1
|
Terrisse R, Stephan F, Walter M, Lemey C. Predicting the evolution from first-episode psychosis to mood or psychotic disorder: A systematic review of biological markers. J Affect Disord 2025; 374:26-38. [PMID: 39793620 DOI: 10.1016/j.jad.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND AND HYPOTHESIS The development of paraclinical tools to assist clinical assessment is already widespread in nearly all other medical specialties. In psychiatry, many efforts are being made to improve management strategies using these new techniques. The first episode psychosis (FEP) is a clinical entity whose evolution after onset is difficult to predict in the current state of our practices. Our main objective was to identify from the literature the most promising biological markers for early prediction of thymic or psychotic trajectories following FEP. STUDY DESIGN We performed a systematic literature review on 4 databases: PubMed, Scopus, PsycINFO, and Web of Science following PRISMA guidelines and using search terms related to FEP and biomarkers. STUDY RESULTS Eight studies were included in our final analysis. Several biomarkers showed promising discriminatory capacities for predicting post-FEP evolution: the interleukins IL-6, IL-12p40, IL-1β, and the mRNA expression levels of the DICER-1 and AKT-1 genes. Other studies that opted for broad-spectrum strategies also highlighted new leads for the discovery of additional biomarkers. CONCLUSIONS Overall, our results indicate the value of replicating studies targeting the analysis of the predictive capacities of several biological markers. It also appears important to homogenize methodologies and favor the construction of predictive models on several of these markers to reinforce their statistical significance.
Collapse
Affiliation(s)
- Raphaël Terrisse
- Service hospitalo-universitaire de psychiatrie générale et de réhabilitation psychosociale 29G01 et 29G02, ER 7479 SPURBO, CHRU de Brest, hôpital de Bohars, Brest, France.
| | - Florian Stephan
- Service hospitalo-universitaire de psychiatrie générale et de réhabilitation psychosociale 29G01 et 29G02, ER 7479 SPURBO, CHRU de Brest, hôpital de Bohars, Brest, France
| | - Michel Walter
- Service hospitalo-universitaire de psychiatrie générale et de réhabilitation psychosociale 29G01 et 29G02, ER 7479 SPURBO, CHRU de Brest, hôpital de Bohars, Brest, France
| | - Christophe Lemey
- Service hospitalo-universitaire de psychiatrie générale et de réhabilitation psychosociale 29G01 et 29G02, ER 7479 SPURBO, CHRU de Brest, hôpital de Bohars, Brest, France
| |
Collapse
|
2
|
Chevalley M, Roohani YH, Mehrjou A, Leskovec J, Schwab P. A large-scale benchmark for network inference from single-cell perturbation data. Commun Biol 2025; 8:412. [PMID: 40069299 PMCID: PMC11897147 DOI: 10.1038/s42003-025-07764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Mapping biological mechanisms in cellular systems is a fundamental step in early-stage drug discovery that serves to generate hypotheses on what disease-relevant molecular targets may effectively be modulated by pharmacological interventions. With the advent of high-throughput methods for measuring single-cell gene expression under genetic perturbations, we now have effective means for generating evidence for causal gene-gene interactions at scale. However, evaluating the performance of network inference methods in real-world environments is challenging due to the lack of ground-truth knowledge. Moreover, traditional evaluations conducted on synthetic datasets do not reflect the performance in real-world systems. We thus introduce CausalBench, a benchmark suite revolutionizing network inference evaluation with real-world, large-scale single-cell perturbation data. CausalBench, distinct from existing benchmarks, offers biologically-motivated metrics and distribution-based interventional measures, providing a more realistic evaluation of network inference methods. An initial systematic evaluation of state-of-the-art causal inference methods using our CausalBench suite highlights how poor scalability of existing methods limits performance. Moreover, methods that use interventional information do not outperform those that only use observational data, contrary to what is observed on synthetic benchmarks. CausalBench subsequently enables the development of numerous promising methods through a community challenge, thus demonstrating its potential as a transformative tool in the field of computational biology, bridging the gap between theoretical innovation and practical application in drug discovery and disease understanding. Thus, CausalBench opens new avenues for method developers in causal network inference research, and provides to practitioners a principled and reliable way to track progress in network methods for real-world interventional data.
Collapse
Affiliation(s)
| | - Yusuf H Roohani
- GSK.ai, Zug, Switzerland
- Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
3
|
Saha P, Yarra SS, Arruri V, Mohan U, Kumar A. Exploring the role of miRNA in diabetic neuropathy: from diagnostics to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1129-1144. [PMID: 39249503 DOI: 10.1007/s00210-024-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Diabetic neuropathy (DN) is one of the major microvascular complications of diabetes mellitus affecting 50% of the diabetic population marred by various unmet clinical needs. There is a need to explore newer pathological mechanisms for designing futuristic regimens for the management of DN. There is a need for post-transcriptional regulation of gene expression by non-coding RNAs (ncRNAs) to finetune different cellular mechanisms with significant biological relevance. MicroRNAs (miRNAs) are a class of small ncRNAs (~ 20 to 24 nucleotide length) that are known to regulate the activity of ~ 50% protein-coding genes through repression of their target mRNAs. Differential expression of these miRNAs is associated with the pathophysiology of diabetic neuropathy via regulating various pathways such as neuronal hyperexcitability, inflammation, axonal growth, regeneration, and oxidative stress. Of note, the circulating and extracellular vesicular miRNAs serve as potential biomarkers underscoring their diagnostic potential. Recent pieces of evidence highlight the potential of miRNAs in modulating the initiation and progression of DN and the possibility of developing miRNAs as treatment options for DN. In this review, we have elaborated on the role of different miRNAs as potential biomarkers and emphasized their druggable aspects for promising future therapies for the clinical management of DN.
Collapse
Affiliation(s)
- Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India
| | - Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
4
|
Chan TCL, Yagound B, Brown GP, Eyck HJF, Shine R, Rollins LA. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina. Mol Ecol 2025; 34:e17587. [PMID: 39544005 DOI: 10.1111/mec.17587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Parasites may suppress the immune function of infected hosts using microRNAs (miRNAs) to prevent protein production. Nonetheless, little is known about the diversity of miRNAs and their mode(s) of action. In this study, we investigated the effects of infection by a parasitic lungworm (Rhabdias pseudosphaerocephala) on miRNA and mRNA expression of its host, the invasive cane toad (Rhinella marina). To investigate the cane toad's innate and adaptive immune response to this parasite, we compared miRNA and mRNA expression in naïve toads that had never been infected by lungworms to toads that were infected with lungworms for the first time in their lives, and toads that were infected the second time in their lives (i.e., had two consecutive infections). In total, we identified 101 known miRNAs and 86 potential novel miRNAs. Compared to uninfected and single-infection toads, multiple-infection animals drastically downregulated three miRNAs. These miRNAs were associated with gene pathways related to the immune response, potentially reflecting the immunosuppression of cane toads by their parasites. Infected hosts did not respond with substantially differential mRNA transcription; only one gene was differentially expressed between control and single-infection hosts. Our study suggests that miRNA may play an important role in mediating host-parasite interactions in a system in which an ongoing range expansion by the host has generated substantial divergence in host-parasite interactions.
Collapse
Affiliation(s)
- Tsering C L Chan
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Boris Yagound
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Gregory P Brown
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harrison J F Eyck
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Latifi Z, Nikanfar S, Khodavirdilou R, Beirami SM, Khodavirdilou L, Fattahi A, Oghbaei F. MicroRNAs as diagnostic biomarkers in diabetes male infertility: a systematic review. Mol Biol Rep 2024; 52:90. [PMID: 39739064 DOI: 10.1007/s11033-024-10197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This study conducts an in-depth review of the correlation between testis tissue changes and circulating microRNAs (miRNA) in diabetes-induced male reproductive complications, drawing upon both animal and clinical studies. The original articles published in English that specifically investigate miRNAs linked to male infertility in humans or animals with either type I or ΙΙ diabetes mellitus were included. The relevant articles were gathered from the PubMed, Google Scholar, Cochrane Library, and ScienceDirect databases. The quality of study was assessed utilizing the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Prevalence Studies. We collected an overall number of 1989 citations relating to our research subject. Following the elimination of articles based on the criteria, a total of 20 papers were included in the study. Aberrant expression profiles of 25 miRNAs were identified in diabetes associated with male reproductive issues, with 15 miRNAs exhibiting increased expression and 10 miRNAs showing decreased expression. Among the chosen publications, eighteen were identified as low-risk and two were classed as moderate quality. The dysregulated miRNAs were linked to testicular injury, disrupted steroid production, decreased sperm development and quality, and erectile dysfunction. The results demonstrate that the miRNA-mRNA network is linked to the pathological progression of diabetic testicular damage or erectile dysfunction. From a therapeutic perspective, the identification of circulating miRNAs could be beneficial in the timely identification and prevention of diabetes problems, such as diabetes-induced male infertility. Among all signaling pathways influenced by modified miRNAs, the Bax-caspase-3, MAPK, PI3K-Akt, and eNOS-cGMP-PKC were the main deregulated pathways.
