1
|
Li X, Zhao W, Sun X, Zhang X, Liao W, Fan Q. Climate and Bedrock Collectively Influence the Diversity Pattern of Plant Communities in Qiniangshan Mountain. PLANTS (BASEL, SWITZERLAND) 2024; 13:3567. [PMID: 39771265 PMCID: PMC11677607 DOI: 10.3390/plants13243567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Climate and geological diversity have been proven to make an important contribution to biodiversity. Volcanic ecosystems often have a long geological history and diverse bedrock, thus shaping a variety of habitats. Understanding the relative importance and role of the contemporary climate and geological bedrock environment in volcanic biodiversity still needs further exploration. To address this knowledge gap, we investigated the patterns of plant diversity and phylogenetic structure at the community level in Qiniangshan Mountain, while also exploring the relationship between biodiversity and regional environmental factors (e.g., climate and bedrock types). In the Qiniangshan Mountain plant communities, species richness is higher at mid-to-high elevations. Montane communities exhibit higher species richness compared to coastal communities. There are significant differences in species richness among plant communities on different bedrock, with the highest species richness found on pyroclastic lava. Bedrock, along with climate factors related to energy and precipitation, collectively influence the patterns of species richness in plant communities. The Net Relatedness Index (NRI) of plant communities is influenced by climate factors and aspects, while the Nearest Taxon Index (NTI) is affected by both bedrock and climate factors. The Phylogenetic Diversity Index (PDI) is primarily related to climate factors. Climate and bedrock collectively influence the patterns of species richness and phylogenetic structure within Qiniangshan Mountain's plant communities. These findings highlight the profound impact of both climate and bedrock on montane vegetation and community biodiversity.
Collapse
Affiliation(s)
- Xujie Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.L.); (W.Z.)
| | - Wanyi Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.L.); (W.Z.)
| | - Xianling Sun
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen 518116, China; (X.S.); (X.Z.)
| | - Xuejiao Zhang
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen 518116, China; (X.S.); (X.Z.)
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.L.); (W.Z.)
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.L.); (W.Z.)
| |
Collapse
|
2
|
Toivanen M, Maliniemi T, Hjort J, Salminen H, Ala-Hulkko T, Kemppinen J, Karjalainen O, Poturalska A, Kiilunen P, Snåre H, Leppiniemi O, Makopoulou E, Alahuhta J, Tukiainen H. Geodiversity data for Europe. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230173. [PMID: 38342206 PMCID: PMC10859234 DOI: 10.1098/rsta.2023.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/19/2023] [Indexed: 02/13/2024]
Abstract
Geodiversity is an essential part of nature's diversity. However, geodiversity is insufficiently understood in terms of its spatial distribution and its relationship to biodiversity over large spatial extents. Here, we present European geodiversity data at resolutions of 1 km and 10 km. We assess terrestrial geodiversity quantitatively as a richness variable (georichness) using a commonly employed grid-based approach. The data incorporate aspects of geological, pedological, geomorphological and hydrological diversity, which are also available as separate richness variables. To evaluate the data, we correlated European georichness with empirically tested national georichness data from Finland, revealing a positive correlation at both 1 km (rp = 0.37, p < 0.001) and 10 km (rp = 0.59, p < 0.001) resolutions. We also demonstrate potential uses of the European data by correlating georichness with vascular plant species richness in two contrasting example areas: Finland and Switzerland. The positive correlations between georichness and species richness in Finland (rp = 0.34, p < 0.001) and Switzerland (rp = 0.26, p < 0.001) further support the use of our data in geodiversity-biodiversity research. Moreover, there is great potential beyond geodiversity-biodiversity questions, as the data can be exploited across different regions, ecosystems and scales. These geodiversity data provide an insight on abiotic diversity in Europe and establish a quantitative large-scale geodiversity assessment method applicable worldwide. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.
Collapse
Affiliation(s)
- M. Toivanen
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - T. Maliniemi
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - J. Hjort
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - H. Salminen
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - T. Ala-Hulkko
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
- Kerttu Saalasti Institute, University of Oulu, Oulu 90014, Finland
| | - J. Kemppinen
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - O. Karjalainen
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - A. Poturalska
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - P. Kiilunen
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - H. Snåre
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
- Finnish Environment Institute, Nature Solutions, Paavo Havaksen Tie 3 Oulu, 90570, Finland
| | - O. Leppiniemi
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - E. Makopoulou
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - J. Alahuhta
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| | - H. Tukiainen
- Geography Research Unit, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
3
|
Alsbach CME, Seijmonsbergen AC, Hoorn C. Geodiversity in the Amazon drainage basin. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230065. [PMID: 38342214 PMCID: PMC10875704 DOI: 10.1098/rsta.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 02/13/2024]
Abstract
The Amazon is the largest drainage basin on Earth and contains a wide variety of abiotic landscape features. In spite of this, the geodiversity in this basin has not yet been objectively evaluated. We address this knowledge gap by combining a meta-analysis of an existing global geodiversity map and its components with a systematic literature review, to identify the key characteristics of geodiversity in the Amazon drainage basin (ADB). We also evaluate how these global geodiversity component maps, that are based on the geology, geomorphology, soils and hydrology, could be refined to better reflect geodiversity in the basin. Our review shows that geology-through lithological diversity and geological structures-and hydrology-through hydrological processes that influence geomorphology and soil diversity-are the main determinants of geodiversity. Based on these features, the ADB can be subdivided into three principal regions: (i) the Andean orogenic belt and western Amazon, (ii) the cratons and eastern Amazon, and (iii) the Solimões-Amazon river system. Additional methods to map geomorphological and hydrological diversity have been identified. Future research should focus on investigating the relationship between the geodiversity components and assess their relationship with biodiversity. Such knowledge can enhance conservation plans for the ADB. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.
