1
|
Giraudeau M, Vincze O, Dupont SM, Sepp T, Baines C, Lemaitre JF, Lemberger K, Gentès S, Boddy A, Dujon AM, Bramwell G, Harris V, Ujvari B, Alix-Panabières C, Lair S, Sayag D, Conde DA, Colchero F, Harrison TM, Pavard S, Padilla-Morales B, Chevallier D, Hamede R, Roche B, Malkocs T, Aktipis AC, Maley C, DeGregori J, Loc’h GL, Thomas F. Approaches and methods to study wildlife cancer. J Anim Ecol 2024; 93:1410-1428. [PMID: 39189422 PMCID: PMC11745198 DOI: 10.1111/1365-2656.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 08/28/2024]
Abstract
The last few years have seen a surge of interest from field ecologists and evolutionary biologists to study neoplasia and cancer in wildlife. This contributes to the One Health Approach, which investigates health issues at the intersection of people, wild and domestic animals, together with their changing environments. Nonetheless, the emerging field of wildlife cancer is currently constrained by methodological limitations in detecting cancer using non-invasive sampling. In addition, the suspected differential susceptibility and resistance of species to cancer often make the choice of a unique model species difficult for field biologists. Here, we provide an overview of the importance of pursuing the study of cancer in non-model organisms and we review the currently available methods to detect, measure and quantify cancer in the wild, as well as the methodological limitations to be overcome to develop novel approaches inspired by diagnostic techniques used in human medicine. The methodology we propose here will help understand and hopefully fight this major disease by generating general knowledge about cancer, variation in its rates, tumour-suppressor mechanisms across species as well as its link to life history and physiological characters. Moreover, this is expected to provide key information about cancer in wildlife, which is a top priority due to the accelerated anthropogenic change in the past decades that might favour cancer progression in wild populations.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Orsolya Vincze
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- HUN-REN-DE Conservation Biology Research Group, Debrecen, Hungary
| | - Sophie M. Dupont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ciara Baines
- Department of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jean-Francois Lemaitre
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Sophie Gentès
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Amy Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Antoine M. Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS5290–Université de Montpellier, Montpellier, France
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Valerie Harris
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Stephane Lair
- Faculté de médecine vétérinaire, Canadian Wildlife Health Cooperative/Centre québécois sur la santé des animaux sauvages, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - David Sayag
- ONCOnseil—Unité d’expertise en oncologie vétérinaire, Toulouse, France
| | - Dalia A. Conde
- Department of Biology, University of Southern Denmark, Odense M, Denmark
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
| | - Fernando Colchero
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Mathematics and Computer Sciences, University of Southern Denmark, Odense M, Denmark
| | - Tara M. Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel Pavard
- Unité Eco-Anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS 7206, Université Paris Cité, Paris, France
| | - Benjamin Padilla-Morales
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Damien Chevallier
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Rodrigo Hamede
- Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS5290–Université de Montpellier, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Tamas Malkocs
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, Plouzane, France
| | - Athena C. Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Carlo Maley
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS5290–Université de Montpellier, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
2
|
Compton ZT, Ågren JA, Marusyk A, Nedelcu AM. The Elephant and the Spandrel. Evol Med Public Health 2024; 13:92-100. [PMID: 40276264 PMCID: PMC12018762 DOI: 10.1093/emph/eoae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Indexed: 04/26/2025] Open
Abstract
Comparative oncology has made great strides in identifying patterns of cancer prevalence and risk across the tree of life. Such studies have often centered on elucidating the evolution of mechanisms that prevent the development and progression of cancer, especially in large animals such as elephants. Conclusions from this approach, however, may have been exaggerated, given that the deep evolutionary origins of multicellularity suggest that the preeminent functions of the identified mechanisms may be unrelated to cancer. Instead, cancer suppression may have emerged as an evolutionary byproduct, or "spandrel". We propose a novel evolutionary perspective that highlights the importance of somatic maintenance as the underlying axis of natural selection. We argue that by shifting the focus of study from cancer suppression to somatic maintenance, we can gain a deeper understanding of the evolutionary pressures that shaped the mechanisms responsible for the observed variation in cancer prevalence across species.
Collapse
Affiliation(s)
- Zachary T Compton
- University of Arizona Cancer Center, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - J Arvid Ågren
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, Canada
| |
Collapse
|
3
|
Beichman AC, Zhu L, Harris K. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Annu Rev Biomed Data Sci 2024; 7:83-105. [PMID: 38669515 DOI: 10.1146/annurev-biodatasci-102523-104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| | - Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kelley Harris
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
Boddy AM. The need for evolutionary theory in cancer research. Eur J Epidemiol 2023; 38:1259-1264. [PMID: 36385398 PMCID: PMC10757905 DOI: 10.1007/s10654-022-00936-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
Abstract
Sir Richard Peto is well known for proposing puzzling paradoxes in cancer biology-some more well-known than others. In a 1984 piece, Peto proposed that after decades of molecular biology in cancer research, we are still ignorant of the biology underpinning cancer. Cancer is a product of somatic mutations. How do these mutations arise and what are the mechanisms? As an epidemiologist, Peto asked if we really need to understand mechanisms in order to prevent cancer? Four decades after Peto's proposed ignorance in cancer research, we can simply ask, are we still ignorant? Did the great pursuit to uncover mechanisms of cancer eclipse our understanding of causes and preventions? Or can we get closer to treating and preventing cancer by understanding the underlying mechanisms that make us most vulnerable to this disease?