Collapse
Affiliation(s)
- Zeinab Latifi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Rasa Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Jeon J, Jang S, Park KS, Kim HG, Lee J, Hwang TS, Koh JS, Kim J. Identification of differentially expressed miRNAs involved in vascular aging reveals pathways associated with the endocrine hormone regulation. Biogerontology 2024; 26:23. [PMID: 39644339 PMCID: PMC11625078 DOI: 10.1007/s10522-024-10167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Vascular aging refers to a series of processes where the elasticity of blood vessels diminishes, leading to stiffening, and deposition of fat components on the vessel walls, causing inflammation. Cardiovascular diseases, such as stroke and hypertension, play significant roles in morbidity and mortality rates among the elderly population. In this study, the Reactive Hyperemia Index (RHI) was measured to assess vascular endothelial function and aging-induced pathogenesis of vascular diseases in Korean subjects. We aimed to identify extracellular vesicle microRNAs (EV-miRNAs) with differential abundance between groups of individuals at the ends of a continuum in vascular aging acceleration, revealing miRNAs regulating genes in endocrine hormone regulation and tumor-related pathways. We also discovered that the principal component characterizing the global miRNA expression profile is significantly associated with clinical traits including cholesterol levels. Together, these data provide a foundation for understanding the role of miRNAs as modulators of longevity and for developing age-specific epigenetic biomarkers.
Collapse
Affiliation(s)
- Jeongwon Jeon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Soo Park
- Department of Preventive Medicine, College of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
- Center for Farmer's Safety and Health, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Han-Gyul Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jongan Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tae-Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin-Sin Koh
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea.
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea.
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
7
|
Xie B, Du S, Gao H, Zhang J, Fu H, Liao Y. An electrochemical biosensor equipped with a logic circuit as a smart automaton for two-miRNA pattern detection. Analyst 2024; 149:5110-5117. [PMID: 39235287 DOI: 10.1039/d4an00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Detecting multiple targets in complex cellular and biological environments yields more reliable results than single-label assays. Here, we introduced an electrochemical biosensor equipped with computing functions, acting as a smart automaton to enable computing-based detection. By defining the logic combinations of miR-21 and miR-122 as detection patterns, we proposed the corresponding AND and OR detection automata. In both logic gate modes, miR-21 and miR-122 could be replaced with single-stranded FO or FA, modified with Fc, binding to the S chain on the electrode surface. This process led to a significant decrease in the square wave voltammetry (SWV) of Fc on the same sensing platform, as numerous ferrocene (Fc)-tagged DNA fragments escaped from the electrode surface. Experimental results indicated that both automata efficiently and sensitively detected the presence of the two targets. This strategy highlighted how a small amount of target could generate a large current signal decrease in the logic automata, significantly reducing the detection limit for monitoring low-abundance targets. Moreover, the short-stranded DNA components of the detection automata exhibited a simple composition and easy programmability of probe sequences, offering an innovative detection mode. This simplified the complex process of detection, data collection, computation, and evaluation. The direct detection result ("0" or "1") was exported according to the embedded computation code. This approach could be expanded into a detection system for identifying other sets of biomarkers, enhancing its potential for clinical applications.
Collapse
Affiliation(s)
- Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Shimao Du
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| |
Collapse
|
8
|
Cánovas-Cervera I, Nacher-Sendra E, Suay G, Lahoz A, García-Giménez JL, Mena-Mollá S. Role of miRNAs as epigenetic regulators of immune checkpoints in lung cancer immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:109-139. [PMID: 39864893 DOI: 10.1016/bs.ircmb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The advent of immunotherapy in cancer has provided new avenues in the treatment of many malignancies at various stages. Specifically, immune checkpoint inhibitors (ICIs) have transformed the field of lung cancer treatment. However, since some tumors can evade the immune system, not all patients respond properly. Recent research has provided evidence showing how microRNAs (miRNAs) are involved in regulating many immune checkpoints. MiRNAs have demonstrated their ability to modulate immune evasion of tumor cells. Currently, reliable markers are being sought to predict the efficacy of immunotherapy in these types of cancers. Therefore, the association of serum miRNAs and the response of ICIs in lung cancer is under study. Many miRNA molecules and their corresponding target genes have been identified in the regulation of chemoresistance. Therefore, elucidating how these miRNAs control the function of immune checkpoints, as well as the effectiveness of therapies based on ICIs set the basis for the development of new biomarkers to predict treatment response to ICIs. This chapter delves into the molecular role of miRNAs interacting with ICs, such as PD-1 and PD-L1, and the clinical utility of miRNAs, such as miR-16, miR-146a, and miR-335, in predicting treatment response to ICI-based therapy in lung cancer. The aim is to provide a deep insight of the current landscape, serving as a cornerstone for further research.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Guillermo Suay
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, Valencia, Spain; Analytical Unit, Health Research Institute-Hospital La Fe, Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
| | - Salvador Mena-Mollá
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
9
|
Hsiao YC, Dutta A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1211-1230. [PMID: 38498762 DOI: 10.1109/tcbb.2024.3378155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dynamic disease pathways are a combination of complex dynamical processes among bio-molecules in a cell that leads to diseases. Network modeling of disease pathways considers disease-related bio-molecules (e.g. DNA, RNA, transcription factors, enzymes, proteins, and metabolites) and their interaction (e.g. DNA methylation, histone modification, alternative splicing, and protein modification) to study disease progression and predict therapeutic responses. These bio-molecules and their interactions are the basic elements in the study of the misregulation in the disease-related gene expression that lead to abnormal cellular responses. Gene regulatory networks, cell signaling networks, and metabolic networks are the three major types of intracellular networks for the study of the cellular responses elicited from extracellular signals. The disease-related cellular responses can be prevented or regulated by designing control strategies to manipulate these extracellular or other intracellular signals. The paper reviews the regulatory mechanisms, the dynamic models, and the control strategies for each intracellular network. The applications, limitations and the prospective for modeling and control are also discussed.
Collapse
|
10
|
Bhattacharjya A, Islam MM, Uddin MA, Talukder MA, Azad AKM, Aryal S, Paul BK, Tasnim W, Almoyad MAA, Moni MA. Exploring gene regulatory interaction networks and predicting therapeutic molecules for hypopharyngeal cancer and EGFR-mutated lung adenocarcinoma. FEBS Open Bio 2024; 14:1166-1191. [PMID: 38783639 PMCID: PMC11216941 DOI: 10.1002/2211-5463.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Hypopharyngeal cancer is a disease that is associated with EGFR-mutated lung adenocarcinoma. Here we utilized a bioinformatics approach to identify genetic commonalities between these two diseases. To this end, we examined microarray datasets from GEO (Gene Expression Omnibus) to identify differentially expressed genes, common genes, and hub genes between the selected two diseases. Our analyses identified potential therapeutic molecules for the selected diseases based on 10 hub genes with the highest interactions according to the degree topology method and the maximum clique centrality (MCC). These therapeutic molecules may have the potential for simultaneous treatment of these diseases.
Collapse
Affiliation(s)
- Abanti Bhattacharjya
- Department of Computer Science and EngineeringJagannath UniversityDhakaBangladesh
| | - Md Manowarul Islam
- Department of Computer Science and EngineeringJagannath UniversityDhakaBangladesh
| | - Md Ashraf Uddin
- School of Information TechnologyDeakin UniversityGeelongAustralia
| | - Md Alamin Talukder
- Department of Computer Science and EngineeringInternational University of Business Agriculture and TechnologyDhakaBangladesh
| | - AKM Azad
- Department of Mathematics and Statistics, Faculty of ScienceImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Sunil Aryal
- School of Information TechnologyDeakin UniversityGeelongAustralia
| | - Bikash Kumar Paul
- Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Software EngineeringDaffodil International UniversityDhakaBangladesh
| | - Wahia Tasnim
- Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | | | - Mohammad Ali Moni
- Artificial Intelligence & Data Science, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- AI & Digital Health Technology, Artificial Intelligence and Cyber Futures InstituteCharles Sturt UniversityBathurstAustralia
- Rural Health Research InstituteCharles Sturt UniversityOrangeAustralia
| |
Collapse
|
11
|
Konoshenko M, Laktionov P, Bryzgunova O. Prostate cancer therapy outcome prediction: are miRNAs a suitable guide for therapeutic decisions? Andrology 2024; 12:705-718. [PMID: 37750354 DOI: 10.1111/andr.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Radical prostatectomy, radiotherapy, chemotherapy, and androgen-deprivation therapy are among the most common treatment options for different forms of prostate cancer (PCa). However, making therapeutic decisions is difficult due to the lack of reliable prediction markers indicating therapy outcomes in clinical practice. The involvement of miRNAs in all mechanisms of the PCa development and their easy detection characterize them as attractive PCa biomarkers. Although there are extensive data on the role of miRNAs in PCa therapy resistance and sensitivity development, the issues of whether they could be used as a guide for therapy choice and, if so, how we can progress toward this goal, remain unclear. Thus, generalizable reviews and studies which summarize, compare, and analyze data on miRNA involvement in responses to different types of PCa therapies are required. OBJECTIVES Data on the involvement of miRNAs in therapy responses, on the role of cross-miRNA expression in different therapies, and on miRNA targets were analyzed in order to determine the miRNA-related factors which can lend perspective to the future development of personalized predictors of PCa sensitivity/resistance to therapies. MATERIALS AND METHODS The data available on the miRNAs associated with different PCa therapies (resistance and sensitivity therapies) are summarized and analyzed in this study, including analyses using bioinformatics resources. Special attention was dedicated to the mechanisms of the development of therapy resistance. RESULTS AND DISCUSSION A comprehensive combined analysis of the current data revealed a panel of miRNAs that were shown to be most closely associated with the PCa therapy response and were found to regulate the genes involved in PCa development via cell proliferation regulation, epithelial-mesenchymal transition (EMT), apoptosis, cell-cycle progression, angiogenesis, metastasis and invasion regulation, androgen-independent development, and colony formation. CONCLUSION The selected miRNA-based panel has the potential to be a guide for therapeutic decision making in the effective treatment of PCa.
