1
|
Fatemi E, Jung C. Pathogenicity of the root lesion nematode Pratylenchus neglectus depends on pre-culture conditions. Sci Rep 2023; 13:19642. [PMID: 37949971 PMCID: PMC10638436 DOI: 10.1038/s41598-023-46551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The ability of a plant parasitic nematode to infect and reproduce within a host plant depends on its genotype and the environmental conditions before and during infection. We studied the culturing conditions of the root lesion nematode Pratylenchus neglectus to produce inoculum for plant infection tests. Nematodes were either cultivated on carrot calli for different periods or directly isolated from the roots of the host plants. After infection of wheat and barley plants in the greenhouse, nematodes were quantified by RT-qPCR and by visual counting of the nematodes. We observed drastically reduced infection rates after long-term (> 96 weeks) cultivation on carrot callus. In contrast, fresh isolates from cereal roots displayed much higher pathogenicity. We recommend using root lesion nematodes cultivated on carrot calli no longer than 48 weeks to guarantee uniform infection rates.
Collapse
Affiliation(s)
- Ehsan Fatemi
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany.
| |
Collapse
|
2
|
Fatemi E, Melzer S, Jung C. DNA-based assessment of root lesion nematode infections in cereal roots. Sci Rep 2023; 13:12602. [PMID: 37537261 PMCID: PMC10400682 DOI: 10.1038/s41598-023-39559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Root lesion nematodes (RLN) of the genus Pratylenchus are causing significant damage in cereal production worldwide. Due to climate change and without efficient and environment-friendly treatments, the damages through RLNs are predicted to increase. Microscopic assessments of RLNs in the field and the greenhouses are time-consuming and laborious. As a result, cereal breeders have mostly ignored this pest. We present a method measuring RLN in infected cereal roots using a standardized PCR approach. Publicly available Pratylenchus neglectus primer combinations were evaluated. An optimal primer combination for RT-qPCR assay was identified to detect and quantify P. neglectus within infected cereal roots. Using the RT-qPCR detection assay, P. neglectus could be clearly distinguished from other plant parasitic nematodes. We could identify P. neglectus DNA in barley and wheat roots as low as 0.863 and 0.916 ng/µl of total DNA, respectively. A single P. neglectus individual was detected in water suspension and within barley and wheat roots. The RT-qPCR detection assay provides a robust and accurate alternative to microscopic nematode identification and quantification. It could be of interest for resistance breeding, where large populations must be screened to detect and quantify P. neglectus in farmer's fields.
Collapse
Affiliation(s)
- Ehsan Fatemi
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Siegbert Melzer
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
3
|
Aleuy OA, Kutz S. Adaptations, life-history traits and ecological mechanisms of parasites to survive extremes and environmental unpredictability in the face of climate change. Int J Parasitol Parasites Wildl 2020; 12:308-317. [PMID: 33101908 PMCID: PMC7569736 DOI: 10.1016/j.ijppaw.2020.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 10/27/2022]
Abstract
Climate change is increasing weather unpredictability, causing more intense, frequent and longer extreme events including droughts, precipitation, and both heat and cold waves. The performance of parasites, and host-parasite interactions, under these unpredictable conditions, are directly influenced by the ability of parasites to cope with extremes and their capacity to adapt to the new conditions. Here, we review some of the structural, behavioural, life history and ecological characteristics of parasitic nematodes that allow them to persist and adapt to extreme and changing environmental conditions. We focus primarily, but not exclusively, on parasitic nematodes in the Arctic, where temperature extremes are pronounced, climate change is happening most rapidly, and changes in host-parasite interactions are already documented. We discuss how life-history traits, phenotypic plasticity, local adaptation and evolutionary history can influence the short and long term response of parasites to new conditions. A detailed understanding of the complex ecological processes involved in the survival of parasites in extreme and changing conditions is a fundamental step to anticipate the impact of climate change in parasite dynamics.
Collapse
Affiliation(s)
- O. Alejandro Aleuy
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - S. Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Sommer RJ. Phenotypic Plasticity: From Theory and Genetics to Current and Future Challenges. Genetics 2020; 215:1-13. [PMID: 32371438 PMCID: PMC7198268 DOI: 10.1534/genetics.120.303163] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Phenotypic plasticity is defined as the property of organisms to produce distinct phenotypes in response to environmental variation. While for more than a century, biologists have proposed this organismal feature to play an important role in evolution and the origin of novelty, the idea has remained contentious. Plasticity is found in all domains of life, but only recently has there been an increase in empirical studies. This contribution is intended as a fresh view and will discuss current and future challenges of plasticity research, and the need to identify associated molecular mechanisms. After a brief summary of conceptual, theoretical, and historical aspects, some of which were responsible for confusion and contention, I will formulate three major research directions and predictions for the role of plasticity as a facilitator of novelty. These predictions result in a four-step model that, when properly filled with molecular mechanisms, will reveal plasticity as a major factor of evolution. Such mechanistic insight must be complemented with comparative investigations to show that plasticity has indeed created novelty and innovation. Together, such studies will help develop a true developmental evolutionary biology.