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
- Arizona Cancer and Evolution Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Scheben A, Mendivil Ramos O, Kramer M, Goodwin S, Oppenheim S, Becker DJ, Schatz MC, Simmons NB, Siepel A, McCombie WR. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol Evol 2023; 15:evad148. [PMID: 37728212 PMCID: PMC10510315 DOI: 10.1093/gbe/evad148] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023] Open
Abstract
Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Oppenheim
- American Museum of Natural History, Institute for Comparative Genomics, New York, New York, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
6
|
Baines C, Meitern R, Kreitsberg R, Fort J, Scharsack JP, Nogueira P, Giraudeau M, Sepp T. Correlations between oxidative DNA damage and formation of hepatic tumours in two flatfish species from contaminated environments. Biol Lett 2023; 19:20220583. [PMID: 37254521 PMCID: PMC10230182 DOI: 10.1098/rsbl.2022.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Many species in aquatic environments face increased exposure to oncogenic pollution due to anthropogenic environmental change which can lead to higher cancer prevalence. The mechanistic relationship connecting environmental pollution and cancer is multi-factorial and poorly understood, and the specific mechanisms are so far still uncharacterized. One potential mediator between pollutant exposure and cancer is oxidative damage to DNA. We conducted a study in the field with two flatfish species, European flounder (Platichthys flesus L.) and common dab (Limanda limanda L.) with overlapping distribution and similar ecological niche, to investigate if the link between oncogenic pollutants and cancer described in ecotoxicological literature could be mediated by oxidative DNA damage. This was not the case for flounders as neither polycyclic aromatic hydrocarbon (PAH) bile metabolites nor metallic trace element concentrations were related to oxidative DNA damage measurements. However, dabs with higher PAH concentrations did exhibit increased oxidative damage. High oxidative DNA damage also did not predict neoplasm occurrence, rather, healthy individuals tended to have higher oxidative damage measurements compared to fishes with pre-neoplastic tumours. Our analyses showed that flounders had lower concentrations of PAH bile metabolites, suggesting that compared to dab this species is less exposed or better at eliminating these contaminants.
Collapse
Affiliation(s)
- Ciara Baines
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Harju County, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jörn Peter Scharsack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Pedro Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
7
|
Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM, Mace R, Read A, Turner PE, Blumstein DT. The future of evolutionary medicine: sparking innovation in biomedicine and public health. FRONTIERS IN SCIENCE 2023; 1:997136. [PMID: 37869257 PMCID: PMC10590274 DOI: 10.3389/fsci.2023.997136] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.
Collapse
Affiliation(s)
- B. Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Molly Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter D. Gluckman
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Felicia M. Low
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
| | - Ruth Mace
- Department of Anthropology, University College London, London, United Kingdom
| | - Andrew Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, PA, United States
- Department of Entomology, The Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Sepp T, Giraudeau M. Wild animals as an underused treasure trove for studying the genetics of cancer. Bioessays 2023; 45:e2200188. [PMID: 36404107 DOI: 10.1002/bies.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
Recent years have seen an emergence of the field of comparative cancer genomics. However, the advancements in this field are held back by the hesitation to use knowledge obtained from human studies to study cancer in other animals, and vice versa. Since cancer is an ancient disease that arose with multicellularity, oncogenes and tumour-suppressor genes are amongst the oldest gene classes, shared by most animal species. Acknowledging that other animals are, in terms of cancer genetics, ecology, and evolution, rather similar to humans, creates huge potential for advancing the fields of human and animal oncology, but also biodiversity conservation. Also see the video abstract here: https://youtu.be/UFqyMx5HETY.
Collapse
Affiliation(s)
- Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
9
|
Cataracts Across the Tree of Life: A Roadmap for Prevention and Biomedical Innovation. Am J Ophthalmol 2023; 249:167-173. [PMID: 36716847 DOI: 10.1016/j.ajo.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE Spontaneous cataracts have been identified in the lenses of animals across a phylogenetically wide range of species. This can be a source of insights and innovation for human health professionals, but many persons may lack awareness of it. By providing a phylogenetic survey and analysis of species with cataract vulnerability, this paper demonstrates how a broad comparative perspective can provide critical information about environmental hazards to human visual health and can spark potential innovations in the prevention and treatment of cataracts in humans. DESIGN Perspectives. METHODS Review and synthesis of selected literature with interpretation and perspective. RESULTS We found 273 recorded cases of spontaneously occurring cataracts in 113 species of birds, 83 species of mammals, 30 species of actinopterygii fish, 10 species of amphibians, 6 species of reptiles, and 1 species of cephalopod. CONCLUSION A phylogenetically wide range of species, including many living in and around human environments, are vulnerable to cataracts. These animals may serve as sentinels for human visual health. Variation in cataract vulnerability across species may also facilitate the identification of resistance-conferring physiologies, leading to accelerated innovation in the prevention and treatment of cataracts in humans.