Collapse
Affiliation(s)
- MariaYu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Ghosh S, Chakraborti S, Devi D, Sahu R, Mandal S, Mandal L. A conserved nutrient responsive axis mediates autophagic degradation of miRNA-mRNA hybrids in blood cell progenitors. Nucleic Acids Res 2024; 52:385-403. [PMID: 37994707 PMCID: PMC10783512 DOI: 10.1093/nar/gkad1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
In animals, microRNAs are amongst the primary non-coding RNAs involved in regulating the gene expression of a cell. Most mRNAs in a cell are targeted by one or many miRNAs. Although several mechanisms can be attributed to the degradation of miRNA and mRNA within a cell, but the involvement of autophagy in the clearance of miRNA and its target mRNA is not known. We discover a leucine-responsive axis in blood cell progenitors that can mediate an autophagy-directed degradation of miRNA-bound mRNA in Drosophila melanogaster and Homo sapiens. This previously unknown miRNA clearance axis is activated upon amino acid deprivation that can traffic miRNA-mRNA-loaded Argonaute for autophagic degradation in a p62-dependent manner. Thus, our research not only reports a novel axis that can address the turnover of a catalytically active miRISC but also elucidates a slicer-independent mechanism through which autophagy can selectively initiate the clearance of target mRNA.
Collapse
Affiliation(s)
- Sushmit Ghosh
- Developmental Genetic Laboratory, 140306 Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), SAS Nagar, Knowledge City, Sector 81, Manauli P.O., 140306 Punjab, India
| | - Sreemoyee Chakraborti
- Developmental Genetic Laboratory, 140306 Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), SAS Nagar, Knowledge City, Sector 81, Manauli P.O., 140306 Punjab, India
| | - Devki Devi
- Developmental Genetic Laboratory, 140306 Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), SAS Nagar, Knowledge City, Sector 81, Manauli P.O., 140306 Punjab, India
| | - Rajesh Sahu
- Developmental Genetic Laboratory, 140306 Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), SAS Nagar, Knowledge City, Sector 81, Manauli P.O., 140306 Punjab, India
| | - Sudip Mandal
- Molecular, Cell and Developmental Biology Laboratory,140306 Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), SAS Nagar, Knowledge City, Sector 81, Manauli P.O., 140306 Punjab, India
| | - Lolitika Mandal
- Developmental Genetic Laboratory, 140306 Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), SAS Nagar, Knowledge City, Sector 81, Manauli P.O., 140306 Punjab, India
| |
Collapse
|
14
|
Wang J, Li Y. Current advances in antiviral RNA interference in mammals. FEBS J 2024; 291:208-216. [PMID: 36652199 DOI: 10.1111/febs.16728] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Mammals have potent innate immune systems that work together to fight against a variety of distinct viruses. In addition to interferon (IFN) response, which has been intensively studied, antiviral RNA interference (RNAi) is gradually being studied. However, previous studies indicated low Dicer activity on double-stranded RNA (dsRNA) substrates in vitro and that IFN response masks or inhibits antiviral RNAi in mammals. Therefore, whether or not the RNAi is functional for antiviral response in mammalian somatic cells is still an ongoing area of research. In this review, we will present the current advances in antiviral RNAi in mammals and focus on three fundamental questions critical to the intense debate about whether RNAi can function as an innate antiviral immunity in mammals.
Collapse
Affiliation(s)
- Jiaxin Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Salikhova DI, Timofeeva AV, Golovicheva VV, Fatkhudinov TK, Shevtsova YA, Soboleva AG, Fedorov IS, Goryunov KV, Dyakonov AS, Mokrousova VO, Shedenkova MO, Elchaninov AV, Makhnach OV, Kutsev SI, Chekhonin VP, Silachev DN, Goldshtein DV. Extracellular vesicles of human glial cells exert neuroprotective effects via brain miRNA modulation in a rat model of traumatic brain injury. Sci Rep 2023; 13:20388. [PMID: 37989873 PMCID: PMC10663567 DOI: 10.1038/s41598-023-47627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Stem cell-based therapeutic approaches for neurological disorders are widely studied. Paracrine factors secreted by stem cells in vitro and delivered intranasally might allow bypassing the disadvantages associated with a surgical cell delivery procedure with likely immune rejection of a transplant. In this study, we investigated the therapeutic effect of the extracellular vesicles secreted by glial progenitor cells (GPC-EV) derived from human induced pluripotent stem cell in a traumatic brain injury model. Intranasal administration of GPC-EV to Wistar rats for 6 days improved sensorimotor functions assessed over a 14-day observation period. Beside, deep sequencing of microRNA transcriptome of GPC-EV was estimate, and was revealed 203 microRNA species that might be implicated in prevention of various brain pathologies. Modulation of microRNA pools might contribute to the observed decrease in the number of astrocytes that inhibit neurorecovery processes while enhancing neuroplasticity by decreasing phosphorylated Tau forms, preventing inflammation and apoptosis associated with secondary damage to brain tissue. The course of GPC-EV administration was promoted the increasing protein levels of NF-κB in studied areas of the rat brain, indicating NF-κB dependent mechanisms as a plausible route of neuroprotection within the damaged area. This investigation showed that GPC-EV may be representing a therapeutic approach in traumatic brain injury, though its translation into the clinic would require an additional research and development.
Collapse
Affiliation(s)
- Diana I Salikhova
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation, 117198.
- Research Centre for Medical Genetics, Moscow, Russian Federation, 115522.
| | - Angelika V Timofeeva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation, 117997
| | - Victoria V Golovicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119992
| | - Timur Kh Fatkhudinov
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation, 117198
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russian Federation, 117418
| | - Yulia A Shevtsova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation, 117997
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Anna G Soboleva
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation, 117198
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russian Federation, 117418
| | - Ivan S Fedorov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation, 117997
| | - Kirill V Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation, 117997
| | | | | | - Margarita O Shedenkova
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation, 117198
- Research Centre for Medical Genetics, Moscow, Russian Federation, 115522
| | - Andrey V Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russian Federation, 117418
| | - Oleg V Makhnach
- Research Centre for Medical Genetics, Moscow, Russian Federation, 115522
| | - Sergey I Kutsev
- Research Centre for Medical Genetics, Moscow, Russian Federation, 115522
| | - Vladimir P Chekhonin
- The Serbsky State Scientific Center for Social and Forensic Psychiatry, Moscow, Russian Federation, 119034
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119992.
| | - Dmitry V Goldshtein
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation, 117198
- Research Centre for Medical Genetics, Moscow, Russian Federation, 115522
| |
Collapse
|
16
|
Ramamoorthy K, Sabui S, Manzon KI, Balamurugan AN, Said HM. miR-122-5p is involved in posttranscriptional regulation of the mitochondrial thiamin pyrophosphate transporter ( SLC25A19) in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2023; 325:G347-G355. [PMID: 37529835 PMCID: PMC10642993 DOI: 10.1152/ajpgi.00106.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Thiamin (vitamin B1) plays a vital role in cellular energy metabolism/ATP production. Pancreatic acinar cells (PACs) obtain thiamin from circulation and convert it to thiamin pyrophosphate (TPP) in the cytoplasm. TPP is then taken up by the mitochondria via a carrier-mediated process that involves the mitochondrial TPP transporter (MTPPT; encoded by the gene SLC25A19). We have previously characterized different aspects of the mitochondrial carrier-mediated TPP uptake process, but nothing is known about its possible regulation at the posttranscriptional level. We address this issue in the current investigations focusing on the role of miRNAs in this regulation. First, we subjected the human (and rat) 3'-untranslated region (3'-UTR) of the SLC25A19 to three in-silico programs, and all have identified putative binding sites for miR-122-5p. Transfecting pmirGLO-hSLC25A19 3'-UTR into rat PAC AR42J resulted in a significant reduction in luciferase activity compared with cells transfected with pmirGLO-empty vector. Mutating as well as truncating the putative miR-122-5p binding sites in the hSLC25A19 3'-UTR led to abrogation of inhibition in luciferase activity in PAC AR42J. Furthermore, transfecting/transducing PAC AR42J and human primary PACs with mimic of miR-122-5p led to a significant inhibition in the level of expression of the MTPPT mRNA and protein as well as in mitochondrial carrier-mediated TPP uptake. Conversely, transfecting PAC AR42J with an inhibitor of miR-122-5p increased MTPPT expression and function. These findings show, for the first time, that expression and function of the MTPPT in PACs are subject to posttranscriptional regulation by miR-122-5p.NEW & NOTEWORTHY This study shows that the expression and function of mitochondrial TPP transporter (MTPPT) are subject to posttranscriptional regulation by miRNA-122-5p in pancreatic acinar cells.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- Department of Physiology/Biophysics, University of California, Irvine, California, United States
| | - Subrata Sabui
- Department of Physiology/Biophysics, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, United States
| | - Kameron I Manzon
- Department of Physiology/Biophysics, University of California, Irvine, California, United States
| | - Appakalai N Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Hamid M Said
- Department of Medicine, University of California, Irvine, California, United States
- Department of Physiology/Biophysics, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, United States
| |
Collapse
|
17
|
Jarva T, Zhang J, Flynt A. MiSiPi-Rna: an integrated tool for characterizing small regulatory RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539760. [PMID: 37214880 PMCID: PMC10197562 DOI: 10.1101/2023.05.07.539760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) is mediated by small (20-30 nucleotide) RNAs that are produced by complex processing pathways. In animals, three main classes are recognized: microRNAs (miRNAs), small-interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). Understanding of small RNA pathways has benefited from genetic models where key enzymatic events were identified that lead to stereotypical positioning of small RNAs relative to precursor transcripts. Increasingly there is interest in using RNAi in non-model systems due to ease of generating synthetic small RNA precursors for research and biotechnology. Unfortunately, small RNAs are often rapidly evolving, requiring investigation of a species' endogenous small RNAs prior to deploying an RNAi approach. This can be accomplished through small non-coding RNA sequencing followed by applying various computational tools; however, the complexity and separately maintained packages lead to significant challenges for annotating global small RNA populations. To address this need, we developed a simple and efficient R package (MiSiPi-Rna) which can be used to characterize pre-selected loci with plots and statistics, aiding researchers understanding RNAi biology specific to their target species. Additionally, MiSiPi-Rna pioneers several computational approaches to identifying Dicer processing to assist annotation of miRNA and siRNA.
