clade-specific motifs. Transcriptomic and qRT-PCR analyses of different tissues revealed MhyYABBY transcriptional patterns, which were similar to those of orthologous YABBY genes from other angiosperms. These data should contribute to the understanding of the role of the YABBY genes in the regulation of developmental and physiological processes in achlorophyllous leafless plants.
Collapse
Affiliation(s)
- Anna V. Shchennikova
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Marya A. Slugina
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexey V. Beletsky
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Mikhail A. Filyushin
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Andrey A. Mardanov
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Olga A. Shulga
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Elena Z. Kochieva
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikolay V. Ravin
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Konstantin G. Skryabin
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
7
|
Shchennikova AV, Kochieva EZ, Beletsky AV, Filyushin MA, Shulga OA, Ravin NV, Skryabin KG. Identification and expression analysis of receptor-like kinase gene ERECTA in mycoheterotrophic plant Monotropa hypopitys. Mol Biol 2017. [DOI: 10.1134/s002689331705017x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|