Collapse
|
10
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
11
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
12
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
13
|
Vischioni C, Bove F, De Chiara M, Mandreoli F, Martoglia R, Pisi V, Liti G, Taccioli C. miRNAs Copy Number Variations Repertoire as Hallmark Indicator of Cancer Species Predisposition. Genes (Basel) 2022; 13:1046. [PMID: 35741808 PMCID: PMC9223155 DOI: 10.3390/genes13061046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/04/2022] Open
Abstract
Aging is one of the hallmarks of multiple human diseases, including cancer. We hypothesized that variations in the number of copies (CNVs) of specific genes may protect some long-living organisms theoretically more susceptible to tumorigenesis from the onset of cancer. Based on the statistical comparison of gene copy numbers within the genomes of both cancer-prone and -resistant species, we identified novel gene targets linked to tumor predisposition, such as CD52, SAT1 and SUMO. Moreover, considering their genome-wide copy number landscape, we discovered that microRNAs (miRNAs) are among the most significant gene families enriched for cancer progression and predisposition. Through bioinformatics analyses, we identified several alterations in miRNAs copy number patterns, involving miR-221, miR-222, miR-21, miR-372, miR-30b, miR-30d and miR-31, among others. Therefore, our analyses provide the first evidence that an altered miRNAs copy number signature can statistically discriminate species more susceptible to cancer from those that are tumor resistant, paving the way for further investigations.
Collapse
Affiliation(s)
- Chiara Vischioni
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
- IRCAN, CNRS, INSERM, Université Côte d’Azur, 06107 Nice, France; (M.D.C.); (G.L.)
| | - Fabio Bove
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Matteo De Chiara
- IRCAN, CNRS, INSERM, Université Côte d’Azur, 06107 Nice, France; (M.D.C.); (G.L.)
| | - Federica Mandreoli
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Riccardo Martoglia
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Valentino Pisi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Gianni Liti
- IRCAN, CNRS, INSERM, Université Côte d’Azur, 06107 Nice, France; (M.D.C.); (G.L.)
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| |
Collapse
|
14
|
Potievskii MB, Shegai PV, Kaprin AD. Prospects for the Application of Methods of Evolutionary Biology in Oncology. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Voskarides K, Koutsofti C, Pozova M. TP53 Mutant Versus Wild-Type Zebrafish Larvae Under Starvation Stress: Larvae Can Live Up to 17 Days Post-Fertilization Without Food. Zebrafish 2022; 19:49-55. [PMID: 35417275 DOI: 10.1089/zeb.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, an experimental protocol has been developed for comparing survival rates of mutant and wild-type zebrafish larvae under extreme starvation. Zebrafish larvae were placed in 96-well plates at fourth day postfertilization (dpf) and larvae were not fed at all from hatching to cease. Zdf1 zebrafish line was used, a strain carrying the (cancer) pathogenic TP53-M214K amino acid substitution. TP53-M214 corresponds to the human TP53-M246 and both residues are located on the DNA-binding domain of the p53 protein. Survival statistical analysis did not show any significant difference in the overall survival rates between homozygous mutant and wild-type larvae. When considering 15 dpf as the endpoint of the experiment (66% of larvae died), a borderline statistical significance was observed for the dominant model of inheritance (p = 0.015; relative hazard = 0.8320). Despite the fact yolk sac of larvae is depleted at 7-8 dpf, 34% of larvae survive until 15 dpf and 1.5% until 17 dpf. Concluding, three main results derive from this study: (1) pathogenic homozygous mutations in TP53 probably do not alter survival rates of zebrafish larvae under starvation; (2) zebrafish larvae can live up to 17 dpf without food, surviving only with their initial nutritional supplies; and (3) an easy and affordable protocol has been developed for estimating survival rates of zebrafish larvae under stressful conditions.
Collapse
Affiliation(s)
| | - Constantina Koutsofti
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Nicosia, Cyprus
| | - Maria Pozova
- Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
16
|
Immunity and lifespan: answering long-standing questions with comparative genomics. Trends Genet 2022; 38:650-661. [DOI: 10.1016/j.tig.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
17
|
Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive Selection and Enhancer Evolution Shaped Lifespan and Body Mass in Great Apes. Mol Biol Evol 2022; 39:msab369. [PMID: 34971383 PMCID: PMC8837823 DOI: 10.1093/molbev/msab369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body mass, we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified five genes, important for tumor suppression, adaptive immunity, metastasis, and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of approximately 1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel "ape-specific" enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE-Vntr-Alus. In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Guy Novoa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología—CSIC, Madrid, Spain
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Tan M, Redmond AK, Dooley H, Nozu R, Sato K, Kuraku S, Koren S, Phillippy AM, Dove ADM, Read T. The whale shark genome reveals patterns of vertebrate gene family evolution. eLife 2021; 10:e65394. [PMID: 34409936 PMCID: PMC8455134 DOI: 10.7554/elife.65394] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.