Collapse
|
18
|
Du S, Xie B, Gao H, Zhang J, Fu H, Liao F, Liao Y. Self-Powered DNAzyme Walker Enables Dual-Mode Biosensor Construction for Electrochemiluminescence and Electrochemical Detection of MicroRNA. Anal Chem 2023; 95:7006-7013. [PMID: 37083199 DOI: 10.1021/acs.analchem.3c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Herein, an electrochemiluminescence (ECL) and electrochemical (EC) dual-mode biosensor platform with a self-powered DNAzyme walking machine was established for accurate and sensitive detection of miRNA-21. By employing a magnesium ion (Mn2+)-dependent DNAzyme cleavage cycling reaction, the walking machine was built by assembling DNAzyme walking strands and ferrocene (Fc)-labeled substrate strands on the Au nanoparticles and graphitic carbon nitride nanosheet (g-C3N4 NS)-covered electrode. The DNAzyme walking strand was first prohibited by a blocker strand. After the addition of target miRNA-21 and Mn2+, the DNAzyme walker could be activated and produce autonomous movements along the electrode track fueled by Mn2+-dependent DNAzyme-catalyzed substrate cleavage without additional energy supply. Notably, each walking step resulted in the cleavage of a substrate strand and the release of a Fc-labeled DNA strand fragment, allowing us to acquire an extreme ECL signal recovery of g-C3N4 inhibited by Fc. Meanwhile, numerous Fc-labeled DNA fragments escaped from the surface of the electrode, directly producing an obvious decrease in the square wave voltammetry (SWV) signal from Fc on the same sensing platform. This work not only avoided difficultly assembling various signal indicators but also significantly improved the sensitivity through using self-powered DNAzyme-walker amplification. Moreover, the proposed design employed the same reaction to produce two signal output modes, which could eliminate the interference from diverse reactive pathways on the outcome to mutually improve the accuracy. Therefore, the dual-mode miRNA-21 biosensor exhibited wide detection ranges of 100 aM to 100 nM with low detection limits of 54.3 and 78.6 aM by ECL and SWV modes, respectively, which provided an efficient and universal biosensing approach with extensive applications in early disease diagnosis and bioanalysis.
Collapse
Affiliation(s)
- Shimao Du
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Fang Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| |
Collapse
|
19
|
Yadav AK, Sata TN, Verma D, Sah AK, Mishra AK, Mrinalini, Hossain MM, Pant K, Venugopal SK. Free fatty acid-induced miR-22 inhibits gluconeogenesis via SIRT-1-mediated PGC-1α expression in nonalcoholic fatty liver disease. ILIVER 2023; 2:1-9. [DOI: 10.1016/j.iliver.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Emanuelson C, Ankenbruck N, Kumbhare R, Thomas M, Connelly C, Baktash Y, Randall G, Deiters A. Transcriptional Inhibition of MicroRNA miR-122 by Small Molecules Reduces Hepatitis C Virus Replication in Liver Cells. J Med Chem 2022; 65:16338-16352. [PMID: 36449366 PMCID: PMC9942140 DOI: 10.1021/acs.jmedchem.2c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules of 22-24 nucleotides that are estimated to regulate thousands of genes in humans, and their dysregulation has been implicated in many diseases. MicroRNA-122 (miR-122) is the most abundant miRNA in the liver and has been linked to the development of hepatocellular carcinoma and hepatitis C virus (HCV) infection. Its role in these diseases renders miR-122 a potential target for small-molecule therapeutics. Here, we report the discovery of a new sulfonamide class of small-molecule miR-122 inhibitors from a high-throughput screen using a luciferase-based reporter assay. Structure-activity relationship (SAR) studies and secondary assays led to the development of potent and selective miR-122 inhibitors. Preliminary mechanism-of-action studies suggest a role in the promoter-specific transcriptional inhibition of miR-122 expression through direct binding to the liver-enriched transcription factor hepatocyte nuclear factor 4α. Importantly, the developed inhibitors significantly reduce HCV replication in human liver cells.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rohan Kumbhare
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meryl Thomas
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Colleen Connelly
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yasmine Baktash
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Norouzi M, Bakhtiarizadeh MR, Salehi A. Investigation of the transability of dietary small non-coding RNAs to animals. Front Genet 2022; 13:933709. [PMID: 36134021 PMCID: PMC9483711 DOI: 10.3389/fgene.2022.933709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Our daily diet not only provides essential nutrients needed for survival and growth but also supplies bioactive ingredients to promote health and prevent disease. Recent studies have shown that exogenous microRNAs (miRNAs), xenomiRs, may enter the consumer’s body through dietary intake and regulate gene expression. This fascinating phenomenon suggests that xenomiRs can act as a new class of bioactive substances associated with mammalian systems. In contrast, several studies have failed to detect xenomiRs in consumers and reported that the observed diet-derived miRNAs in the previous studies can be related to the false positive effects of experiments. This discrepancy can be attributed to the potential artifacts related to the process of experiments, small sample size, and inefficient bioinformatics pipeline. Since this hypothesis is not generally accepted yet, more studies are required. Here, a stringent and reliable bioinformatics pipeline was used to analyze 133 miRNA sequencing data from seven different studies to investigate this phenomenon. Generally, our results do not support the transfer of diet-derived miRNAs into the animal/human tissues in every situation. Briefly, xenomiRs were absent from most samples, and also, their expressions were very low in the samples where they were present, which is unlikely to be sufficient to regulate cell transcripts. Furthermore, this study showed that the possibility of miRNAs being absorbed through animals’ diets and thus influencing gene expression during specific periods of biological development is not inconceivable. In this context, our results were in agreement with the theory of the transfer of small RNAs under certain conditions and periods as xenomiRs were found in colostrum which may modulate infants’ immune systems via post-transcriptional regulation. These findings provide evidence for the selective absorption of diet-derived small RNAs, which need to be investigated in future studies to shed light on the mechanisms underlying the transference of diet-derived miRNAs.
Collapse
Affiliation(s)
- Milad Norouzi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
23
|
Chen RP, Chen W. Tunable and Modular miRNA Classifier through Indirect Associative Toehold Strand Displacement. ACS Synth Biol 2022; 11:2719-2725. [PMID: 35816756 DOI: 10.1021/acssynbio.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The programmability of nucleic acids allows detection devices with complex behaviors to be designed de novo. While highly specific, these high-order circuits are usually sequence constrained, making their adaptability toward biological targets challenging. Here, we devise a new strategy called indirect associative strand displacement to decouple sequence constraints between miRNA inputs and de novo strand displacement circuits. By splitting circuit inputs into their toehold and branch migration regions and controlling their association through a docking strand, we demonstrate how any miRNA sequence can be interfaced with synthetic DNA circuits, including catalytic hairpin assembly and a four-input classifier.
Collapse
Affiliation(s)
- Rebecca P Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
24
|
The Role of Small Extracellular Vesicles and MicroRNAs in the Diagnosis and Treatment of Allergic Rhinitis and Nasal Polyps. Mediators Inflamm 2022; 2022:4428617. [PMID: 35757106 PMCID: PMC9225904 DOI: 10.1155/2022/4428617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Allergic rhinitis and nasal polyps are common otorhinolaryngological diseases. Small extracellular vesicles and microRNAs have recently become major research topics of interest due to their key regulatory roles in cancer, inflammation, and various diseases. Although very detailed and in-depth studies on the pathogenesis and pathophysiology of allergic rhinitis and nasal polyps have been conducted, few studies have assessed the regulatory effects of exosomes and microRNAs on allergic rhinitis and nasal polyps. This paper reviews the studies on small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps conducted in recent years and focuses on the regulation of small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps with the aim of providing insights for the future diagnosis and treatment of allergic rhinitis and nasal polyps.