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Abstract
A new study shows that the nematode Auanema rhodensis manipulates X chromosome segregation in surprising ways that depend on both the sex of the parent and the type of gamete. The result is a complex mating system that produces unusual sex ratios and inheritance patterns.
Collapse
Affiliation(s)
- Yongquan Shen
- Department of Molecular Biology, Rowan University School of Medicine, Stratford, NJ, USA
| | - Ronald E Ellis
- Department of Molecular Biology, Rowan University School of Medicine, Stratford, NJ, USA.
| |
Collapse
|
6
|
Xie Y, Zhao B, Hoberg EP, Li M, Zhou X, Gu X, Lai W, Peng X, Yang G. Genetic characterisation and phylogenetic status of whipworms (Trichuris spp.) from captive non-human primates in China, determined by nuclear and mitochondrial sequencing. Parasit Vectors 2018; 11:516. [PMID: 30236150 PMCID: PMC6149069 DOI: 10.1186/s13071-018-3100-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Background Whipworms (Nematoda: Trichuridae), among the most common soil-transmitted helminths (STHs), can cause the socioeconomically important disease trichuriasis in various mammalian hosts including humans and non-human primates. For many years, Trichuris from non-human primates has been assigned to the same species as the one infecting humans Trichuris trichiura. More recently, several molecular reports challenged this assumption following recognition of a Trichuris species complex observed in humans and non-human primates. A refined concept for species limits within Trichuris contributes to an understanding of diversity and the potential (zoonotic) transmission among humans and non-human primates. In this study, we expanded previous investigations by exploring the diversity of Trichuris among eight primates including three Asian autochthonous species (i.e. Rhinopithecus roxellana, Rhinopithecus bieti and Nomascus leucogenys). Species-level identification, whether novel or assignable to known lineages of Trichuris, was based on analyses of nuclear internal transcribed spacers (ITS) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes. Results In total, seven genetically distinct subgroups of whipworms were determined to be present among the primates sampled. Most Trichuris lineages, including Subgroups 1, 1’, 3, 5 and 6, showed a broad host range and were not restricted to particular primate species; in addition to T. trichiura, a complex of Trichuris species was shown infecting primates. Furthermore, it was assumed that Trichuris spp. from either N. leucogenys and P. hamadryas or R. roxellana and R. bieti, respectively, were conspecific. Each pair was indicated to be a discrete lineage of Trichuris, designated, respectively, as Subgroups 1 or 1’ and 2, based on integrated genetic and phylogenetic evidence. Conclusion These results emphasise that the taxonomy and genetic variations of Trichuris are more complicated than previously acknowledged. These cumulative molecular and phylogenetic data provide a better understanding of the taxonomy, genetics and evolutionary biology of the whipworms. Electronic supplementary material The online version of this article (10.1186/s13071-018-3100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zhao
- Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Eric P Hoberg
- Division of Parasitology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mei Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Geyer KK, Munshi SE, Whiteland HL, Fernandez-Fuentes N, Phillips DW, Hoffmann KF. Methyl-CpG-binding (SmMBD2/3) and chromobox (SmCBX) proteins are required for neoblast proliferation and oviposition in the parasitic blood fluke Schistosoma mansoni. PLoS Pathog 2018; 14:e1007107. [PMID: 29953544 PMCID: PMC6023120 DOI: 10.1371/journal.ppat.1007107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
While schistosomiasis remains a significant health problem in low to middle income countries, it also represents a recently recognised threat to more economically-developed regions. Until a vaccine is developed, this neglected infectious disease is primarily controlled by praziquantel, a drug with a currently unknown mechanism of action. By further elucidating how Schistosoma molecular components cooperate to regulate parasite developmental processes, next generation targets will be identified. Here, we continue our studies on schistosome epigenetic participants and characterise the function of a DNA methylation reader, the Schistosoma mansoni methyl-CpG-binding domain protein (SmMBD2/3). Firstly, we demonstrate that SmMBD2/3 contains amino acid features essential for 5-methyl cytosine (5mC) binding and illustrate that adult schistosome nuclear extracts (females > males) contain this activity. We subsequently show that SmMBD2/3 translocates into nuclear compartments of transfected murine NIH-3T3 fibroblasts and recombinant SmMBD2/3 exhibits 5mC binding activity. Secondly, using a yeast-two hybrid (Y2H) screen, we show that SmMBD2/3 interacts with the chromo shadow domain (CSD) of an epigenetic adaptor, S. mansoni chromobox protein (SmCBX). Moreover, fluorescent in situ hybridisation (FISH) mediated co-localisation of Smmbd2/3 and Smcbx to mesenchymal cells as well as somatic- and reproductive- stem cells confirms the Y2H results and demonstrates that these interacting partners are ubiquitously expressed and found within both differentiated as well as proliferating cells. Finally, using RNA interference, we reveal that depletion of Smmbd2/3 or Smcbx in adult females leads to significant reductions (46-58%) in the number of proliferating somatic stem cells (PSCs or neoblasts) as well as in the quantity of in vitro laid eggs. Collectively, these results further expand upon the schistosome components involved in epigenetic processes and suggest that pharmacological inhibition of SmMBD2/3 and/or SmCBX biology could prove useful in the development of future schistosomiasis control strategies.