Collapse
Affiliation(s)
- Milton Tan
- Illinois Natural History Survey at University of Illinois Urbana-ChampaignChampaignUnited States
| | | | - Helen Dooley
- University of Maryland School of Medicine, Institute of Marine & Environmental TechnologyBaltimoreUnited States
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
| | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
- Okinawa Churaumi Aquarium, MotobuOkinawaJapan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research (BDR), RIKENKobeJapan
| | - Sergey Koren
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Timothy Read
- Department of Infectious Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
19
|
Tollis M, Schneider-Utaka AK, Maley CC. The Evolution of Human Cancer Gene Duplications across Mammals. Mol Biol Evol 2021; 37:2875-2886. [PMID: 32421773 PMCID: PMC7530603 DOI: 10.1093/molbev/msaa125] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is caused by genetic alterations that affect cellular fitness, and multicellular organisms have evolved mechanisms to suppress cancer such as cell cycle checkpoints and apoptosis. These pathways may be enhanced by the addition of tumor suppressor gene paralogs or deletion of oncogenes. To provide insights to the evolution of cancer suppression across the mammalian radiation, we estimated copy numbers for 548 human tumor suppressor gene and oncogene homologs in 63 mammalian genome assemblies. The naked mole rat contained the most cancer gene copies, consistent with the extremely low rates of cancer found in this species. We found a positive correlation between a species’ cancer gene copy number and its longevity, but not body size, contrary to predictions from Peto’s Paradox. Extremely long-lived mammals also contained more copies of caretaker genes in their genomes, suggesting that the maintenance of genome integrity is an essential form of cancer prevention in long-lived species. We found the strongest association between longevity and copy numbers of genes that are both germline and somatic tumor suppressor genes, suggesting that selection has acted to suppress both hereditary and sporadic cancers. We also found a strong relationship between the number of tumor suppressor genes and the number of oncogenes in mammalian genomes, suggesting that complex regulatory networks mediate the balance between cell proliferation and checks on tumor progression. This study is the first to investigate cancer gene expansions across the mammalian radiation and provides a springboard for potential human therapies based on evolutionary medicine.
Collapse
Affiliation(s)
- Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ.,Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
20
|
Tejada-Martinez D, de Magalhães JP, Opazo JC. Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer. Proc Biol Sci 2021; 288:20202592. [PMID: 33622125 DOI: 10.1098/rspb.2020.2592] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cetaceans are the longest-living species of mammals and the largest in the history of the planet. They have developed mechanisms against diseases such cancer, although the underlying molecular bases of these remain unknown. The goal of this study was to investigate the role of natural selection in the evolution of 1077 tumour suppressor genes (TSGs) in cetaceans. We used a comparative genomic approach to analyse two sources of molecular variation in the form of dN/dS rates and gene copy number variation. We found a signal of positive selection in the ancestor of cetaceans within the CXCR2 gene, an important regulator of DNA damage, tumour dissemination and immune system. Further, in the ancestor of baleen whales, we found six genes exhibiting positive selection relating to diseases such as breast carcinoma, lung neoplasm (ADAMTS8) and leukaemia (ANXA1). The TSGs turnover rate (gene gain and loss) was almost 2.4-fold higher in cetaceans when compared with other mammals, and notably even faster in baleen whales. The molecular variants in TSGs found in baleen whales, combined with the faster gene turnover rate, could have favoured the evolution of their particular traits of anti-cancer resistance, gigantism and longevity. Additionally, we report 71 genes with duplications, of which 11 genes are linked to longevity (e.g. NOTCH3 and SIK1) and are important regulators of senescence, cell proliferation and metabolism. Overall, these results provide evolutionary evidence that natural selection in TSGs could act on species with large body sizes and extended lifespan, providing novel insights into the genetic basis of disease resistance.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Valdivia, Chile.,Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
21
|
Nunney L, Thai K. Determining cancer risk: the evolutionary multistage model or total stem cell divisions? Proc Biol Sci 2020; 287:20202291. [PMID: 33323077 DOI: 10.1098/rspb.2020.2291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A recent hypothesis proposed that the total number of stem cell divisions in a tissue (TSCD model) determine its intrinsic cancer risk; however, a different model-the multistage model-has long been used to understand how cancer originates. Identifying the correct model has important implications for interpreting the frequency of cancers. Using worldwide cancer incidence data, we applied three tests to the TSCD model and an evolutionary multistage model of carcinogenesis (EMMC), a model in which cancer suppression is recognized as an evolving trait, with natural selection acting to suppress cancers causing a significant mean loss of Darwinian fitness. Each test supported the EMMC but contradicted the TSCD model. This outcome undermines results based on the TSCD model quantifying the relative importance of 'bad luck' (the random accumulation of somatic mutations) versus environmental and genetic factors in determining cancer incidence. Our testing supported the EMMC prediction that cancers of large rapidly dividing tissues predominate late in life. Another important prediction is that an indicator of recent oncogenic environmental change is an unusually high mean fitness loss due to cancer, rather than a high lifetime incidence. The evolutionary model also predicts that large and/or long-lived animals have evolved mechanisms of cancer suppression that may be of value in preventing or controlling human cancers.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Kevin Thai
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Translational control in the naked mole-rat as a model highly resistant to cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188455. [PMID: 33148499 DOI: 10.1016/j.bbcan.2020.188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of mRNA translation is involved in the onset and progression of different types of cancer. To gain insight into novel genetic strategies to avoid this malady, we reviewed the available genomic, transcriptomic, and proteomic data about the translational machinery from the naked-mole rat (NMR) Heterocephalus glaber, a new model of study that exhibits high resistance to cancer. The principal features that might confer cancer resistance are 28S rRNA fragmentation, RPL26 and eIF4G overexpression, global downregulation of mTOR pathway, specific amino acid residues in RAPTOR (P908) and RICTOR (V1695), and the absence of 4E-BP3. These features are not only associated with cancer but also might couple longevity and adaptation to hypoxia. We propose that the regulation of translation is among the strategies endowing NMR cancer resistance.