Collapse
|
25
|
Huang Y, Chen H, Gao X, Ren H, Gao S. Identification and functional analysis of miRNAs in skeletal muscle of juvenile and adult largemouth bass, Micropterus salmoides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100985. [PMID: 35381488 DOI: 10.1016/j.cbd.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are considered key regulators to post-transcriptionally regulate gene expression affecting multiple biological activities. However, the developmental process of fish skeletal muscles is regulated by complicated molecular mechanism that has not been completely well-described. In this study, two small RNAs libraries from skeletal muscle of juvenile as well as adult largemouth bass (LMB) were obtained and sequenced using deep sequencing to investigate the development-related miRNAs. We identified an overall number of 486 already recognized miRNAs in addition to 43 novel miRNAs. Comparison of two different skeletal muscle development stages led to the identification of 220 differently expressed miRNAs between juvenile and adult LMB containing 116 up-regulated as well as 104 down-regulated miRNAs. Of them, confirmation of some differently expressed miRNAs was performed via a stem-loop qRT-PCR, which exhibited differently expressed level in juvenile and adult LMB. Furthermore, GO and KEGG enrichment analyses of targets of differently-expressed miRNAs were carried out. Additionally, the analysis of miRNAs-targets interaction network showed that miR-181b-5p_R-1, miR-725 and miR-103 as the nodal miRNAs has over 20 target genes. Moreover, miR-103 could bind the 3'-UTR of actr8, which was validated via dual-luciferase reporter assay. It has been reasonably hypothesized that miR-103 may play a crucial role, which regulate skeletal muscle development of LMB. The present study provides the first identification of miRNA expression profiles at two different skeletal muscle development stages in LMB. Results may be valuable in interpreting the regulatory role miRNAs plays in the growth and developmental process of skeletal muscle and its possible use in LMB breeding.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Haigang Chen
- Guangdong Province Key Laboratory of Fish Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
26
|
He X, Pan W. Host–parasite interactions mediated by cross-species microRNAs. Trends Parasitol 2022; 38:478-488. [DOI: 10.1016/j.pt.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
27
|
He Z, Zhong Y, Hou D, Hu X, Fu Z, Liu L, Zhang S, Sun C. Integrated Analysis of mRNA-Seq and MiRNA-Seq Reveals the Molecular Mechanism of the Intestinal Immune Response in Marsupenaeus japonicus Under Decapod Iridescent Virus 1 Infection. Front Immunol 2022; 12:807093. [PMID: 35116034 PMCID: PMC8804360 DOI: 10.3389/fimmu.2021.807093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
The intestine is not only an important digestive organ but also an important immune organ for shrimp; it plays a key role in maintaining homeostasis. Decapod iridescent virus 1 (DIV1) is a new type of shrimp-lethal virus that has received extensive attention in recent years. To date, most studies of the shrimp intestinal immune response under viral infections have relied on single omics analyses; there is a lack of systematic multi-omics research. In the current study, intestinal mRNA-seq and microRNA (miRNA)-seq analyses of Marsupenaeus japonicus under DIV1 infection were performed. A total of 1,976 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Among them, 21 DEMs were negatively correlated with 194 DEGs from a total of 223 correlations. Functional annotation analysis revealed that M. japonicus can regulate glycosaminoglycan biosynthesis (chondroitin sulfate, dermatan sulfate, and keratan sulfate), vitamin metabolism (retinol metabolism and ascorbate and aldarate metabolism), immune pathway activation (Toll and IMD signaling pathways, Wnt signaling pathway, IL-17 signaling pathway, and Hippo signaling pathway), immunity enzyme activity promotion (triose-phosphate isomerase), antimicrobial peptide (AMP) expression, reactive oxygen species (ROS) production, and cell apoptosis through miRNAs to participate in the host’s antiviral immune response, while DIV1 can influence Warburg effect-related pathways (pyruvate metabolism, glycolysis/gluconeogenesis, and citrate cycle), glycosphingolipid biosynthesis-related pathways (glycosphingolipid biosynthesis—globo and isoglobo series and glycosphingolipid biosynthesis—lacto and neolacto series), and the tight junction and adhesion junction of the intestinal mucosal epithelium through the host’s miRNAs and mRNA to promote its own invasion and replication. These results indicate that intestinal miRNAs play important roles in the shrimp immune response against DIV1 infection. This study provides a basis for further study of the shrimp intestinal antiviral immune response and for the formulation of effective new strategies for the prevention and treatment of DIV1 infection.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xianye Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Zhibin Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Luyao Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| |
Collapse
|
28
|
Zhang J, Fu H, Chu X. Metal-Organic Framework Nanoparticles Power DNAzyme Logic Circuits for Aberrant MicroRNA Imaging. Anal Chem 2021; 93:14675-14684. [PMID: 34696580 DOI: 10.1021/acs.analchem.1c02878] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At the molecular level, a large number of studies exist on the use of dynamic DNA molecular circuits for disease diagnosis and biomedicine. However, how to design programmable molecular circuit devices to autonomously and accurately diagnose multiple low-abundance biomolecules in complex cellular environments remains a challenge. Here, we constructed DNAzyme logic circuits for the analysis and imaging of multiple microRNAs in living cells using Cu/ZIF-8 NPs as a nanocarrier of the logic gate modules and the Cu2+ cofactor of the Cu2+-dependent DNAzyme. The logic gate modules of the logic operation system were adsorbed on the surface of Cu/ZIF-8 NPs via electrostatic interaction. After internalization, pH-responsive Cu/ZIF-8 NPs could efficiently release the logic gate modules and Cu2+, which allowed us to realize multiple logic computations initiated by endogenous miRNA, including one YES logic gate and two binary logic gates (OR and AND) in different living cells. Cu2+-DNAzyme logic circuits could quickly respond to multiple endogenous miRNAs in the complex cell environment, which also provided a new research method for the application of DNA biocomputing circuits in living cells.
Collapse
Affiliation(s)
- Juan Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, P. R. China.,State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
29
|
Cen X, Pan X, Zhang B, Huang W, Pei F, Luo T, Huang X, Liu J, Zhao Z. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res Ther 2021; 12:421. [PMID: 34294156 PMCID: PMC8296686 DOI: 10.1186/s13287-021-02501-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human dental pulp stem cells (hDPSCs) are the preferable choice of seed cells for craniomaxillofacial bone tissue regeneration. As a member of the miR-17-92 cluster, miR-20a-5p functions as an important regulator during bone remodeling. This study aimed to investigate the roles and mechanisms of miR-20a-5p during osteogenesis of hDPSCs. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-20a-5p during osteogenesis of hDPSCs. We interfered with the expression of miR-20a-5p in hDPSCs to clarify the function of miR-20a-5p on osteogenesis both in vitro and vivo. Direct bind sites between miR-20a-5p and BAMBI were confirmed by dual-luciferase reporter assay, and the underlying mechanisms were investigated with cell co-transfections. RESULTS The expression of miR-20a-5p was showed to be upregulated during osteogenesis of hDPSCs. Inhibition of miR-20a-5p could weaken the intensity of ALP/ARS staining and downregulate the expression of mRNAs and proteins of osteogenic markers, while overexpression of miR-20a-5p could enhance the intensity of ALP/ARS staining and the expression of osteogenic markers. Both micro-CT reconstruction images and histological results showed that miR-20a-5p could promote the regeneration of calvarial defects. miR-20a-5p directly targeted bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), and the latter one was an inhibitor of hDPSC osteogenesis. Silencing BAMBI partially reversed the suppression effect of miR-20a-5p knockdown on osteogenesis. Phosphorylation of Smad5 and p38 was decreased when miR-20a-5p was silenced, whereas p-Smad5 and p-p38 were upregulated when miR-20a-5p was overexpressed or BAMBI was silenced. CONCLUSIONS It is demonstrated that miR-20a-5p functioned as a regulator of BAMBI to activate the phosphorylation of Smad5 and p38 during osteogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Luo
- Department of Stomatology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Overexpression of miR-122 Impairs Intestinal Barrier Function and Aggravates Acute Pancreatitis by Downregulating Occludin Expression. Biochem Genet 2021; 60:382-394. [PMID: 34235595 DOI: 10.1007/s10528-021-10106-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Acute pancreatitis (AP) causes intestinal barrier damage, resulting in systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS), which are important factors affecting AP severity and mortality. Here, we studied the mechanism of miR-122 in regulating intestinal barrier function in AP. AP rat model was constructed via intraperitoneal injection of ketamine, and primary intestinal epithelial cells were isolated from rats for in vitro studies. HE staining was used to assess pathological alterations of pancreas and intestines tissues. Inflammatory factors were detected by ELISA assay. qRT-PCR and WB were used to detect the expressions of miR-122 and occluding, respectively. Then dual-luciferase reporter assay, intestinal permeability test, and cell permeability were performed in vivo and in vitro to probe the molecular mechanism of miR-122 in regulating intestinal barrier function in AP. The expression of miR-122 was upregulated in AP rats, while the expression of occludin was downregulated, and the intestinal permeability was increased in AP rats and primary intestinal epithelial cells isolated from rats. Inhibition of miR-122 regulated intestinal barrier function through mediating occludin expression. miR-122 regulated intestinal barrier function to affect AP through mediating occludin expression in vivo. These results provided evidence that miR-122 overexpression impaired intestinal barrier function via regulation of occludin expression, thus promoting AP progression.
Collapse
|
31
|
Xue C, Luo M, Wang L, Li C, Hu S, Yu X, Yuan P, Wu ZS. Stimuli-Responsive Autonomous-Motion Molecular Machine for Sensitive Simultaneous Fluorescence Imaging of Intracellular MicroRNAs. Anal Chem 2021; 93:9869-9877. [PMID: 34232018 DOI: 10.1021/acs.analchem.1c01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNAzymes with enzymatic activity identified from random DNA pools by in vitro selection have recently attracted considerable attention. In this work, a DNAzyme-based autonomous-motion (AM) molecular machine is demonstrated for sensitive simultaneous imaging of different intracellular microRNAs (miRNAs). The AM molecular machine consists of two basic elements, one of which is a target-analogue-embedded double-stem hairpin substrate (TDHS) and the other is a locking-strand-silenced DNAzyme (LSDz). LSDz can be activated by target miRNA and catalytically cleave TDHS, generating Clv-TDHS and releasing free target analogue capable of triggering the next round of cleavage reaction. As such, the molecular machine can exert sustainable autonomous operation, producing an enhanced signal. Because the active target analogue comes from the machine itself and offers cyclical stimulation in a feedback manner, this target-induced autonomous cleavage circuit is termed a self-feedback circuit (SFC). The SFC-based molecular machine can be used to quantify miRNA-21 down to 10 pM without interference from nontarget miRNAs, indicating a substantial improvement in assay performance compared with its counterpart system without an SFC effect. Moreover, due to the enzyme-free process, the AM molecular machine is suitable for miRNA imaging in living cells, and the quantitative results are consistent with the gold standard PCR assay. More interestingly, the AM molecular machine can be used for the simultaneous fluorescence imaging of several intracellular miRNAs, enabling the accurate discrimination of cancerous cells (e.g., HeLa and MCF-7) from healthy cells. The SFC-based autonomous-motion machine is expected to be a promising tool for the research of molecular biology and early diagnosis of human diseases.