Collapse
Affiliation(s)
- Kathrin K. Geyer
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sabrina E. Munshi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen L. Whiteland
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dylan W. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
8
|
Garcia-Vazquez E, Cani A, Diem A, Ferreira C, Geldhof R, Marquez L, Molloy E, Perché S. Leave no traces - Beached marine litter shelters both invasive and native species. MARINE POLLUTION BULLETIN 2018; 131:314-322. [PMID: 29886952 DOI: 10.1016/j.marpolbul.2018.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Marine litter has been considered a potential transport vector of non-indigenous species. In this study developed in Tjärnö (Sweden), at the entry of the Baltic Sea, the communities inhabiting coastal litter and natural substrates (N = 5448 macroorganisms) were monitored from eight sites of different ecological conditions. The results showed that litter can support high densities of marine organisms and represent a new habitat in the studied coast. The taxonomic profile of the communities supported by marine litter and hard natural substrate were significantly different. Moreover, opposite to the expectations of reduced diversity in artificial structures, more diverse communities were found on litter. Non-indigenous species were attached mainly to non-plastic artificial materials. From these results it can be concluded that marine litter can significantly alter the biotic composition of coastal ecosystem, representing a shelter for invasive species and diverse natives.
Collapse
Affiliation(s)
- Eva Garcia-Vazquez
- University of Oviedo, Department of Functional Biology, Natural Resources Research Group, C/ Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Alessandra Cani
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Ireland
| | - Anna Diem
- Ghent University, Faculty of Sciences, Marine Biology Research Group, Campus Sterre S8, Krijgslaan 281, 9000 Ghent, Belgium
| | - Catarina Ferreira
- Ghent University, Faculty of Sciences, Marine Biology Research Group, Campus Sterre S8, Krijgslaan 281, 9000 Ghent, Belgium
| | - Ruben Geldhof
- Ghent University, Faculty of Sciences, Marine Biology Research Group, Campus Sterre S8, Krijgslaan 281, 9000 Ghent, Belgium
| | - Lidia Marquez
- University of Oviedo, Department of Functional Biology, Natural Resources Research Group, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eoin Molloy
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Sarah Perché
- ILVO, Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| |
Collapse
|
9
|
Kanzaki N, Kiontke K, Tanaka R, Hirooka Y, Schwarz A, Müller-Reichert T, Chaudhuri J, Pires-daSilva A. Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Sci Rep 2017; 7:11135. [PMID: 28894108 PMCID: PMC5593846 DOI: 10.1038/s41598-017-09871-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
The co-existence of males, females and hermaphrodites, a rare mating system known as trioecy, has been considered as an evolutionarily transient state. In nematodes, androdioecy (males/hermaphrodites) as found in Caenorhabditis elegans, is thought to have evolved from dioecy (males/females) through a trioecious intermediate. Thus, trioecious species are good models to understand the steps and requirements for the evolution of new mating systems. Here we describe two new species of nematodes with trioecy, Auanema rhodensis and A. freiburgensis. Along with molecular barcodes, we provide a detailed analysis of the morphology of these species, and document it with drawings and light and SEM micrographs. Based on morphological data, these free-living nematodes were assigned to a new genus, Auanema, together with three other species described previously. Auanema species display convergent evolution in some features with parasitic nematodes with complex life cycles, such as the production of few males after outcrossing and the obligatory development of dauers into self-propagating adults.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Karin Kiontke
- Department of Biology, New York University, 100 Washington Square E., New York, NY, 10003, USA
| | - Ryusei Tanaka
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.,Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuuri Hirooka
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.,Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo, 184-8584, Japan
| | - Anna Schwarz
- Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Jyotiska Chaudhuri
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | | |
Collapse
|