Collapse
|
23
|
Nunney L. Resolving Peto's paradox: Modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl 2020; 13:1581-1592. [PMID: 32821274 PMCID: PMC7428811 DOI: 10.1111/eva.12993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
The intrinsic risk of cancer increases with body size and longevity; however, big long-lived species do not exhibit this increase, a contradiction named Peto's paradox. Five hypotheses potentially resolving this paradox were modeled using the multistage model of carcinogenesis. The five hypotheses were based on (1) intrinsic changes in metabolic rate with body size; adaptive increase in immune policing of (2) cancer cells or (3) cells with driver mutations; or adaptive increase in cancer suppression via (4) decreased somatic mutation rate, or (5) increased genetic control. Parameter changes needed to stabilize cancer risk in three types of cancer were estimated for tissues scaled from mouse size and longevity to human and blue whale levels. The metabolic rate hypothesis alone was rejected due to a conflict between the required interspecific effect with the observed intraspecific effect of size on cancer risk, but some metabolic change was optionally incorporated in the other models. Necessary parameter changes in immune policing and somatic mutation rate far exceeded values observed; however, natural selection increasing the genetic suppression of cancer was generally consistent with data. Such adaptive increases in genetic control of cancers in large and/or long-lived animals raise the possibility that nonmodel animals will reveal novel anticancer mechanisms.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
24
|
Amin SB, Anderson KJ, Boudreau CE, Martinez-Ledesma E, Kocakavuk E, Johnson KC, Barthel FP, Varn FS, Kassab C, Ling X, Kim H, Barter M, Lau CC, Ngan CY, Chapman M, Koehler JW, Long JP, Miller AD, Miller CR, Porter BF, Rissi DR, Mazcko C, LeBlanc AK, Dickinson PJ, Packer RA, Taylor AR, Rossmeisl JH, Woolard KD, Heimberger AB, Levine JM, Verhaak RGW. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell 2020; 37:243-257.e7. [PMID: 32049048 PMCID: PMC7132629 DOI: 10.1016/j.ccell.2020.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Sporadic gliomas in companion dogs provide a window on the interaction between tumorigenic mechanisms and host environment. We compared the molecular profiles of canine gliomas with those of human pediatric and adult gliomas to characterize evolutionarily conserved mammalian mutational processes in gliomagenesis. Employing whole-genome, exome, transcriptome, and methylation sequencing of 83 canine gliomas, we found alterations shared between canine and human gliomas such as the receptor tyrosine kinases, TP53 and cell-cycle pathways, and IDH1 R132. Canine gliomas showed high similarity with human pediatric gliomas per robust aneuploidy, mutational rates, relative timing of mutations, and DNA-methylation patterns. Our cross-species comparative genomic analysis provides unique insights into glioma etiology and the chronology of glioma-causing somatic alterations.