Collapse
Affiliation(s)
- Chang Xue
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Mengxue Luo
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lei Wang
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Congcong Li
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuyao Hu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xin Yu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Pei Yuan
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
32
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, Mukai Y, Imaida K, Matsuda Y. Relationship between Lung Carcinogenesis and Chronic Inflammation in Rodents. Cancers (Basel) 2021; 13:cancers13122910. [PMID: 34200786 PMCID: PMC8230400 DOI: 10.3390/cancers13122910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Lung cancer is the most common cause of cancer-related deaths worldwide. There are various risk factors for lung cancer, including tobacco smoking, inhalation of dust particles, chronic inflammation, and genetic factors. Chronic inflammation has been considered a key factor that promotes tumor progression via production of cytokines, chemokines, cytotoxic mediators, and reactive oxygen species by inflammatory cells. Here, we review rodent models of lung tumor induced by tobacco, tobacco-related products, and pro-inflammatory materials as well as genetic modifications, and discuss the relationship between chronic inflammation and lung tumor. Through this review, we hope to clarify the effects of chronic inflammation on lung carcinogenesis and help develop new treatments for lung cancer. Abstract Lung cancer remains the leading cause of cancer-related deaths, with an estimated 1.76 million deaths reported in 2018. Numerous studies have focused on the prevention and treatment of lung cancer using rodent models. Various chemicals, including tobacco-derived agents induce lung cancer and pre-cancerous lesions in rodents. In recent years, transgenic engineered rodents, in particular, those generated with a focus on the well-known gene mutations in human lung cancer (KRAS, EGFR, and p53 mutations) have been widely studied. Animal studies have revealed that chronic inflammation significantly enhances lung carcinogenesis, and inhibition of inflammation suppresses cancer progression. Moreover, the reduction in tumor size by suppression of inflammation in animal experiments suggests that chronic inflammation influences the promotion of tumorigenesis. Here, we review rodent lung tumor models induced by various chemical carcinogens, including tobacco-related carcinogens, and transgenics, and discuss the roles of chronic inflammation in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoko Matsuda
- Correspondence: ; Tel.: +81-87-891-2109; Fax: +81-87-891-2112
| |
Collapse
|
33
|
Shen A, Tong X, Li H, Chu L, Jin X, Ma H, Ouyang Y. TPPP3 inhibits the proliferation, invasion and migration of endometrial carcinoma targeted with miR-1827. Clin Exp Pharmacol Physiol 2021; 48:890-901. [PMID: 33644928 DOI: 10.1111/1440-1681.13456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE AND DESIGN Database screening indicated that tubulin polymerization-promoting protein 3 (TPPP3) was involved in pathogenesis of multiple cancer types. miR-1827 has a potential role in a variety of human cancers. However, the role of TPPP3 and its underlying molecular mechanism in endometrial cancer (EC) has not been investigated. Herein, we aimed to reveal the role of TPPP3/miR-1827 in EC progression. METHODS Tumour tissue and whole blood samples were collected for the detection of TPPP3 expression. TPPP3 shRNAs and pcDNA-TPPP3 were applied to knockdown or upregulate the TPPP3 expression, and miR-1827 mimic was used to upregulate miR-1827 level. CCK-8 and colony assays were applied to estimate the cell proliferation. Wound healing and Transwell assays were conducted to assess the cell migration and invasion abilities. The dual-luciferase reporter assay was conducted to validate the putative binding site between TPPP3 and miR-1827. Expression of TPPP3, miR-1827 and related proteins in cell lines, tissue and whole blood sample were detected using western blot, RT-qPCR and immunofluorescence. RESULTS TPPP3 was observed markedly elevated in EC patients and cells. TPPP3 knockdown displayed evident suppression in cell proliferation, migration and invasion in vitro and in vivo. Moreover, we identified TPPP3 as a direct and functional target gene of miR-1827 in EC cells. The miR-1827 induced regulatory effects on EC cells were partially reversed by TPPP3. Additionally, in vivo study confirmed the findings discovered in vitro. CONCLUSION TPPP3 exerted oncogenic roles in EC progression by sponging miR-1827. This finding might provide potential targets for EC therapy.
Collapse
Affiliation(s)
- Aiqun Shen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Chu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Xia Jin
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Hanbo Ma
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Yiqin Ouyang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
34
|
Nagasaka M, Uddin MH, Al-Hallak MN, Rahman S, Balasubramanian S, Sukari A, Azmi AS. Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol Cancer 2021; 20:82. [PMID: 34074295 PMCID: PMC8170728 DOI: 10.1186/s12943-021-01371-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy is now considered a valuable diagnostic tool for advanced metastatic non-small cell lung cancer (NSCLC). In NSCLC, circulating tumor DNA (ctDNA) analysis has been shown to increase the chances of identifying the presence of targetable mutations and has been adopted by many clinicians owing to its low risk. Serial monitoring of ctDNA may also help assess the treatment response or for monitoring relapse. As the presence of detectable plasma ctDNA post-surgery likely indicates residual tumor burden, studies have been performed to quantify plasma ctDNA to assess minimal residual disease (MRD) in early-stage resected NSCLC. Most data on utilizing liquid biopsy for monitoring MRD in early-stage NSCLC are from small-scale studies using ctDNA. Here, we review the recent research on liquid biopsy in NSCLC, not limited to ctDNA, and focus on novel methods such as micro RNAs (miRNA) and long non-coding (lncRNA).
Collapse
Affiliation(s)
- Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Mohammed Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sarah Rahman
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Suresh Balasubramanian
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| |
Collapse
|
35
|
Lee HJ, Kim BH. Pyrene-Modified Guanine Cluster Probes Forming DNA/RNA Hybrid Three-Way Junctions for Imaging of Intracellular MicroRNAs. ACS APPLIED BIO MATERIALS 2021; 4:1668-1676. [PMID: 35014514 DOI: 10.1021/acsabm.0c01476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression in cells; high levels of expression are associated with various cancers. In this paper, we describe PyA-modified nucleic acid probes that can detect intracellular miRNAs by forming DNA/RNA hybrid three-way junction structures containing a fluorescent scaffold-a so-called G-cluster. This G-cluster featured two mismatched strands, four guanine residues, and one fluorescent adenine residue having a pyrene moiety covalently connected at the 8-position through an acetylene linker. The scaffold underwent a dramatic shift in its emission wavelength when two mismatched strands formed a duplex, similar to the behavior of an adenine pentad system (A-cluster). We applied the G-cluster scaffold in a three-way junction system to probe for miRNAs; its red-shifted fluorescence intensity and stability were greater than those reported previously for A-cluster three-way junction probes. Furthermore, confocal microscopy of cancer cell lines revealed bright fluorescence emissions in response to the miRNAs in the cells. Thus, this system can be applied intracellularly as a potential fluorescent probe for the detection of various biologically important nucleic acids.
Collapse
Affiliation(s)
- Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
36
|
Caroleo AM, De Ioris MA, Boccuto L, Alessi I, Del Baldo G, Cacchione A, Agolini E, Rinelli M, Serra A, Carai A, Mastronuzzi A. DICER1 Syndrome and Cancer Predisposition: From a Rare Pediatric Tumor to Lifetime Risk. Front Oncol 2021; 10:614541. [PMID: 33552988 PMCID: PMC7859642 DOI: 10.3389/fonc.2020.614541] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a rare genetic condition predisposing to hereditary cancer and caused by variants in the DICER1 gene. The risk to present a neoplasm before the age of 10 years is 5.3 and 31.5% before the age of 60. DICER1 variants have been associated with a syndrome involving familial pleuropulmonary blastoma (PPB), a rare malignant tumor of the lung, which occurs primarily in children under the age of 6 years and represents the most common life-threatening manifestation of DICER1 syndrome. Type I, II, III, and Ir (type I regressed) PPB are reported with a 5-year overall survival ranging from 53 to 100% (for type Ir). DICER1 gene should be screened in all patients with PPB and considered in other tumors mainly in thyroid neoplasms (multinodular goiter, thyroid cancer, adenomas), ovarian tumors (Sertoli-Leydig cell tumor, sarcoma, and gynandroblastoma), and cystic nephroma. A prompt identification of this syndrome is necessary to plan a correct follow-up and screening during lifetime.