Collapse
Affiliation(s)
- Cécile M. E. Alsbach
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090GE, Amsterdam, The Netherlands
| | - Arie C. Seijmonsbergen
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090GE, Amsterdam, The Netherlands
| | - Carina Hoorn
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090GE, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Macario-González L, Cohuo S, Hoelzmann P, Pérez L, Elías-Gutiérrez M, Caballero M, Oliva A, Palmieri M, Álvarez MR, Schwalb A. Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics. BIOGEOSCIENCES 2022; 19:5167-5185. [DOI: 10.5194/bg-19-5167-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract. Geodiversity is recognized as one of the most important drivers of ecosystem characteristics and biodiversity globally. However, in the northern Neotropics, the contribution of highly diverse landscapes, environmental conditions, and geological history in structuring large-scale patterns of aquatic environments and aquatic species associations remains poorly understood. We evaluated the relationships among geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. A cluster analysis (CA), based on geological, geochemical, mineralogical, and water-column physical and chemical characteristics of 76 aquatic ecosystems (karst, volcanic, tectonic) revealed two main limnological regions: (1) karst plateaus of the Yucatán Peninsula and northern Guatemala, and (2) volcanic terrains of the Guatemalan highlands, mid-elevation sites in El Salvador and Honduras, and the Nicaraguan lowlands. In addition, seven subregions were recognized, demonstrating a high heterogeneity of aquatic environments. Principal component analysis (PCA) identified water chemistry (ionic composition) and mineralogy as most influential for aquatic ecosystem classification. Multi-parametric analyses, based on biological data, revealed that ostracode species associations represent disjunct faunas. Five species associations, distributed according to limnological regions, were recognized. Structural equation modeling (SEM) revealed that geodiversity explains limnological patterns of the study area. Limnology further explained species composition, but not species richness. The influence of conductivity and elevation were individually evaluated in SEM and were statistically significant for ostracode species composition, though not for species richness. We conclude that geodiversity has a central influence on the limnological conditions of aquatic systems, which in turn influence ostracode species composition in lakes of the northern Neotropical region.
Collapse
|
5
|
Guimarães ES, Sá AA, Soares RC, Bandeira PFR, Moreira H, Guimarães JRS, de Lima Júnior FDÓ, Gabriel RCD. Classification of the Effort Index and Biomechanical Overload in Natural Trails of UNESCO Global Geoparks-A Network Perspective of Trails of the Araripe UGG (NE Brazil). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14297. [PMID: 36361174 PMCID: PMC9658445 DOI: 10.3390/ijerph192114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Natural trails in UNESCO Global Geopark territories show strong salutogenic, inclusive and interactive characteristics as potentials and opportunities for ecosystem health. It is essential to provide information to inform the hiker as to the characteristics of the environment and the attractions and challenges of the route. Based on a network analysis methodology we aimed to identify the indicators of centrality and strength of connection in order to classify the effort index and biomechanical overload of the Araripe UNESCO Global Geopark trails in Brazil. The results showed strong connection and centrality of the variables related to the biomechanical overload in the effort index. In the trail of Pontal de Cruz the altimetric variation and the surface of the ground are highlighted in the biomechanical overload that presented a horizontal course equivalent 2.6 times larger than the presented distance. In Sítio Fundão trail, the surface of the ground also stood out, increasing the exposure in 36% of the presented distance. On the Missão Velha Waterfall trail, the variable that stood out was the biomechanical overload on the knee, equivalent to a horizontal increase of 28% of the measured distance. The methodology presented sought to optimise the mapping, management and consolidation of a network of natural trails aggregated to a high geotouristic, scientific, educational, cultural and well-being potential as presented in the Araripe UGG territory.
Collapse
Affiliation(s)
- Eduardo S. Guimarães
- Department of Sport Sciences, Exercise and Health, UTAD—University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Physical Education, URCA—Universidade Regional do Cariri, Araripe UNESCO Global Geopark, Rua Cel. Antônio Luiz 1161, Crato 63105-000, CE, Brazil
| | - Artur A. Sá
- Department of Geology, UTAD—University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Rafael C. Soares
- Araripe UNESCO Global Geopark, URCA—Universidade Regional do Cariri, Rua Carolino Sucupira, Crato 63105-000, CE, Brazil
| | - Paulo Felipe R. Bandeira
- Motor Evaluation Study, Application and Research Group—GEAPAM, URCA—Universidade Regional do Cariri, Rua Cel. Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Helena Moreira
- Department of Sport Sciences, Exercise and Health, Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD) and Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jaqueliny R. S. Guimarães
- Department of Medicine, URCA—Universidade Regional do Cariri, Rua Cel. Antônio Luiz 1161, Crato 63105-000, CE, Brazil
| | - Francisco do Ó de Lima Júnior
- Department of Economics, URCA—Universidade Regional do Cariri, Araripe UNESCO Global Geopark, Rua Cel. Antônio Luiz 1161, Crato 63105-000, CE, Brazil
| | - Ronaldo C. D. Gabriel
- Department of Sport Sciences, Exercise and Health, Centre for the Research and Technology in Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Wallis CIB, Tiede YC, Beck E, Böhning-Gaese K, Brandl R, Donoso DA, Espinosa CI, Fries A, Homeier J, Inclan D, Leuschner C, Maraun M, Mikolajewski K, Neuschulz EL, Scheu S, Schleuning M, Suárez JP, Tinoco BA, Farwig N, Bendix J. Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot. Sci Rep 2021; 11:24530. [PMID: 34972835 PMCID: PMC8720099 DOI: 10.1038/s41598-021-03488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
AbstractBiodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.
Collapse
|