Collapse
Affiliation(s)
- Samirkumar B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - C Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Avenue Morones Prieto 3000, Monterrey, Nuevo Leon 64710, Mexico; Department of Neuro-Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emre Kocakavuk
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), German Cancer Consortium (DKTK) Partner Site & Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Cynthia Kassab
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Mary Barter
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Ching C Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Connecticut Children's Medical Center, Hartford, CT 06106, USA; University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Margaret Chapman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jennifer W Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - James P Long
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C Ryan Miller
- Departments of Pathology and Laboratory Medicine, Neurology, and Pharmacology, Lineberger Comprehensive Cancer Center and Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian F Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel R Rissi
- Department of Pathology and Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amanda R Taylor
- Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | | | - Kevin D Woolard
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Amy B Heimberger
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
25
|
Somarelli JA, Boddy AM, Gardner HL, DeWitt SB, Tuohy J, Megquier K, Sheth MU, Hsu SD, Thorne JL, London CA, Eward WC. Improving Cancer Drug Discovery by Studying Cancer across the Tree of Life. Mol Biol Evol 2020; 37:11-17. [PMID: 31688937 DOI: 10.1093/molbev/msz254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite a considerable expenditure of time and resources and significant advances in experimental models of disease, cancer research continues to suffer from extremely low success rates in translating preclinical discoveries into clinical practice. The continued failure of cancer drug development, particularly late in the course of human testing, not only impacts patient outcomes, but also drives up the cost for those therapies that do succeed. It is clear that a paradigm shift is necessary if improvements in this process are to occur. One promising direction for increasing translational success is comparative oncology-the study of cancer across species, often involving veterinary patients that develop naturally-occurring cancers. Comparative oncology leverages the power of cross-species analyses to understand the fundamental drivers of cancer protective mechanisms, as well as factors contributing to cancer initiation and progression. Clinical trials in veterinary patients with cancer provide an opportunity to evaluate novel therapeutics in a setting that recapitulates many of the key features of human cancers, including genomic aberrations that underly tumor development, response and resistance to treatment, and the presence of comorbidities that can affect outcomes. With a concerted effort from basic scientists, human physicians and veterinarians, comparative oncology has the potential to enhance the cost-effectiveness and efficiency of pipelines for cancer drug discovery and other cancer treatments.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA
| | - Heather L Gardner
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | | | - Joanne Tuohy
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA
| | - Kate Megquier
- Broad Institute, Massachussettes Institute of Technology and Harvard University, Boston, MA
| | - Maya U Sheth
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Shiaowen David Hsu
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Jeffrey L Thorne
- Department of Biological Sciences, North Carolina State University, Raleigh, NC.,Department of Statistics, North Carolina State University, Raleigh, NC
| | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | - William C Eward
- Duke Cancer Institute, Durham, NC.,Department of Orthopaedics, Duke University Medical Center, Durham, NC
| |
Collapse
|
26
|
Somarelli JA, Gardner H, Cannataro VL, Gunady EF, Boddy AM, Johnson NA, Fisk JN, Gaffney SG, Chuang JH, Li S, Ciccarelli FD, Panchenko AR, Megquier K, Kumar S, Dornburg A, DeGregori J, Townsend JP. Molecular Biology and Evolution of Cancer: From Discovery to Action. Mol Biol Evol 2020; 37:320-326. [PMID: 31642480 PMCID: PMC6993850 DOI: 10.1093/molbev/msz242] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer progression is an evolutionary process. During this process, evolving cancer cell populations encounter restrictive ecological niches within the body, such as the primary tumor, circulatory system, and diverse metastatic sites. Efforts to prevent or delay cancer evolution-and progression-require a deep understanding of the underlying molecular evolutionary processes. Herein we discuss a suite of concepts and tools from evolutionary and ecological theory that can inform cancer biology in new and meaningful ways. We also highlight current challenges to applying these concepts, and propose ways in which incorporating these concepts could identify new therapeutic modes and vulnerabilities in cancer.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Heather Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Medford, MA
| | | | - Ella F Gunady
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, CA
| | | | | | - Stephen G Gaffney
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | | | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- King’s College London, London, United Kingdom
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen’s University, Kingston, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Kate Megquier
- Broad Institute, Massachusettes Institute of Technology and Harvard University
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, and Department of Biology, Temple University, Philadelphia, PA
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| |
Collapse
|
27
|
Differential mechanisms of tolerance to extreme environmental conditions in tardigrades. Sci Rep 2019; 9:14938. [PMID: 31624306 PMCID: PMC6797769 DOI: 10.1038/s41598-019-51471-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/29/2019] [Indexed: 01/17/2023] Open
Abstract
Tardigrades, also known as water bears, are small aquatic animals that inhabit marine, fresh water or limno-terrestrial environments. While all tardigrades require surrounding water to grow and reproduce, species living in limno-terrestrial environments (e.g. Ramazzottius varieornatus) are able to undergo almost complete dehydration by entering an arrested state known as anhydrobiosis, which allows them to tolerate ionic radiation, extreme temperatures and intense pressure. Previous studies based on comparison of the genomes of R. varieornatus and Hypsibius dujardini - a less tolerant tardigrade - have pointed to potential mechanisms that may partially contribute to their remarkable ability to resist extreme physical conditions. In this work, we have further annotated the genomes of both tardigrades using a guided approach in search for novel mechanisms underlying the extremotolerance of R. varieornatus. We have found specific amplifications of several genes, including MRE11 and XPC, and numerous missense variants exclusive of R. varieornatus in CHEK1, POLK, UNG and TERT, all of them involved in important pathways for DNA repair and telomere maintenance. Taken collectively, these results point to genomic features that may contribute to the enhanced ability to resist extreme environmental conditions shown by R. varieornatus.