Collapse
Affiliation(s)
- Anna Maria Caroleo
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Maria Antonietta De Ioris
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, United States.,School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Iside Alessi
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Giada Del Baldo
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Antonella Cacchione
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Annalisa Serra
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| | - Andrea Carai
- Department of Neuroscience, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco - Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital (IRCCS), Roma, Italy
| |
Collapse
|
37
|
Siddika T, Heinemann IU. Bringing MicroRNAs to Light: Methods for MicroRNA Quantification and Visualization in Live Cells. Front Bioeng Biotechnol 2021; 8:619583. [PMID: 33537295 PMCID: PMC7848212 DOI: 10.3389/fbioe.2020.619583] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are small non-coding RNAs that interact with their target mRNAs for posttranscriptional gene regulation. Finely controlled miRNA biogenesis, target recognition and degradation indicate that maintaining miRNA homeostasis is essential for regulating cell proliferation, growth, differentiation and apoptosis. Increasingly, miRNAs have been recognized as a potential biomarker for disease diagnosis. MiRNAs can be found in blood, plasma, and tissues, and miRNA expression and activity differ in developmental stages, tissues and in response to external stimuli. MiRNA transcripts are matured from pri-miRNA over pre-miRNA to mature miRNA, a process that includes multiple steps and enzymes. Many tools are available to identify and quantify specific miRNAs, ranging from measuring total miRNA, specific miRNA activity, miRNA arrays and miRNA localization. The various miRNA assays differ in accuracy, cost, efficiency and convenience of monitoring miRNA dynamics. To acknowledge the significance and increasing research interest in miRNAs, we summarize the traditional as well as novel methods of miRNA quantification with strengths and limitations of various techniques in biochemical and medical research.
Collapse
Affiliation(s)
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
38
|
Kang N, Ou Y, Wang G, Chen J, Li D, Zhan Q. miR-875-5p exerts tumor-promoting function via down-regulation of CAPZA1 in esophageal squamous cell carcinoma. PeerJ 2021; 9:e10020. [PMID: 33505778 PMCID: PMC7792515 DOI: 10.7717/peerj.10020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer deaths worldwide. Currently, efficient genetic markers for diagnosis and treatment of ESCC are lacking. MicroRNAs (miRNAs) are global genetic regulators that control cancer gene expression by binding to the 3'untranslated regions (3'UTRs) of targeting mRNAs. In addition, miRNAs function as oncogenes or tumor suppressors in the progression of tumors. In the current study, we found that hsa-miR-875-5p (miR-875-5p) exhibited amplification in ESCC according to the TCGA database. Then, xCELLigence Real-Time Cell Analyzer (RTCA)-MP system and colony formation assays were employed to detect cell proliferationand colony formationability. The results showed that miR-875-5p promoted the proliferation ESCC cells. Subsequently, transwell results indicated that miR-875-5p promoted the invasion and migration of ESCC cells. Furthermore, we showed that miR-875-5p was able to bind to CAPZA13'UTR, which contains the single nucleotide polymorphism (SNP), rs373245753, as reported in our previous study involving WGS and WES on ESCC. Subsequently, mRNA affinity pull-down assays verifiedthat the SNP disrupts miR-875-5p binding to CAPZA1. The current study is the first demonstration that miR-875-5p may function as an oncogene via down-regulation of CAPZA1 expression in ESCC.
Collapse
Affiliation(s)
- Nan Kang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Yunwei Ou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
39
|
Shi R, Dai F, He Y, Sun L, Xu M, Deng D, Zhang Q. Comprehensive Analyses of Type 1 Diabetes Ketosis- or Ketoacidosis-Related Genes in Activated CD56 +CD16 + NK Cells. Front Endocrinol (Lausanne) 2021; 12:750135. [PMID: 34899600 PMCID: PMC8656236 DOI: 10.3389/fendo.2021.750135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Alterations in natural killer (NK) cells activity cause damage to pancreatic islets in type 1 diabetes mellitus (T1DM). The aim of this study is to identify T1DM ketosis- or ketoacidosis-related genes in activated CD56+CD16+ NK cells. METHODS Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using the GEO2R tool. Enrichment analyses were performed using Metascape online database and GSEA software. Cell-specific gene co-expression network was built using NetworkAnalyst tools. Cytoscape software was used to identify hub genes and construct co-expressed networks. Target miRNAs were predicted based on the DIANA-micro T, miRDB, and miRWalk online databases. RESULTS A total of 70 DEGs were identified between T1DM patients recovered from ketosis or ketoacidosis and healthy control blood samples in GSE44314. Among the DEGs, 10 hub genes were screened out. The mature NK cell-specific gene co-expression network for DEGs in T1DM was built using NetworkAnalyst tools. DEGs between activated CD56+CD16+ NK cells and CD56brightCD16- NK cells were identified from GSE1511. After intersection, 13 overlapping genes between GSE44314 and GSE1511 microarray datasets were screened out, in which 7 hub genes were identified. Additionally, 59 target miRNAs were predicted according to the 7 hub genes. After validating with the exosome miRNA expression profile dataset of GSE97123, seven differentially expressed miRNAs (DEmiRNAs) in plasma-derived exosome were selected. Finally, a mRNA-miRNA network was constructed, which was involved in the T1DM ketosis or ketoacidosis process. CONCLUSION This work identified seven hub genes in activated CD56+CD16+ NK cells and seven miRNAs in plasma-derived exosome as potential predictors of T1DM ketoacidosis, which provided a novel insight for the pathogenesis at the transcriptome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiu Zhang
- *Correspondence: Datong Deng, ; Qiu Zhang,
| |
Collapse
|
40
|
Naghiyan Fesharaki S, Naghiyan Fesharaki S, Esmaeili A, Azadeh M, Ghaedi K. SNP rs1803622 in hsa-miR-548g binding site at GAPDH alters susceptibility to breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Ayadilord M, Tavakoli T, Fakharian T, Soltaninejad E, Naseri M. Relationship analysis of the miR-196a2 polymorphism (rs11614913) with colorectal cancer risk in southern Khorasan, eastern Iran. Meta Gene 2020; 26:100813. [DOI: 10.1016/j.mgene.2020.100813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
42
|
A novel fluorescent enhancing platform based on DNA-scaffolded silver nanoclusters for potential inflammatory bowel disease-associated microRNA detection. Talanta 2020; 218:121122. [DOI: 10.1016/j.talanta.2020.121122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
|
43
|
Rattan P, Minacapelli CD, Rustgi V. The Microbiome and Hepatocellular Carcinoma. Liver Transpl 2020; 26:1316-1327. [PMID: 32564483 DOI: 10.1002/lt.25828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
The human microbiome is a vast and complex system encompassing all of the microbes and their genes that occupy the environmentally exposed surfaces of the human body. The gut microbiota and its associated microbiome play an integral role in mammalian metabolism and immune tolerance as well as in immunocompetence. Disruptions in the human gut microbiome are associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. The persistence of this inflammation has been shown to induce the accumulation of genetic and epigenetic changes leading to hepatocellular carcinoma (HCC). Therefore, the importance and prognostic influence of the gut microbiome on hepatocarcinogenesis has been increasingly studied in recent years. This review discusses the mechanisms by which imbalances in the gut microbiome disturb the gut-liver axis to impact hepatocarcinogenesis, including disruption of the intestinal barrier, changes in bile acid metabolism, and reduction in tumor-suppressing microRNA. Furthermore, this review summarizes recent advances in potential microbiome-based therapeutic opportunities in HCC.