Collapse
|
28
|
Tollis M, Robbins J, Webb AE, Kuderna LFK, Caulin AF, Garcia JD, Bèrubè M, Pourmand N, Marques-Bonet T, O’Connell MJ, Palsbøll PJ, Maley CC. Return to the Sea, Get Huge, Beat Cancer: An Analysis of Cetacean Genomes Including an Assembly for the Humpback Whale (Megaptera novaeangliae). Mol Biol Evol 2019; 36:1746-1763. [PMID: 31070747 PMCID: PMC6657726 DOI: 10.1093/molbev/msz099] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.
Collapse
Affiliation(s)
- Marc Tollis
- Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | | | - Andrew E Webb
- Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA
| | | | - Aleah F Caulin
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, PA
| | | | - Martine Bèrubè
- Center for Coastal Studies, Provincetown, MA
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Nader Pourmand
- Jack Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Tomas Marques-Bonet
- Instituto de Biologia Evolutiva (UPF-CSIC), PRBB, Barcelona, Spain
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain
| | - Mary J O’Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Per J Palsbøll
- Center for Coastal Studies, Provincetown, MA
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Carlo C Maley
- Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
29
|
Ferris E, Abegglen LM, Schiffman JD, Gregg C. Accelerated Evolution in Distinctive Species Reveals Candidate Elements for Clinically Relevant Traits, Including Mutation and Cancer Resistance. Cell Rep 2019. [PMID: 29514101 PMCID: PMC6294302 DOI: 10.1016/j.celrep.2018.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genomewide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ~33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species.
Collapse
Affiliation(s)
- Elliott Ferris
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Lisa M Abegglen
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84132-3401, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84132-3401, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132-3401, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84132-3401, USA; New York Stem Cell Foundation, New York, NY, USA.
| |
Collapse
|
30
|
Passow CN, Bronikowski AM, Blackmon H, Parsai S, Schwartz TS, McGaugh SE. Contrasting Patterns of Rapid Molecular Evolution within the p53 Network across Mammal and Sauropsid Lineages. Genome Biol Evol 2019; 11:629-643. [PMID: 30668691 PMCID: PMC6406535 DOI: 10.1093/gbe/evy273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a threat to multicellular organisms, yet the molecular evolution of pathways that prevent the accumulation of genetic damage has been largely unexplored. The p53 network regulates how cells respond to DNA-damaging stressors. We know little about p53 network molecular evolution as a whole. In this study, we performed comparative genetic analyses of the p53 network to quantify the number of genes within the network that are rapidly evolving and constrained, and the association between lifespan and the patterns of evolution. Based on our previous published data set, we used genomes and transcriptomes of 34 sauropsids and 32 mammals to analyze the molecular evolution of 45 genes within the p53 network. We found that genes in the network exhibited evidence of positive selection and divergent molecular evolution in mammals and sauropsids. Specifically, we found more evidence of positive selection in sauropsids than mammals, indicating that sauropsids have different targets of selection. In sauropsids, more genes upstream in the network exhibited positive selection, and this observation is driven by positive selection in squamates, which is consistent with previous work showing rapid divergence and adaptation of metabolic and stress pathways in this group. Finally, we identified a negative correlation between maximum lifespan and the number of genes with evidence of divergent molecular evolution, indicating that species with longer lifespans likely experienced less variation in selection across the network. In summary, our study offers evidence that comparative genomic approaches can provide insights into how molecular networks have evolved across diverse species.
Collapse
Affiliation(s)
- Courtney N Passow
- Department of Ecology, Evolution, and Behavior, University of Minnesota
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Heath Blackmon
- Department of Ecology, Evolution, and Behavior, University of Minnesota
- Department of Biology, Texas A&M University, College Station, TX
| | - Shikha Parsai
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Tonia S Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
- Department of Biological Sciences, Auburn University, Auburn, AL
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota
| |
Collapse
|
31
|
Vicens A, Posada D. Selective Pressures on Human Cancer Genes along the Evolution of Mammals. Genes (Basel) 2018; 9:genes9120582. [PMID: 30487452 PMCID: PMC6316132 DOI: 10.3390/genes9120582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer is a disease driven by both somatic mutations that increase survival and proliferation of cell lineages and the evolution of genes associated with cancer risk in populations. Several genes associated with cancer in humans, hereafter cancer genes, show evidence of germline positive selection among species. Taking advantage of a large collection of mammalian genomes, we systematically looked for signatures of germline positive selection in 430 cancer genes available in COSMIC. We identified 40 cancer genes with a robust signal of positive selection in mammals. We found evidence for fewer selective constraints—higher number of non-synonymous substitutions per non-synonymous site to the number of synonymous substitutions per synonymous site (dN/dS)—and higher incidence of positive selection—more positively selected sites—in cancer genes bearing germline and recessive mutations that predispose to cancer. This finding suggests a potential association between relaxed selection, positive selection, and risk of hereditary cancer. On the other hand, we did not find significant differences in terms of tissue or gene type. Human cancer genes under germline positive selection in mammals are significantly enriched in the processes of DNA repair, with high presence of Fanconi anaemia/Breast Cancer A (FA/BRCA) pathway components and T cell proliferation genes. We also show that the inferred positively selected sites in the two genes with the strongest signal of positive selection, i.e., BRCA2 and PTPRC, are in regions of functional relevance, which could be relevant to cancer susceptibility.
Collapse
Affiliation(s)
- Alberto Vicens
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain.
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain.
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain.
| |
Collapse
|
32
|
Nyce JW. Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. Endocr Relat Cancer 2018; 25:R497-R517. [PMID: 29941676 PMCID: PMC6106910 DOI: 10.1530/erc-18-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
The activation of TP53 is well known to exert tumor suppressive effects. We have detected a primate-specific adrenal androgen-mediated tumor suppression system in which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has been inactivated DHEA is an uncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems because it becomes irreversible in the presence of high concentrations of substrate and inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific sequence motif that disables an activating regulatory site in the glucose-6-phosphatase (G6PC) promoter was also required to enable function of this previously unrecognized tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate concentration. The triggering of these enzymes in the TP53-affected cell combines with the primate-specific G6PC promoter sequence motif that enables G6P substrate accumulation, driving uncompetitive inhibition of G6PD to irreversibility and ROS-mediated cell death. By this catastrophic 'kill switch' mechanism, TP53 mutations are effectively prevented from initiating tumorigenesis in the somatic cells of humans, the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human tumors therefore represent fossils of kill switch failure resulting from an age-related decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.
Collapse
|
33
|
Abstract
Cancer researchers have traditionally used the mouse and the rat as staple model organisms. These animals are very short-lived, reproduce rapidly and are highly prone to cancer. They have been very useful for modelling some human cancer types and testing experimental treatments; however, these cancer-prone species offer little for understanding the mechanisms of cancer resistance. Recent technological advances have expanded bestiary research to non-standard model organisms that possess unique traits of very high value to humans, such as cancer resistance and longevity. In recent years, several discoveries have been made in non-standard mammalian species, providing new insights on the natural mechanisms of cancer resistance. These include mechanisms of cancer resistance in the naked mole rat, blind mole rat and elephant. In each of these species, evolution took a different path, leading to novel mechanisms. Many other long-lived mammalian species display cancer resistance, including whales, grey squirrels, microbats, cows and horses. Understanding the molecular mechanisms of cancer resistance in all these species is important and timely, as, ultimately, these mechanisms could be harnessed for the development of human cancer therapies.
Collapse
Affiliation(s)
- Andrei Seluanov
- University of Rochester, Department of Biology, Rochester, NY, USA
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester, NY, USA.
| |
Collapse
|
34
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
35
|
Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc 2018; 93:1715-1734. [PMID: 29663630 PMCID: PMC6055669 DOI: 10.1111/brv.12415] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.
Collapse
Affiliation(s)
- Thales A F Albuquerque
- Escola Superior de Ciências da Saúde, SMHN Quadra 03 conjunto A, Bloco 1 Edifício Fepecs CEP 70, 710-907, Brasilia, Brazil
| | - Luisa Drummond do Val
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| |
Collapse
|
36
|
Vittecoq M, Giraudeau M, Sepp T, Marcogliese DJ, Klaassen M, Renaud F, Ujvari B, Thomas F. Turning natural adaptations to oncogenic factors into an ally in the war against cancer. Evol Appl 2018; 11:836-844. [PMID: 29928293 PMCID: PMC5999213 DOI: 10.1111/eva.12608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Both field and experimental evolution studies have demonstrated that organisms naturally or artificially exposed to environmental oncogenic factors can, sometimes rapidly, evolve specific adaptations to cope with pollutants and their adverse effects on fitness. Although numerous pollutants are mutagenic and carcinogenic, little attention has been given to exploring the extent to which adaptations displayed by organisms living in oncogenic environments could inspire novel cancer treatments, through mimicking the processes allowing these organisms to prevent or limit malignant progression. Building on a substantial knowledge base from the literature, we here present and discuss this progressive and promising research direction, advocating closer collaboration between the fields of medicine, ecology, and evolution in the war against cancer.
Collapse
Affiliation(s)
- Marion Vittecoq
- Institut de Recherche de la Tour du Valat Arles France.,CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| | - Mathieu Giraudeau
- School of Life Sciences Arizona State University Tempe AZ USA.,Centre for Ecology & Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Tuul Sepp
- School of Life Sciences Arizona State University Tempe AZ USA.,Department of Zoology University of Tartu Tartu Estonia
| | - David J Marcogliese
- Aquatic Contaminants Research Division Water Science and Technology Directorate Environment and Climate Change Canada St. Lawrence Centre Montreal QC Canada.,Fisheries and Oceans Canada St. Andrews Biological Station St. Andrews NB Canada
| | - Marcel Klaassen
- School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Deakin Vic. Australia
| | - François Renaud
- CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| | - Beata Ujvari
- School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Deakin Vic. Australia.,School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| |
Collapse
|
37
|
Alekseenko IV, Vinogradova TV, Sverdlov ED. Genetic Regulatory Mechanisms of Evolution and Embryogenesis in a Distorting Mirror of Carcinogenesis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|