Collapse
Affiliation(s)
- Puru Rattan
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Carlos D Minacapelli
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
44
|
Ramamoorthy K, Anandam KY, Yasujima T, Srinivasan P, Said HM. Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 319:G323-G332. [PMID: 32683950 PMCID: PMC7509260 DOI: 10.1152/ajpgi.00178.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B1 (thiamin) plays essential roles in normal metabolism and function of all human/mammalian cells, including the pancreatic acinar cells (PACs). PACs obtain thiamin from their surrounding circulation via transport across the plasma membrane, a process that is mediated by thiamin transporter (THTR)-1 and THTR-2. We have previously characterized different aspects of thiamin uptake by mouse and human primary PACs, but little is known about posttranscriptional regulation of the uptake event. We addressed this by focusing on the predominant thiamin transporter THTR-1 (encoded by SLC19A2 gene) in PACs. Transfecting pmirGLO-SLC19A2 3'-untranslated region (UTR) into mouse-derived PAC 266-6 cells leads to a significant reduction in luciferase activity compared with cells transfected with empty vector. Subjecting the SLC19A2 3'-UTR to different in silico algorithms identified multiple putative microRNA binding sites in this region. Focusing on miR-200a-3p (since it is highly expressed in mouse and human pancreas), we found that transfecting PAC 266-6 and human primary PACs (hPACs) with mimic miR-200a-3p leads to a significant inhibition of THTR-1 expression (both protein and mRNA levels) and in thiamin uptake. In contrast, transfection by miR-200a-3p inhibitor leads to an increase in THTR-1 expression and thiamin uptake. Additionally, truncating the region carrying miR-200a-3p binding site in SLC19A2 3'-UTR and mutating the binding site lead to abrogation in the inhibitory effect of this microRNA on luciferase activity in PAC 266-6. These results demonstrate that expression of THTR-1 and thiamin uptake in PACs is subject to posttranscriptional regulation by microRNAs.NEW & NOTEWORTHY The findings of this study show, for the first time, that the membrane transporter of vitamin B1, i.e., thiamin transporter-1 (THTR-1), is subject to regulation by microRNAs (specifically miR-200a-3p) in mouse and human primary pancreatic acinar cells (PACs). The results also show that this posttranscriptional regulation has functional consequences on the ability of PACs to take in the essential micronutrient thiamin.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Kasin Yadunandam Anandam
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Tomoya Yasujima
- 4Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Padmanabhan Srinivasan
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,2Department of Medicine, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
45
|
Yang L, Yang J. Expression and clinical significance of microRNA-21, PTEN and p27 in cancer tissues of patients with non-small cell lung cancer. Oncol Lett 2020; 20:49. [PMID: 32802169 PMCID: PMC7412729 DOI: 10.3892/ol.2020.11910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
Expression and clinical significance of micro-RNA-21, PTEN and p27 in cancer tissue of patients with non-small cell lung cancer (NSCLC) were investigated. In this study, cancer tissue and adjacent tissue specimens from 230 patients with NSCLC were collected from thoracic surgery department in Hubei Cancer Hospital from March 2010 to February 2016. The expression of miRNA-21, PTEN and p27 in cancer tissue and adjacent tissue of patients with NSCLC was detected by RT-PCR. Combined with clinical information, the correlation among miRNA-21, PTEN, p27 and clinical features of NSCLC was analyzed. The expression of miRNA-21, PTEN, p27 in NSCLC was significantly lower than that in adjacent tissue by RT-PCR (P<0.05). There was no significant difference in age, sex and course of disease (P>0.050), but there were differences in smoking, lymph node metastasis, TNM stage and differentiation degree classification (P<0.050). By comparing the 3-year survival rate in the group with high and low expression of miRNA-21, PTEN and p27, it was found that the 36-month survival rate of patients with high expression of miRNA-21 was 85.19% (P<0.05), and of patients with low expression of miRNA-21 it was 95.90% (P<0.05). The 36-month survival rate of patients with high expression of PTEN was 85.59% (P<0.05), of patients with low expression of PTEN it was 94.96% (P<0.05) and in patients with high expression of p27 it was 84.91% (P<0.05). The 36-month survival rate of patients with low expression of p27 was 94.35% (P<0.05). The survival rates of miRNA-21, PTEN and p27 low expression groups were significantly higher than those of high expression groups (P<0.05). In conclusion, the expression of miRNA-21, PTEN and p271 in cancer tissue of NSCLC patients was low. The three indexes have good diagnostic efficacy based on ROC curve analysis, and are expected to be excellent indexes for early clinical diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Ling Yang
- Department of Chest Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Jihong Yang
- School of Life Science, Huazhong Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
46
|
Huang S, Li C, Huang J, Luo P, Mo D, Wang H. LncRNA FEZF1-AS1 promotes non-small lung cancer cell migration and invasion through the up-regulation of NOTCH1 by serving as a sponge of miR-34a. BMC Pulm Med 2020; 20:110. [PMID: 32349744 PMCID: PMC7191745 DOI: 10.1186/s12890-020-1154-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 04/20/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The involvement of lncRNA FEZF1-AS1 has been analyzed in many types of cancers, while its roles in non-small cell lung cancer (NSCLC) remains unclear. We then explored the role of FEZF1-AS1 in NSCLC. METHODS qPCR and western blot were performed to measure gene expression. FEZF1-AS1, miR-34a, and NOTCH-1 were overexpressed to analyze the relationship between them. Transwell assays were performed to analyze the effects of transfections on cell invasion and migration. RESULTS FEZF1-AS1 was up-regulated in NSCLC patients. Increased expression levels of FEZF1-AS1 were observed with the increase in clinical stages. Bioinformatics analysis showed that miR-34a can bind with FEZF1-AS1. In NSCLC tissues, NOTCH-1 and FEZF1-AS1 were positively correlated. In NSCLC cells, over-expression of FEZF1-AS1 resulted in up-regulated expressions of NOTCH-1, while miR-34a over-expression mediated down-regulated expressions of NOTCH-1. In addition, FEZF1-AS1 and miR-34a did not alter each other, while bioinformatics analysis showed that miR-34a can bind FEZF1-AS1. Analysis of cell migration and invasion showed increased cell invasion and migration rates after FEZF1-AS1 and NOTCH-1 over-expression. MiR-34a played the opposite role and reduced the effects of FEZF1-AS1 over-expression. CONCLUSIONS FEZF1-AS1 promoted NSCLC cell migration and invasion through the up-regulation of NOTCH1 by serving as a sponge of miR-34a.
Collapse
Affiliation(s)
- Shangxiao Huang
- Department of Radiotherapy, The Third Affiliated Hospital of Guangxi Medical University, No.13 Dancun Road, Nanning, Guangxi, 530031, People's Republic of China.
| | - Chunjun Li
- Department of Pathology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530031, People's Republic of China
| | - Jianfeng Huang
- Department of Radiotherapy, The Third Affiliated Hospital of Guangxi Medical University, No.13 Dancun Road, Nanning, Guangxi, 530031, People's Republic of China
| | - Penghui Luo
- Department of Radiotherapy, The Third Affiliated Hospital of Guangxi Medical University, No.13 Dancun Road, Nanning, Guangxi, 530031, People's Republic of China
| | - Dunchang Mo
- Department of Radiotherapy, The Third Affiliated Hospital of Guangxi Medical University, No.13 Dancun Road, Nanning, Guangxi, 530031, People's Republic of China
| | - Hanlei Wang
- Department of Radiotherapy, The Third Affiliated Hospital of Guangxi Medical University, No.13 Dancun Road, Nanning, Guangxi, 530031, People's Republic of China
| |
Collapse
|
47
|
Ahmad M, Shah AA. Predictive role of single nucleotide polymorphism (rs11614913) in the development of breast cancer in Pakistani population. Per Med 2020; 17:213-227. [PMID: 32320336 DOI: 10.2217/pme-2019-0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: miRNAs play an important role in breast cancer (BC). Variations in miRNAs influence their maturation, expression and consequently regulation of their target genes. Materials & methods: In this study, single nucleotide polymorphism rs11614913 was genotyped in BC patients (n = 300) and 230 controls by employing tetra primer amplification refractory mutation system PCR and Sanger sequencing (Macrogen Korea). Results: A significant difference was observed in the genotypes through co-dominant (χ2.#x00A0;= 42.03; p < 0.0001), additive (odds ratio [OR] = 0.6441 [0.4887-0.8490, 95% confidence interval]; p < 0.0019), dominant (OR = 0.3996 [0.2809-0.5686], p < 0.0001) and recessive (OR = 0.2993 [0.1220-0.7347], p < 0.009) statistical models showed decreased risk association of C allele with BC. Conclusion: Females having CT genotype are at higher risk of BC as compared with those having CC genotype.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Aftab Ali Shah
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
48
|
Zuo H, Weng K, Luo M, Yang L, Weng S, He J, Xu X. A MicroRNA-1–Mediated Inhibition of the NF-κB Pathway by the JAK-STAT Pathway in the Invertebrate Litopenaeus vannamei. THE JOURNAL OF IMMUNOLOGY 2020; 204:2918-2930. [DOI: 10.4049/jimmunol.2000071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
|
49
|
Zheng B, Zhou J, Wang H. Host microRNAs and exosomes that modulate influenza virus infection. Virus Res 2020; 279:197885. [PMID: 31981772 DOI: 10.1016/j.virusres.2020.197885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate over half of human protein-coding genes and play a vital role in cellular development, proliferation, metabolism, and homeostasis. Exosomes are rounded or cup-like extracellular vesicles that carry proteins, mRNAs, miRNAs, and lipids for release and exchange messages between cells involved in various cellular processes. Influenza virus is a substantial public health challenge. The expression of host miRNAs is altered in response to stimulation by influenza virus. These dysregulated miRNAs directly or indirectly target viral genes to regulate viral replication and stimulate or suppress innate immune responses and cell apoptosis during viral infection. Exosomes released by infected cells are associated with the transfer of antigens and key molecules that activate and modulate immune function. Dysregulation of miRNAs and secretion of exosomes are associated with pathogenicity and immune regulation during influenza infection. This review provides a comprehensive summary of the information available regarding host miRNAs and exosomes that are involved in the modulation of influenza virus infection and will facilitate the development of preventative or therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Baojia Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China
| | - Junmei Zhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education, and Deparment of Medical Microbiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Hui Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
50
|
Tang W, Xu H, Ma D, Ma R, Wu J, Yu X, Feng J, Liu Q. Pre-miR-27a rs895819 polymorphism and risk of diffuse large B-cell lymphoma. J Clin Lab Anal 2019; 34:e23088. [PMID: 31797450 PMCID: PMC7083450 DOI: 10.1002/jcla.23088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background Recently, several studies have investigated the relationship between Pre‐miR‐27a rs895819 polymorphism and risk of various cancers. However, the relationship between rs895819 and diffuse large B‐cell lymphoma (DLBCL) has not been well known. Methods In this study, we conducted a case‐control study to explore the role of Pre‐miR‐27a rs895819 in risk of DLBCL. The PCR‐TaqMan and luciferase assays and in vitro experiments were used to evaluate polymorphism function. Results As a result, we found subjects carrying with rs895819 AG/GG genotype had a significantly decreased risk when compared with those carrying the AA genotype. Further qPCR assay showed that the DLBCL patients carrying AG/GG genotypes showed a lower level of mature miR‐27a when compared with patients carrying AA genotype. Moreover, miR‐27a levels were upregulated in DLBCL tissues compared with normal lymphoid tissues. Further in vitro experiments showed that miR‐27a might function as an oncogene through target TGFBR1. In addition, TGFBR1 overexpression rescues effects of miR‐27a inhibitor on DLBCL cells phenotypes. Conclusions In conclusion, these findings indicate that rs895819 A > G might reduce the expression of mature miR‐27a, and leading a higher level of TGFBR1, ultimately inhibiting the development of DLBCL.
Collapse
Affiliation(s)
- Weiyan Tang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Haonan Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dawei Ma
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianqiu Wu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinnian Yu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Qizhan Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer, Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|